Бактериофаги относят к паразитам хемотрофам

Обновлено: 23.04.2024

Валентин Викторович Власов — академик РАН, доктор химических наук, профессор, директор Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Лауреат Государственной премии РФ (1999). Автор и соавтор более 300 научных работ и 20 патентов.

Вера Витальевна Морозова — кандидат биологических наук, старший научный сотрудник лаборатории молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор более 30 научных работ и 6 патентов.

Игорь Викторович Бабкин — кандидат биологических наук, ведущий научный сотрудник лаборатории молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор и соавтор 58 научных работ и 2 патентов.

Нина Викторовна Тикунова — доктор биологических наук, заведующая лабораторией молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор и соавтор 120 научных работ и 21 патента.

Когда в 1930-х гг. группа ученых занялась проблемами функционирования живых систем, то в поиске простейших моделей они обратили внимание на бактериофаги — вирусы бактерий. Ведь среди биологических объектов нет ничего проще, чем бактериофаги, к тому же их можно легко и быстро выращивать и анализировать, а вирусные генетические программы невелики.

Фаг — это минимального размера природная структура, содержащая плотно упакованную генетическую программу (ДНК или РНК), в которой нет ничего лишнего. Эта программа заключена в белковую оболочку, снабженную минимальным набором устройств для ее доставки внутрь бактериальной клетки. Бактериофаги не могут размножаться сами по себе, и в этом смысле их нельзя считать полноценными живыми объектами. Их гены начинают работать только в бактерии, используя имеющиеся в бактериальной клетке биосинтетические системы и запасы молекул, необходимых для синтеза. Однако генетические программы этих вирусов принципиально не отличаются от программ более сложных организмов, поэтому эксперименты с бактериофагами позволили установить основополагающие принципы устройства и работы генома.

В дальнейшем эти знания и разработанные в ходе исследований методы стали фундаментом для развития биологической и медицинской науки, а также широкого спектра биотехнологических приложений.

Бактериофаги — наши друзья, когда речь идет о бактериях, патогенных для человека. Однако есть и другие, дружественные нам бактерии, которые используются в современных биотехнологических производствах, а также в традиционных производствах пищевой промышленности, таких как сыроварение и т. п. В этих случаях фаги могут приносить большой вред, поскольку в больших популяциях микроорганизмов, находящихся в стадии интенсивного роста, создаются благоприятные условия для размножения фагов, что приводит к лизису производственных бактериальных культур. При производстве сыра проблема не столь серьезна, так как при этом обычно применяют закваски, состоящие из многих культур, часть которых выдержит фаговую атаку и продолжит процесс молочнокислого брожения. Серьезные неприятности возникают, если весь процесс основан на применении одного конкретного бактериального штамма, как, например, при производстве антибиотиков или терапевтических белков.

Борцы с патогенами

Первые попытки использовать бактериофаги для лечения инфекционных заболеваний были предприняты практически сразу после их открытия, однако недостаток знаний и несовершенные биотехнологии того времени не позволили достичь полного успеха. Тем не менее дальнейшая клиническая практика показала принципиальную возможность успешного применения бактериофагов при инфекционных заболеваниях желудочно-кишечного тракта, мочеполовой системы, при острых гнойно-септических состояниях больных, для лечения хирургических инфекций и т. д.

По сравнению с антибиотиками бактериофаги имеют ряд преимуществ: они не вызывают побочных эффектов, к тому же строго специфичны для определенных видов бактерий, поэтому при их использовании не нарушается нормальный микробиом человека. Однако такая высокая избирательность создает и проблемы: чтобы успешно лечить пациента, нужно точно знать инфекционный агент и подбирать бактериофаг индивидуально.

Бактериофагами лечат инфекционные болезни не только людей, но и домашних и сельскохозяйственных животных: мастит у коров, колибактериоз и эшерихиоз у телят и свиней, сальмонеллез у кур. Особенно удобно применять фаговые препараты в случае аквакультуры — для лечения промышленно выращиваемых рыб и креветок, так как в воде они долго сохраняются. Бактериофаги помогают защитить и растения, хотя применение фаговых технологий в этом случае затруднено из-за воздействия природных факторов, таких как солнечный свет и дождь, губительных для вирусов.

Фаги могут сыграть большую роль в поддержании микробиологической безопасности продуктов питания, так как применение антибиотиков и химических агентов в пищевой отрасли не решает эту проблему, одновременно снижая уровень экологической чистоты продукции. О серьезности самой проблемы говорят статистические данные: например, в США и России ежегодно регистрируется до 40 тыс. заболевших сальмонеллезом, из которых 1% умирает. Распространение этой инфекции в значительной степени связано с выращиванием, переработкой и потреблением различных видов птицы, и попытки применить для борьбы с ней бактериофаги дали многообещающие результаты.

Так, американская компания Intralytix производит фаговые препараты для борьбы с листериозом, сальмонеллезом и бактериальным загрязнением кишечной палочкой. Они разрешены к применению как добавки, предотвращающие размножение бактерий на продуктах питания — их распыляют на продукты из мяса и домашней птицы, а также на овощи и фрукты. Эксперименты показали, что коктейль из бактериофагов может быть успешно применен и при транспортировке и реализации живой прудовой рыбы для снижения бактериального загрязнения не только воды, но и самой рыбы.

Очевидным применением бактериофагов является дезинфекция, то есть уничтожение бактерий в тех местах, где их не должно быть: в больницах, на пищевых производствах и т. п. Для этой цели британская компания Fixed-Phage разработала метод фиксации фаговых препаратов на поверхностях, обеспечивающий сохранение биологической активности фагов до трех лет.

Эксперимент американских исследователей А. Херши и М. Чейза с использованием бактериофагов, меченных изотопами серы и фосфора, доказали роль ДНК как основного носителя генетической информации

В качестве объектов для своих исследований М. Дельбрюк и его сотрудники использовали мутантные бактериофаги так называемой Т-серии, поражающие кишечную палочку

Семь дней творения

Современные методы синтетической биологии позволяют не только вносить различные модификации в фаговые геномы, но и создавать полностью искусственные активные фаги. Технологически это несложно, нужно только синтезировать фаговый геном и ввести его в бактериальную клетку, а там он уже сам запустит все процессы, необходимые для синтеза белков и сборки новых фаговых частиц. В современных лабораториях на эту работу уйдет всего несколько дней.

Генетические модификации применяют, чтобы изменить специфичность фагов и повысить эффективность их терапевтического действия. Для этого наиболее агрессивные фаги снабжают узнающими структурами, связывающими их с целевыми бактериями. Также в вирусные геномы дополнительно встраивают гены, кодирующие токсические для бактерий белки, нарушающие метаболизм, — такие фаги более смертоносны для бактерий.

Универсальный способ защиты бактерий от всех внешних воздействий — так называемые биофильмы, пленки из ДНК, полисахаридов и белков, которые бактерии создают совместными усилиями и куда не проникают ни антибиотики, ни терапевтические белки. Такие биопленки — головная боль врачей, так как они способствуют разрушению зубной эмали, образуются на поверхности имплантов, катетеров, искусственных суставов, а также в дыхательных путях, на поверхности кожи и т. п. Для борьбы с биофильмами были сконструированы особые бактериофаги, содержащие ген, кодирующий специальный литический фермент, разрушающий бактериальные полимеры.

Большое число ферментов, сегодня широко использующихся в молекулярной биологии и генетической инженерии, были открыты в результате исследований бактериофагов.

Фаговые антибиотики

В терапевтических целях фаги необязательно использовать напрямую. За миллионы лет эволюции бактериофаги разработали арсенал специфических белков — инструментов для распознавания целевых микроорганизмов и манипуляций с биополимерами жертвы, на основе которых можно создавать противобактериальные препараты. Наиболее перспективными белками такого типа являются ферменты эндолизины, которые фаги используют для разрушения клеточной стенки при выходе из бактерии. Сами по себе эти вещества являются мощными антибактериальными средствами, нетоксичными для человека. Эффективность и направленность их действия можно повысить, изменив в них адресующие структуры — белки, специфически связывающиеся с определенными бактериями.

Большинство бактерий делятся по устройству клеточной стенки на грамположительные, мембрана которых покрыта очень толстым слоем пептидогликанов, и грамотрицательные, у которых слой пептидогликана расположен между двумя мембранами. Использование природных эндолизинов особенно эффективно в случае грамположительных бактерий (стафилококков, стрептококков и др.), поскольку пептидогликановый слой у них расположен снаружи. Грамотрицательные бактерии (синегнойная палочка, сальмонеллы, кишечная палочка и др.) являются менее доступной мишенью, поскольку ферменту, чтобы добраться до внутреннего пептидогликанового слоя, необходимо проникнуть сквозь внешнюю бактериальную мембрану.

Для преодоления этой проблемы были созданы так называемые артилизины — модифицированные варианты природных эндолизинов, содержащие поликатионные или амфипатические пептиды, которые дестабилизируют внешнюю мембрану и обеспечивают доставку эндолизина непосредственно к пептидогликановому слою. Артилизины обладают высокой бактерицидной активностью и уже показали свою эффективность при лечении отитов у собак (Briers et al., 2014).

Примером модифицированного эндолизина, избирательно действующего на определенные бактерии, является препарат P128 канадской компании GangaGen Inc. Он представляет собой биологически активный фрагмент эндолизина, соединенный с лизостафином — адресующей белковой молекулой, которая связывается с поверхностью клеток стафилококков. Полученный химерный белок обладает высокой активностью против разных штаммов стафилококка, в том числе обладающих множественной лекарственной устойчивостью.

Анализируя размножение фагов в присутствии целевых бактерий, можно количественно определить численность последних. Так как количество фаговых частиц в растворе возрастет пропорционально числу содержавшихся в нем бактериальных клеток, то для оценки численности бактерий достаточно определить титр бактериофага.

Специфичность и чувствительность такой аналитической реакции достаточно высока, а сами процедуры просты в исполнении и не требуют сложного оборудования. Важно, что диагностические системы, основанные на бактериофагах, сигнализируют о наличии именно живого патогена, тогда как другие методы, такие как ПЦР и иммуноаналитические, свидетельствуют лишь о наличии биополимеров, принадлежащих этой бактерии. Такого типа диагностические методы особенно удобны для использования в экологических исследованиях, а также в пищевой индустрии и сельском хозяйстве.

Вероятно, с помощью модифицированных фагов удастся решить и давнюю задачу глобальной важности — разработать дешевые и быстрые методы детекции возбудителей туберкулеза на ранней стадии заболевания. Задача эта очень сложна, поскольку микобактерии, вызывающие туберкулез, отличаются крайне медленным ростом при культивировании в лабораторных условиях. Поэтому диагностика заболевания традиционными методами может затягиваться на срок до нескольких недель.

Фаговая технология позволяет упростить эту задачу. Суть ее в том, что к образцам анализируемой крови добавляют бактериофаг D29, способный поражать широкий спектр микобактерий. Затем бактериофаги отделяют, и образец перемешивают с быстрорастущей непатогенной культурой микобактерий, также чувствительной к этому бактериофагу. Если в крови первоначально имелись микобактерии, которые были инфицированы фагами, то в новой культуре будет также наблюдаться наработка бактериофага. Таким образом можно выявить единичные клетки микобактерий, а сам процесс диагностики с 2–3 недель сокращается до 2–5 дней (Swift & Rees, 2016).

Фаговый дисплей

Из экспериментов Смита последовало два важных вывода: во-первых, используя технологию рекомбинантных ДНК, можно создавать огромные по разнообразию популяции численностью 10 6 –10 14 фаговых частиц, каждая из которых несет на своей поверхности разные варианты белков. Такие популяции назвали комбинаторные фаговые библиотеки. Во-вторых, выделив из популяции конкретный фаг (например, обладающий способностью связываться с определенным белком или органической молекулой), можно этот фаг размножить в бактериальных клетках и получить неограниченное число потомков с заданными свойствами.

Принципиальная схема процедуры биопеннинга — отбора высокоспецифичных рекомбинантных антител к конкретной мишени-антигену из комбинаторной библиотеки фагового дисплея на основе нитчатых бактериофагов. По: (Тикунова, Морозова, 2009)

На сегодня можно выделить два основных направления применения фагового дисплея. Технология на основе пептидов используется для исследования рецепторов и картирования сайтов связывания антител, создания иммуногенов и нановакцин, а также картирования сайтов связывания субстратов у белков-ферментов. Технология на основе белков и белковых доменов — для отбора антител с заданными свойствами, изучения белок-лигандных взаимодействий, скрининга экспрессируемых фрагментов комплементарной ДНК и направленных модификаций белков.

С помощью фагового дисплея можно вносить узнающие группировки во все виды поверхностных вирусных белков, а также в основной белок, формирующий тело бактериофага. Вводя в поверхностные белки пептиды с заданными свойствами, можно получить целый спектр ценных биотехнологических продуктов. Например, если этот пептид будет имитировать белок опасного вируса или бактерии, узнаваемый иммунной системой, то такой модифицированный бактериофаг представляет собой вакцину, которую можно просто, быстро и безопасно наработать.

Одним из важных применений метода фагового дисплея белков является создание фаговых библиотек рекомбинантных антител, где антигенсвязывающие фрагменты иммуноглобулинов расположены на поверхности фаговых частиц fd или М13. Особый интерес представляют библиотеки антител человека, поскольку такие антитела могут быть использованы в терапии без ограничения. В последние годы только на фармацевтическом рынке США продается около полутора десятка терапевтических антител, сконструированных с использованием этого метода.

Так как вирус представляет собой достаточно жесткую конструкцию с определенным соотношением размерностей, это обстоятельство позволяет использовать его для получения пористых наноструктур с известной площадью поверхности и нужным распределением пор в структуре. Как известно, именно площадь поверхности катализатора является критическим параметром, определяющим его эффективность. А существующие на сегодня технологии формирования на поверхности бактериофагов тончайшего слоя металлов и их оксидов позволяют получать катализаторы с чрезвычайно развитой регулярной поверхностью заданной размерности. (Lee et al., 2012).

Нитчатый бактериофаг М13, размножающийся в обычной кишечной палочке (а), может нести на своей поверхности рекомбинантные чужеродные белки, такие как антитела (б) либо пептиды (в). Он также может служить шаблоном для создания наноустройств и наноматериалов, таких как нанокристаллический катализатор с известной площадью поверхности и нужным распределением пор (г)

Путем покрытия нитчатых фагов золотом и двуокисью индия были получены электрохромные материалы — пористые нанопленки, меняющие цвет при изменении электрического поля, способные реагировать на изменение электрического поля в полтора раза быстрее известных аналогов. Подобного рода материалы перспективны для создания энергосберегающих ультратонких экранных устройств (Nam et al., 2012).

На основе комплексов бактериофага М13, двуокиси титана и одностенных углеродных нанотрубок были также созданы материалы для солнечных батарей (Dang et al., 2011).

Последние годы ознаменовались широкими исследованиями бактериофагов, которые находят себе все новые применения не только в терапии, но и в био- и нанотехнологиях. Их очевидным практическим результатом должно стать возникновение нового мощного направления персонализированной медицины, а также создание целого спектра технологий в пищевой промышленности, ветеринарии, сельском хозяйстве и в производстве современных материалов. Мы ждем, что второе столетие исследований бактериофагов принесет не меньше открытий, чем первое.

Литература
1. Бактериофаги: биология и применение / Ред.: Э. Каттер, А. Сулаквелидзе. М.: Научный мир. 2012.
2. Стент Г., Кэлиндар Р. Молекулярная генетика. М.: Мир. 1974. 614 с.
3. Тикунова Н. В., Морозова В. В. Фаговый дисплей на основе нитчатых бактериофагов: применение для отбора рекомбинантных антител // Acta Naturae. 2009. № 3. C. 6–15.
4. Mc Grath S., van Sinderen D. Bacteriophage: Genetics and Molecular Biology. Horizon Scientific Press, 2007.

Сравнение дыхания и фотосинтеза

Дыхание:
1) энергетический обмен, энергия выделяется
2) глюкоза окисляется в цитоплазме и митохондриях
3) кислород поглощается, углекислый газ выделяется
Фотосинтез:
1) пластический обмен, энергия запасается
2) глюкоза синтезируется в хлоропластах
3) кислород выделяется, углекислый газ поглощается

Дыхание у растений
1) Происходит во всех живых клетках круглосуточно (фотосинтез – только в зеленых клетках и только на свету).
2) При дыхании растения, как и мы, поглощают кислород и выделяют углекислый газ. Кислород окисляет глюкозу, созданную при фотосинтезе, получается энергия АТФ.
3) После полива рекомендуется рыхлить почву, чтобы к корням лучше поступал кислород. Если в земле не будет воздуха, то корни задохнутся, и растение погибнет.

Еще можно почитать

Задания части 1

Выберите один, наиболее правильный вариант. Плесневые грибы по способу питания относят к
1) гетеротрофам
2) паразитам
3) хемотрофам
4) симбионтам


Выберите один, наиболее правильный вариант. По способу питания подавляющее большинство бактерий
1) автотрофы
2) сапротрофы
3) хемотрофы
4) симбионты

Выберите один, наиболее правильный вариант. Бактерии гниения являются по способу питания организмами
1) хемотрофными
2) автотрофными
3) гетеротрофными
4) симбиотическими

Выберите один, наиболее правильный вариант. Какие организмы преобразуют энергию окисления неорганических веществ в макроэргические связи АТФ?
1) фототрофы
2) хемотрофы
3) гетеротрофы
4) сапротрофы

АВТОТРОФЫ ПРИМЕРЫ
1. Выберите три варианта. К автотрофам относят
1) споровые растения
2) плесневые грибы
3) одноклеточные водоросли
4) хемотрофные бактерии
5) вирусы
6) большинство простейших

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие из перечисленных организмов являются автотрофами?
1) мукор
2) нитрифицирующие бактерии
3) дрожжи
4) цианобактерии
5) железобактерии
6) сенная палочка

АВТОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1) автотрофы, 2) гетеротрофы
А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

2. Установите соответствие между характеристикой и способом питании организмов: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) источником углерода служит углекислый газ
Б) сопровождается фотолизом воды
В) используется энергия окисления органических веществ
Г) используется энергия окисления неорганических веществ
Д) поступление пищи путем фагоцитоза

3. Установите соответствие между особенностью питания организма и группой организмов: 1) автотрофы, 2) гетеротрофы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) захватывают пищу путём фагоцитоза
Б) используют энергию, освобождающуюся при окислении неорганических веществ
В) получают пищу путём фильтрации воды
Г) синтезируют органические вещества из неорганических
Д) используют энергию солнечного света
Е) используют энергию, заключённую в пище

АВТОТРОФЫ - ГЕТЕРОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между примером и способом питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) цианобактерии
Б) ламинария
В) бычий цепень
Г) одуванчик
Д) лисица

2. Установите соответствие между организмом и типом питания: 1) автотрофное, 2) гетеротрофное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сосна сибирская
Б) кишечная палочка
В) амебa человеческая
Г) пеницилл
Д) хвощ полевой
Е) хлорелла

3. Установите соответствие между одноклеточным организмов и типом питания, который для него характерен: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) холерный вибрион
Б) железобактерия
В) малярийный плазмодий
Г) хламидомонада
Д) цианобактерия
Е) дизентерийная амёба

4. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) бычий цепень
В) хвощ полевой
Г) серобактерия
Д) зеленый кузнечик

5. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлорелла
Б) лягушка
В) шампиньон
Г) папоротник
Д) ламинария

СОБИРАЕМ 6:
А) мукор
Б) нитрифицирующие бактерии
В) трутовик
Г) бактерии гниения
Д) дрожжи

ФОТОСИНТЕЗ - ХЕМОСИНТЕЗ СХОДСТВО
Выберите один, наиболее правильный вариант. Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах
1) на образование органических веществ используется солнечная энергия
2) на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ
3) в качестве источника углерода используется углекислый газ
4) в атмосферу выделяется конечный продукт - кислород

ФОТОТРОФЫ - ХЕМОТРОФЫ ПРИЗНАКИ
1. Установите соответствие между характеристикой организмов и способом их питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в правильном порядке.
А) используется энергия света
Б) происходит окисление неорганических веществ
В) реакции протекают в тилакоидах
Г) сопровождается выделением кислорода
Д) присущ водородным и нитрифицирующим бактериям
Е) требует наличия хлорофилла

2. Установите соответствие между характеристикой автотрофного питания и его типом: 1) фотосинтез, 2) хемосинтез
А) используется энергия окисления неорганических веществ
Б) источник энергии – солнечный свет
В) осуществляется в клетках растений
Г) происходит в клетках цианобактерий
Д) выделяется в атмосферу кислород
Е) используется кислород для окисления

ФОТОТРОФЫ - ХЕМОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1) фотосинтез, 2) хемосинтез
А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

2. Установите соответствие между примерами и способами питания живых организмов: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) нитрифицирующая бактерия
В) хлорелла
Г) серобактерии
Д) железобактерии
Е) хлорококк

3. Установите соответствие между примерами и типами питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) серобактерии
Б) цианобактерии
В) железобактерии
Г) сфагнум
Д) спирогира

ХЕМОТРОФЫ - ГЕТЕРОТРОФЫ
Установите соответствие между организмами и типами их питания: 1) хемоавтотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) бактерии гниения
Б) обыкновенная амёба
В) нитрифицирующие бактерии
Г) серобактерии
Д) плесневые грибы

ФОТОТРОФЫ - ХЕМОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между организмом и способом его питания: 1) фототрофный, 2) гетеротрофный, 3) хемотрофный. Запишите цифры 1, 2 и 3 в правильном порядке.
А) спирогира
Б) пеницилл
В) серобактерия
Г) цианобактерия
Д) дождевой червь

2. Установите соответствие между организмами и типами их питания: 1) фототрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лямблия
Б) гриб спорынья
В) хламидомонада
Г) цианобактерия
Д) сфагнум

ФОТОСИНТЕЗ - ДЫХАНИЕ
1. Установите соответствие между характеристикой и процессом: 1) фотосинтез, 2) гликолиз. Запишите цифры 1 и 2 в правильном порядке.
А) происходит в хлоропластах
Б) синтезируется глюкоза
В) является этапом энергетического обмена
Г) происходит в цитоплазме
Д) происходит фотолиз воды

2. Установите соответствие между характеристикой и процессом жизнедеятельности растения, к которому её относят: 1) фотосинтез, 2) дыхание. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтезируется глюкоза
Б) окисляются органические вещества
В) выделяется кислород
Г) образуется углекислый газ
Д) происходит в митохондриях
Е) сопровождается поглощением энергии

3. Установите соответствие между процессом и видом обмена веществ в клетке: 1) фотосинтез, 2) энергетический обмен
А) образование пировиноградной кислоты (ПВК)
Б) происходит в митохондриях
В) фотолиз молекул воды
Г) синтез молекул АТФ за счет энергии света
Д) происходит в хлоропластах
Е) синтез 38 молекул АТФ при расщеплении молекулы глюкозы

4. Установите соответствие между признаком жизнедеятельности растений и процессом дыхания или фотосинтеза: 1) дыхание, 2) фотосинтез
А) осуществляется в клетках с хлоропластами
Б) происходит во всех клетках
В) поглощается кислород
Г) усваивается углекислый газ
Д) образуются органические вещества из неорганических на свету
Е) окисляются органические вещества

5. Установите соответствие особенностями и между процессами: 1) фотосинтез, 2) дыхание. Запишите цифры 1 и 2 в правильном порядке.
А) АТФ образуется в хлоропластах
Б) происходит во всех живых клетках
В) АТФ образуется в митохондриях
Г) конечные продукты – органические вещества и кислород
Д) исходные вещества – углекислый газ и вода
Е) энергия высвобождается

6. Установите соответствие между процессами и их особенностями: 1) дыхание, 2) фотосинтез. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) кислород поглощается, а углекислый газ и вода выделяются
Б) органические вещества образуются
В) происходит в хлоропластах на свету
Г) углекислый газ и вода поглощаются, а кислород выделяется
Д) происходит в митохондриях на свету и в темноте
Е) органические вещества расщепляются

А) Побочным продуктом химических реакций является кислород.

Б) Органические вещества в результате процесса расходуются

В) Процесс сходен с горением.

Растительная клетка


Установите соответствие между характеристиками и процессами, схемы которых представлены на рисунке: запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) Процесс разделяют на темновую и световую стадии.
Б) Первая стадия процесса происходит в цитоплазме.
В) Происходит у любых аэробных эукариот.
Г) Процесс происходит при участии хлорофилла.
Д) В ходе процесса расщепляется вода.
Е) Конечные продукты – CO2 и вода.

Установите соответствие между процессом, протекающим в клетке, и органоидом, в котором он происходит: 1) митохондрия, 2) хлоропласт. Запишите цифры 1 и 2 в правильной последовательности.
А) восстановление углекислого газа до глюкозы
Б) синтез АТФ в процессе дыхания
В) первичный синтез органических веществ
Г) превращение световой энергии в химическую
Д) расщепление органических веществ до углекислого газа и воды

Лабораторное растение производит путем фотосинтеза 8 г глюкозы в минуту, на диссимиляцию оно расходует 2 г глюкозы в минуту. Растение продержали 10 минут на свету, а затем 10 минут в темноте. На сколько увеличится содержание глюкозы в растении по сравнению с исходным состоянием? В ответ запишите только количество грамм глюкозы.

Установите соответствие между признаками органоида и органоидом, для которого эти признаки характерны: 1) Хлоропласт, 2) Митохондрия. Запишите цифры 1 и 2 в правильном порядке.
А) Содержит зелёный пигмент
Б) Состоит из двойной мембраны, тилакоидов и гран
В) Преобразует энергию света в химическую энергию
Г) Состоит из двойной мембраны и крист
Д) Обеспечивает окончательное окисление питательных веществ
Е) Запасает энергию в виде 38 моль АТФ при расщеплении 1 моль глюкозы

ДЫХАНИЕ РАСТЕНИЙ
Выберите один, наиболее правильный вариант. В процессе дыхания растения обеспечиваются
1) энергией
2) водой
3) органическими веществами
4) минеральными веществами

Выберите один, наиболее правильный вариант. Культурные растения плохо растут на заболоченной почве, так как в ней
1) недостаточное содержание кислорода
2) происходит образование метана
3) избыточное содержание органических веществ
4) содержится много торфа

Выберите один, наиболее правильный вариант. Растения в процессе дыхания используют кислород, который поступает в клетки и обеспечивает
1) окисление неорганических веществ до углекислого газа и воды
2) окисление органических веществ с освобождением энергии
3) синтез органических веществ из неорганических
4) синтез белка из аминокислот

Выберите один, наиболее правильный вариант. Растения в процессе дыхания
1) выделяют кислород и поглощают углекислый газ
2) поглощают кислород и выделяют углекислый газ
3) накапливают энергию в образующихся органических веществах
4) синтезируют органические вещества из неорганических

Выберите один, наиболее правильный вариант. Чтобы обеспечить доступ кислорода воздуха к корням растений, почву надо
1) удобрять солями калия
2) рыхлить до полива и во время полива
3) удобрять азотными солями
4) рыхлить после полива

Строение бактериофага

Так мир познакомился с микроорганизмами, питающимися бактериями, которые много тысяч лет делали свое дело слаженно, не давая бактериям уничтожить все живое на земле. В 1921 г. Д. Мэйсон и Р. Брайон впервые описали успешное лечение стафилококковой инфекции кожи с помощью стафилококкового бактериофага. Во время Второй мировой войны бактериофаги использовались при гнойно-септических инфекциях, дизентерии, тифе и др.

Бактериофаги еще в прошлом столетии доказали свою эффективность и безопасность. Почему же бактериофаги до сих пор не стали основными средствами борьбы с инфекцией? Это объясняется несколькими причинами. Главная — открытие новой группы препаратов – антибиотиков, надолго оттеснившее интерес к бактериофагам. Плюс:

  • недостаточная информированность врачей и пациентов,
  • отсутствие фагов ко многим патогенным бактериям,
  • неэффективность лечения в связи с неправильным подбором бактериофагов для лечения конкретного больного,
  • недостаточно изученное иммунологическое взаимодействие бактериофагов и организма человека,
  • отсутствие нормативно-правовых аспектов применения бактериофагов в лечении инфекций человека.

Что такое бактериофагиМеханизм

В 1939 году А. Флемингом был открыт антибиотик, и началась эра антибиотиков в лечении бактериальных инфекций. Появилось большое количество антибиотиков 1, 2, 3, 4 поколений, причем антибиотики последнего поколения, которыми пользуются и сейчас, появились еще в 70-е годы прошлого столетия. На Западе и Америке отказались от бактериофагов и активно начали применять антибиотики.

Но А. Флеминг предупреждал о некоторых обязательных моментах применения антибиотиков:

  • строгих показаниях к назначению,
  • соблюдении продолжительности и запрете прерывания курса лечения,
  • адекватных дозах препарата,
  • способах введения,
  • назначения их обязательно врачом,
  • отпуске антибиотиков исключительно по рецепту.

Несоблюдение хотя бы части этих требований могло привести и, как оказалось, приводит к кризису антибиотиковой эры. Бактерии перестают реагировать на препараты. Пока ещё действуют антибиотики последнего поколения, решая труднейшие клинические проблемы, но рассчитывать на появление новых антибиотиков не приходится.

Россия на сегодняшний день оказалась самой развитой страной в области микробиологии изучения бактериофагов. Бактериофаги – это естественные антагонисты бактерий.

Каков механизм действия бактериофагов

Сегодня многие заболевания вызываются стафилококками, стрептококками, клебсиеллами и другими бактериями, и успешно могут лечиться бактериофагами. Это естественная альтернатива антибиотикам, возврат к природе.

Какие преимущества имеют бактериофаги в лечении бактериальных инфекций

Бактериофаги много тысяч лет делали свое дело, не давая бактериям уничтожить все живое на земле.

Бактериофаги могут применяться и у беременных, и у детей, во всех возрастных группах людей. Противопоказаний к их применению нет.

Фаги совместимы с различными лекарствами, в том числе с антибиотиками, причем они уменьшают непереносимость (резистентность) бактерий к антибиотикам.

Курс лечения бактериофагами более короткий (7-14 дней). Фаги практически не дают побочных явлений. Они определяются бактериальной зараженностью и распадом бактерий с выделением эндотоксина, но они значительно меньше, чем при приеме антибиотиков, эти явления легко снимаются приёмом энтеросорбентов. Бактериофаги можно применять при аллергических реакциях на антибиотики.

Бактериофаги, благодаря своей специфичности воздействия на бактерии, не убивают хорошие бактерии и не изменяют нормальную микрофлору кишечника. Они, в отличие от антибиотиков, не нарушают микробиом человека.

Какие виды бактериофагов известны

Известно, что бактериофаги действуют на один штамм бактерий, поэтому производятся препараты бактериофагов, действующих против разных штаммов одного возбудителя:

  • стафилококковый бактериофаг,
  • сальмонеллезный бактериофаг,
  • стрептококковый бактериофаг,
  • клебсиеллёзный бактериофаг (Клебсиелла пневмония),
  • бактериофаг псевдомонас (против синегнойной палочки).

Бактериофаги

Производятся препараты против двух и более возбудителей, поливалентные бактериофаги:

  • бактериофаг дизентерийный, действующий на разные штаммы дизентерийной палочки,
  • клебсиеллезный бактериофаг против трёх видов клебсиелл,
  • бактериофаг бактериальный поливалентный очищенный (действует на стрептококк, стафилококк, протей, клебсиеллу пневмонию, кишечную палочку, синегнойную палочку),
  • пиобактериальный комплексный бактериофаг (против стафилококка, стрептококка, двух видов протея, двух видов клебсиеллы, энтерококков, энтеропатогенной кишечной палочки, синегнойной палочки),
  • бактериофаг интестин-бактериальный против дизентерийной палочки, сальмонеллы, кишечной палочки, протея, энтерококков, стафилококков, синегнойной палочки,
  • пиобактериофаг поливалентный или секстафаг (против стафилококка, стрептококка, протея, синегнойной палочки, клебсиеллы пневмонии, энтеропатогенной кишечной палочки).

Особенность бактериофагов – узкая специфичность, в следствие чего они могут применяться против определенных штаммов бактерий, поэтому необходимо иметь большую коллекцию бактериофагов, из которой можно выбрать подходящий препарат или фаговый коктейль для конкретного пациента. Коллекция бактериофагов составляет более 200 препаратов.

Производителем бактериофагов в России является научно-производственное объединение Микроген — мировой лидер изучения бактериофагов.

При каких заболеваниях применяются бактериофаги

Бактериофаги применяются при:

  • трофических язвах,
  • раневых инфекциях,
  • инфекциях органов дыхания,
  • мочеполовой системы,
  • желудочно-кишечных тракта,
  • болезнях лор-органов и др. заболеваниях.

Инфекции желудочно-кишечного тракта, вызванные сальмонеллой, золотистым стафилококком, протеем, и др. и сопровождающиеся диареей (поносами), успешно лечатся бактериофагами.

Применяться бактериофаги при острых кишечных инфекциях могут:

  • в виде монотерапии при легких формах,
  • в сочетании с антибиотиками при
    • средне-тяжелых формах болезни,
    • бактерионосительстве – выделении энтеропатогенных бактерий,
    • комплексной терапии условно-патогенной флоры и нарушении микробиома (микрофлоры) кишечника.

    Используются бактериофаги в дерматологии, в детской практике, хирургии. С профилактической целью — в детских садах и школах для предотвращения эпидемий, например, дизентерии. Бактериофаги уже более 100 лет на службе человека. Может быть, как раз сейчас начинается эпоха бактериофагов. В новосибирском научном центре разрабатываются технологии персонализированного лечения. Медицинские центры Франции, Бельгии, Швейцарии проводят клинические исследования коктейлей бактериофагов.


    Важным условием успешного лечения бактериофагами является знание микрофлоры тех органов, где предполагается бактериальная инфекция. Ниже приведены необходимые исследования микрофлоры для различных очагов заражения:

    Участок заражения Обследование
    желудочно-кишечный тракт анализ на микробиом толстой кишки (на дисбактериоз)
    носоглотка мазок на микрофлору
    урологические заболевания посев мочи,
    посев секрета простаты
    гинекологические заболевания мазки
    раневые поверхности и язвы,
    в том числе при диабетической стопе
    посев

    В настоящее время при выявлении бактериального возбудителя болезни есть возможность определить его чувствительность к бактериофагу. Перед началом лечения необходимо пройти это обследование.

    Как принимаются бактериофаги

    Бактериофаги хранятся в холодильнике при температуре 2-8 градусов.

    Бактериофаги — это крупные частицы. Они трудно проникают в ткани органов, поэтому лучше вводить их при лечении прямо к месту локализации инфекции. Это могут быть ингаляции при легочной патологии, промывания при лор-заболеваниях, аппликации при трофических язвах, ожогах, ранах. При инфекциях мочевыводящих путей для достижения успеха препараты бактериофагов вводятся в полость мочевого пузыря (хронический цистит).

    Для внутреннего употребления есть бактериофаги во флаконах по 20 мл, 4 флакона в упаковке. Перед употреблением флакон следует подержать в руке, согреть, перелить в чистую посуду и принять внутрь. Принимать 2 раза в день натощак и после ужина, курс лечения 6 дней.

    Забор бактериофага из 100-мл флакона

    Есть упаковки по 50 мл и 100 мл. Поскольку следует максимально сохранять стерильность препарата (при помутнении запрещён его приём), необходимый для однократного приёма объём следует набирать в шприц.

    В настоящее время проводят лечение бактериофагами диабетической стопы. Из больных тканей берут мазок для выявления конкретных патогенных бактерий. Затем из коллекции бактериофагов подбирают те, которые способны ликвидировать именно эти бактерии. Бактериофаг наносят на стерильную салфетку, прикладывают к ране. Лечение около недели.

    Бактериофаги применяются в медицине местно или внутрь. Еще в 30-ые годы прошлого столетия бактериофаги доказали свою безопасность и высокую эффективность в клинических условиях. Но покупать бактериофаги и лечиться самостоятельно не стоит.

    Заключение

    Не всегда бактериофаги могут заменить антибиотики. Так, если имеет место острая ситуация, когда заподозрена бактериальная инфекция, но нет времени определить бактериальный фон болезни, чтобы подобрать препарат бактериофаг, то применяется лечение антибиотиками. При хронических инфекционных болезнях, когда установлена нечувствительность бактерий к антибиотикам и бактериальный фон заболевания, предпочтение следует отдать бактериофагам.

    Хотя бактериофаги, возможно, не смогут полностью заменить антибиотики, но вместе они могут бороться со многими серьезными болезнями в клинической практике.


    Препараты на основе бактериофагов способны оказывать эффективную помощь при профилактике и борьбе с распространенными инфекциями без вреда организму. Мы попытаемся доходчиво объяснить, что такое бактериофаги, как они устроены и чем полезны для человека.

    Мы будем очень рады, если вы процитируете наш материал, но обязательно укажите активную ссылку на него. Спасибо!

    Препараты на основе бактериофагов способны оказывать эффективную помощь при профилактике и борьбе с распространенными инфекциями без вреда организму. Мы попытаемся доходчиво объяснить, что такое бактериофаги, как они устроены и чем полезны для человека.

    Мы будем очень рады, если вы процитируете наш материал, но обязательно укажите активную ссылку на него. Спасибо!

    В 1928 году британский бактериолог Александр Флеминг вернулся из отпуска в Шотландии в свою лабораторию в Лондоне и обнаружил, как в одной из чашек Петри бурно разрослась колония плесневых грибов (Penicillium notatum). С выделением пенициллина началась эра антибиотиков.

    С тех пор антибиотики спасли миллионы жизней по всей планете. Флеминг также обнаружил, что бактерии обладали устойчивостью к антибиотикам, если действовали малым количеством пенициллина, либо если антибиотик употреблялся слишком короткое время.

    Алмрот Райт предсказал устойчивость к антибиотикам еще до того, когда это было обнаружено экспериментально. Бактериальная резистентность — явление естественное по своей природе, а потому неизбежное.



    Вот уже более десятка лет Всемирная организация здравоохранения, Центр по контролю заболеваний в США, многие крупные эксперты в России открыто признают, что мы вступили в так называемую пост антибиотиковую эру.

    Например, в 2015 году в Китае была выявлена бактерия с новой мутацией в генах MCR-1, устойчивая к наиболее важному антибиотику в медицине - колистину, применяемому лишь в крайних случаях. Скорее всего, она появилась после того, как препарат начали активно использовать на животноводческих фермах. Ничего не мешает ей распространяться по миру и увеличивать спектр неизлечимых инфекций.

    В 2016 году в США зафиксирован случай заражения человека одной из разновидностей энтеробактерий. Штамп оказался устойчивым к воздействию тетрациклина, колистина, ко всем до единого из 26 видов антибиотиков, представленных на рынке. Женщину так и не удалось спасти.

    Ученые по всему миру продолжают изучать явление резистентности в надежде минимизировать угрозы. Однако одной из самых подходящих альтернатив можно назвать препараты (комбинированные или моно) на основе бактериофагов.

    Бактериофаги являются важнейшим компонентом нашей продукции и помогают при профилактике бактериальных заболеваний и борьбе с ними. Название звучит непривычно и немного непонятно. На самом деле, с бактериофагами люди знакомы уже более ста лет.

    Они являются самым распространенным биологическим объектом на Земле.

    Второе открытие было сделано во время исследования вспышки дизентерии среди французских солдат во время Первой мировой войны. При изучении лизиса (разрушения клетки под действием собственных или чужеродных ферментов) бактериальных культур.

    Ученый обратил внимание, что какое-то существо, невидимое в обычный микроскоп, разрушает выращенные им культуры бактерий. Микробиологу удалось настроить его размножение: бактерии, зараженные им, погибали, а количество агента увеличивалось.

    В 1919 году ученый успешно вылечил бактериофагами первых пациентов. Он описал случай успешного лечения дизентерии с использованием фагов, доказав, что они обеспечивают выздоровление больного организма. Были проведены и первые опыты по применению фагов при раневых инфекциях, холере, тифе и даже бубонной чуме. Успех выглядел вполне убедительно.

    Хотя в государствах Восточной Европы, таких как СССР, применение бактериофагов в терапии продолжилось, чему способствовало основание в 1934 году Института Бактериофага в Тбилиси Георгием Элиавой совместно с Феликсом Д'Эреллем.

    В мире интерес к фаговой терапии возобновился только в 1980-е годы, когда эффективность лечения антибиотиками значительно снизилась, а бактерии стали более устойчивы к лекарствам. Сейчас исследования в этой области активно ведутся по всему миру.

    Строение бактериофага

    Так мир познакомился с микроорганизмами, питающимися бактериями, которые много тысяч лет делали свое дело слаженно, не давая бактериям уничтожить все живое на земле. В 1921 г. Д. Мэйсон и Р. Брайон впервые описали успешное лечение стафилококковой инфекции кожи с помощью стафилококкового бактериофага. Во время Второй мировой войны бактериофаги использовались при гнойно-септических инфекциях, дизентерии, тифе и др.

    Бактериофаги еще в прошлом столетии доказали свою эффективность и безопасность. Почему же бактериофаги до сих пор не стали основными средствами борьбы с инфекцией? Это объясняется несколькими причинами. Главная — открытие новой группы препаратов – антибиотиков, надолго оттеснившее интерес к бактериофагам. Плюс:

    • недостаточная информированность врачей и пациентов,
    • отсутствие фагов ко многим патогенным бактериям,
    • неэффективность лечения в связи с неправильным подбором бактериофагов для лечения конкретного больного,
    • недостаточно изученное иммунологическое взаимодействие бактериофагов и организма человека,
    • отсутствие нормативно-правовых аспектов применения бактериофагов в лечении инфекций человека.

    Что такое бактериофагиМеханизм

    В 1939 году А. Флемингом был открыт антибиотик, и началась эра антибиотиков в лечении бактериальных инфекций. Появилось большое количество антибиотиков 1, 2, 3, 4 поколений, причем антибиотики последнего поколения, которыми пользуются и сейчас, появились еще в 70-е годы прошлого столетия. На Западе и Америке отказались от бактериофагов и активно начали применять антибиотики.

    Но А. Флеминг предупреждал о некоторых обязательных моментах применения антибиотиков:

    • строгих показаниях к назначению,
    • соблюдении продолжительности и запрете прерывания курса лечения,
    • адекватных дозах препарата,
    • способах введения,
    • назначения их обязательно врачом,
    • отпуске антибиотиков исключительно по рецепту.

    Несоблюдение хотя бы части этих требований могло привести и, как оказалось, приводит к кризису антибиотиковой эры. Бактерии перестают реагировать на препараты. Пока ещё действуют антибиотики последнего поколения, решая труднейшие клинические проблемы, но рассчитывать на появление новых антибиотиков не приходится.

    Россия на сегодняшний день оказалась самой развитой страной в области микробиологии изучения бактериофагов. Бактериофаги – это естественные антагонисты бактерий.

    Каков механизм действия бактериофагов

    Сегодня многие заболевания вызываются стафилококками, стрептококками, клебсиеллами и другими бактериями, и успешно могут лечиться бактериофагами. Это естественная альтернатива антибиотикам, возврат к природе.

    Какие преимущества имеют бактериофаги в лечении бактериальных инфекций

    Бактериофаги много тысяч лет делали свое дело, не давая бактериям уничтожить все живое на земле.

    Бактериофаги могут применяться и у беременных, и у детей, во всех возрастных группах людей. Противопоказаний к их применению нет.

    Фаги совместимы с различными лекарствами, в том числе с антибиотиками, причем они уменьшают непереносимость (резистентность) бактерий к антибиотикам.

    Курс лечения бактериофагами более короткий (7-14 дней). Фаги практически не дают побочных явлений. Они определяются бактериальной зараженностью и распадом бактерий с выделением эндотоксина, но они значительно меньше, чем при приеме антибиотиков, эти явления легко снимаются приёмом энтеросорбентов. Бактериофаги можно применять при аллергических реакциях на антибиотики.

    Бактериофаги, благодаря своей специфичности воздействия на бактерии, не убивают хорошие бактерии и не изменяют нормальную микрофлору кишечника. Они, в отличие от антибиотиков, не нарушают микробиом человека.

    Какие виды бактериофагов известны

    Известно, что бактериофаги действуют на один штамм бактерий, поэтому производятся препараты бактериофагов, действующих против разных штаммов одного возбудителя:

    • стафилококковый бактериофаг,
    • сальмонеллезный бактериофаг,
    • стрептококковый бактериофаг,
    • клебсиеллёзный бактериофаг (Клебсиелла пневмония),
    • бактериофаг псевдомонас (против синегнойной палочки).

    Бактериофаги

    Производятся препараты против двух и более возбудителей, поливалентные бактериофаги:

    • бактериофаг дизентерийный, действующий на разные штаммы дизентерийной палочки,
    • клебсиеллезный бактериофаг против трёх видов клебсиелл,
    • бактериофаг бактериальный поливалентный очищенный (действует на стрептококк, стафилококк, протей, клебсиеллу пневмонию, кишечную палочку, синегнойную палочку),
    • пиобактериальный комплексный бактериофаг (против стафилококка, стрептококка, двух видов протея, двух видов клебсиеллы, энтерококков, энтеропатогенной кишечной палочки, синегнойной палочки),
    • бактериофаг интестин-бактериальный против дизентерийной палочки, сальмонеллы, кишечной палочки, протея, энтерококков, стафилококков, синегнойной палочки,
    • пиобактериофаг поливалентный или секстафаг (против стафилококка, стрептококка, протея, синегнойной палочки, клебсиеллы пневмонии, энтеропатогенной кишечной палочки).

    Особенность бактериофагов – узкая специфичность, в следствие чего они могут применяться против определенных штаммов бактерий, поэтому необходимо иметь большую коллекцию бактериофагов, из которой можно выбрать подходящий препарат или фаговый коктейль для конкретного пациента. Коллекция бактериофагов составляет более 200 препаратов.

    Производителем бактериофагов в России является научно-производственное объединение Микроген — мировой лидер изучения бактериофагов.

    При каких заболеваниях применяются бактериофаги

    Бактериофаги применяются при:

    • трофических язвах,
    • раневых инфекциях,
    • инфекциях органов дыхания,
    • мочеполовой системы,
    • желудочно-кишечных тракта,
    • болезнях лор-органов и др. заболеваниях.

    Инфекции желудочно-кишечного тракта, вызванные сальмонеллой, золотистым стафилококком, протеем, и др. и сопровождающиеся диареей (поносами), успешно лечатся бактериофагами.

    Применяться бактериофаги при острых кишечных инфекциях могут:

    • в виде монотерапии при легких формах,
    • в сочетании с антибиотиками при
      • средне-тяжелых формах болезни,
      • бактерионосительстве – выделении энтеропатогенных бактерий,
      • комплексной терапии условно-патогенной флоры и нарушении микробиома (микрофлоры) кишечника.

      Используются бактериофаги в дерматологии, в детской практике, хирургии. С профилактической целью — в детских садах и школах для предотвращения эпидемий, например, дизентерии. Бактериофаги уже более 100 лет на службе человека. Может быть, как раз сейчас начинается эпоха бактериофагов. В новосибирском научном центре разрабатываются технологии персонализированного лечения. Медицинские центры Франции, Бельгии, Швейцарии проводят клинические исследования коктейлей бактериофагов.


      Важным условием успешного лечения бактериофагами является знание микрофлоры тех органов, где предполагается бактериальная инфекция. Ниже приведены необходимые исследования микрофлоры для различных очагов заражения:

      Участок заражения Обследование
      желудочно-кишечный тракт анализ на микробиом толстой кишки (на дисбактериоз)
      носоглотка мазок на микрофлору
      урологические заболевания посев мочи,
      посев секрета простаты
      гинекологические заболевания мазки
      раневые поверхности и язвы,
      в том числе при диабетической стопе
      посев

      В настоящее время при выявлении бактериального возбудителя болезни есть возможность определить его чувствительность к бактериофагу. Перед началом лечения необходимо пройти это обследование.

      Как принимаются бактериофаги

      Бактериофаги хранятся в холодильнике при температуре 2-8 градусов.

      Бактериофаги — это крупные частицы. Они трудно проникают в ткани органов, поэтому лучше вводить их при лечении прямо к месту локализации инфекции. Это могут быть ингаляции при легочной патологии, промывания при лор-заболеваниях, аппликации при трофических язвах, ожогах, ранах. При инфекциях мочевыводящих путей для достижения успеха препараты бактериофагов вводятся в полость мочевого пузыря (хронический цистит).

      Для внутреннего употребления есть бактериофаги во флаконах по 20 мл, 4 флакона в упаковке. Перед употреблением флакон следует подержать в руке, согреть, перелить в чистую посуду и принять внутрь. Принимать 2 раза в день натощак и после ужина, курс лечения 6 дней.

      Забор бактериофага из 100-мл флакона

      Есть упаковки по 50 мл и 100 мл. Поскольку следует максимально сохранять стерильность препарата (при помутнении запрещён его приём), необходимый для однократного приёма объём следует набирать в шприц.

      В настоящее время проводят лечение бактериофагами диабетической стопы. Из больных тканей берут мазок для выявления конкретных патогенных бактерий. Затем из коллекции бактериофагов подбирают те, которые способны ликвидировать именно эти бактерии. Бактериофаг наносят на стерильную салфетку, прикладывают к ране. Лечение около недели.

      Бактериофаги применяются в медицине местно или внутрь. Еще в 30-ые годы прошлого столетия бактериофаги доказали свою безопасность и высокую эффективность в клинических условиях. Но покупать бактериофаги и лечиться самостоятельно не стоит.

      Заключение

      Не всегда бактериофаги могут заменить антибиотики. Так, если имеет место острая ситуация, когда заподозрена бактериальная инфекция, но нет времени определить бактериальный фон болезни, чтобы подобрать препарат бактериофаг, то применяется лечение антибиотиками. При хронических инфекционных болезнях, когда установлена нечувствительность бактерий к антибиотикам и бактериальный фон заболевания, предпочтение следует отдать бактериофагам.

      Хотя бактериофаги, возможно, не смогут полностью заменить антибиотики, но вместе они могут бороться со многими серьезными болезнями в клинической практике.

      Читайте также: