Болезнь растений вызванные паразитами

Обновлено: 28.03.2024

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

  • Онлайн
    формат
  • Диплом
    гособразца
  • Помощь в трудоустройстве

Лекция 4 Классификация болезней растений.

1. Симптомы болезней растений.

Под болезнью растения понимается нарушение нормальных физиологических функций, возникающее под влиянием фитопатогена (возбудителя болезни) или неблагоприятных условий среды и приводящее растение к снижению продуктивности или полной гибели.

Среди нарушений обмена веществ, приводящих к заболеваниям, можно отметить: нарушение фотосинтеза, дыхательных процессов, нарушение синтеза строительных и запасных веществ, транспортировки воды и питательных веществ; нарушение синтеза ростовых веществ.

Нарушения физиологических функций почти неизбежно влекут за собой анатомо-морфологические изменения, касающиеся строения и структуры тканей, роста и формы всего растения или отдельных его органов.

Наиболее частыми нарушениями строения и структуры тканей, происходящими под влиянием патогена, являются:

1) гипертрофия (увеличение размера и изменение формы клеток);

  1. гипоплазия (уменьшение количества и размера клеток);
  2. некроз (отмирание отдельных клеток или участков ткани);
  3. мацерация (размягчение и распад тканей).

Для практических целей диагностики болезней растений по внешним признакам (симптомам) их группируют в следующие типы.

Отмирание тканей или некрозы

Для этого типа характерно отмирание участка тканей, которое приводит к образованию пятен различной формы, величины и окраски. Пятна могут быть расплывчатые (фитофтороз), ограниченные (бактериальная угловатая пятнистость листьев огурца). Образование пятна может быть как результатом непосредственного разрушающего воздействия на пораженный участок ткани, так и следствием защитной реакции организма на внедрение паразита (образование некротического барьера локализует дальнейшее распространение патогена). Отмирание тканей у корнеклубнеплодов приводит к образованию разнообразных гнилей. Гнили могут быть мокрыми (мокрая бактериальная гниль клубней картофеля), сухими (фузариозная сухая гниль картофеля), с налетом (белая гниль).

Налеты – проявляются в виде мучнистого налета на поверхности листьев и других органов растений. В большинстве случаев налет состоит из спороношения гриба или из мицелия паразита (у настоящих мучнистых рос) налет может быть белым (мучнистая роса), серым (серая гниль овощей), темно-коричневым (чернь) и т.д.

Деформация – проявляется в виде изменения формы органов растений под влиянием патогена. Так, в результате жизнедеятельности некоторых грибов пораженные клетки отдельных органов растений усиленно делятся (гиперплазия) и увеличиваются в размере (гипертрофия), что приводит к образованию наростов или опухолей (кила капусты, рак картофеля).

Увядание – характерно для заболеваний общего типа и связано с поражением корневой или сосудистой системы растений (кольцевая гниль картофеля, бактериальный рак томата и др.). Увядание чаще всего является следствием закупорки сосудистой системы возбудителем болезни или некроза стенок сосудов под влиянием токсинов, выделяемых возбудителем болезни.

Разрушение пораженной ткани с образованием спор отмечается при поражении твердой, пыльной и другими видами головни злаков, головней лука.

Хлороз и мозаика – пожелтение или посветление листьев (хлороз) или отдельных участков листа (мозаика) - являются следствием нарушения деятельности хлоропластов и низкого содержания хлорофилла в листьях. Однако сходные между собой признаки (симптомы) поражения, могут быть вызваны иногда разными причинами. Так, хлороз может быть как неинфекционным, связанным с дефицитом доступных для растения форм железа в почве, так и инфекционным, вызванным вирусом или микоплазмой.

Существует несколько типов классификации болезней растений:

1. по возбудителям (вирозы, бактериозы);

2. по культурам (болезни злаков, картофеля);

3. по месту проявления болезни – местные (локальные) и общие (диффузия);

4. по симптомам (проявление болезни)- пятнистости, гнили;

5. по возрасту или фазе развития растений (болезни семян, всходов, взрослых растений);

6. по органам растений (болезни листьев, плодов);

7. по продолжительности течения (острые и хронические болезни).

Наиболее удобна классификация болезней растений по этимологическому принципу, то есть в зависимости от причин, вызывающих заболевание. По этой классификации все болезни растений разделяют на две группы:

1. неинфекционные (непаразитные);

2. инфекционные (паразитные).

К неинфекционным относят дистрофические болезни, связанные с нарушением питания – азотное, фосфорное, калийное, борное, медное голодание и т.д. болезни, вызванные неблагоприятными температурами, водным и световым режимами; болезни, связанные с вредными примесями в воздухе, воде, почве; лучевые болезни и наследственные или хромосомные болезни.

К инфекционным относят вирусные (вирозы), бактериальные (бактериозы), актиномицетные (актиномикозы), грибные (микозы), болезни, вызываемые водорослями (альгозы), цветковыми паразитами (антофитозы).

Неинфекционные болезни растений. Болезни голодания

Недостаток азота проявляется в виде хлороза листьев, затем желтовато-зеленая окраска усиливается, начинают появляться некрозы (всегда с нижних листьев). Растение отстает в росте.

Дефицит азота устраняется подкормками растений аммиачной селитрой, птичьим пометом или навозной жижей.

Фосфорное питание растений улучшается при известковании кислых почв и при внесении фосфорных удобрений. В засушливых зонах с дефицитом фосфора нужно высаживать ранние и среднеранние сорта, чтобы они заканчивали вегетацию до засушливого периода.

Калийное голодание растений может усиливаться при избыточном внесении в почву кальция и магния. Увеличивается потребность в калийных удобрениях при известковании кислых почв.

Недостаток железа может вызывать своеобразное обесцвечивание листьев – хлороз, это связано как с недостатком железа в почве, так и в случае, когда оно находится в формах, недоступных для растений, в зонах со щелочными, карбонатными почвами.

Хлороз, однако, может быть вызван не только недостатком железа, но и магния, марганца, серы, нарушениями азотного питания. Поэтому прежде всего необходимо установить причины этого заболевания и разработать соответствующие мероприятия.

Большое значение в явлении хлороза имеют свойства корневой системы растения и условия его произрастания. Так, кислые корневые выделения таких растений как люцерна, клевер, донник, гречиха переводят железо из связанного в растворимое состояние. Хорошие результаты дает внесение в почву в конце августа, сентябре железного купороса или железных опилок.

Недостаток меди может вызвать частичный хлороз листьев, особенно молодых, потерю ими тургора, увядание, задержку образования стеблей и семян. Недостаток меди наиболее характерен для торфяных и песчаных (кислых) почв. В наибольшей степени подвержены медному голоданию зерновые культуры – пшеница, ячмень, овес.

Опрыскивание деревьев 0,05%-ным раствором медного купороса или внесение его в почву способствует устранению этого заболевания.

Недостаток бора отмечается чаще на карбонатных или заболоченных почвах, на кислых почвах проявляется главным образом после их известкования и в сухую жаркую погоду. Особенно чувствительны к недостатку бора свекла, лён, подсолнечник, цветная капуста.

Болезни, вызываемые неблагоприятными температурами воздуха и почвы.

Простудное состояние может быть у клубней картофеля, у корнеплодов свеклы. При быстром охлаждении корнеплодов свеклы (например, при оставлении во время уборки урожая выкопанного картофеля или свеклы на ночь в поле) снижается естественная активность защитных веществ типа фитонцидов и такие корнеплоды плохо хранятся.

Истекание зерна связано с действием сочетания длительной дождливой погоды и высокой температуры в конце молочной – начале восковой спелости зерна и сопровождается выделением медвяной росы. Влажная и жаркая погода в конце молочного состояния – начале восковой спелости зерна резко изменяет ферментативные процессы в зерне. Вместо синтеза преобладают процессы гидролиза. Крахмал, уже отложившийся в эндосперме, переходит в растворимое состояние, происходит накопление сахаров. В результате резкого увеличения осмотического давления внутри зерна в него засасывается много воды, клеточные стенки разрываются и сахаристая жидкость выходит наружу через трещины и поры.

Вымокание наблюдается весной в низких местах на тяжелых почвах, где долго стоит талая вода. Застой воды нарушает дыхание молодых растений и приводит к большой трате сахаров. Воздух не проникает к корням, и растения погибают.

Нерегулярная обеспеченность растений водой – одна из основных причин заболевания плодов томата, известного под названием вершинной гнили.

К этой группе относятся болезни, вызванные ядовитыми для растений соединениями, находящимися в воздухе, почве, воде (пестициды, завышение доз, несоблюдение сроков обработок, в том числе последней обработки, дым заводов и фабрик).

Инфекционные болезни растений

К инфекционным относят болезни, способные распространяться от растения к растению. Возбудителями инфекционных болезней могут быть:

6. цветковые растения – паразиты.

В основе взаимоотношений между растением и возбудителями инфекционных болезней лежит явление паразитизма, при котором возбудитель болезни (патоген) существует за счет готовых органических веществ ткани растения - хозяина.

В отличие от симбиоза, при котором жизнедеятельность одного из совместно живущих организмов не оказывает угнетающего действия на другой организм, при паразитических взаимоотношениях патоген всегда оказывает угнетающее или какое-либо другое патологическое действие на хозяина.

Способность возбудителя болезни вызывать заражение и поражение растений тесно связана с такими его свойствами, как патогенность, вирулентность и агрессивность.

Патогенность – способность возбудителя вызывать заболевание того или иного растения и наносить ему определенный вред. Чем более вредоносно заболевание, тем более патогенным считается его возбудитель.

Вирулентность – способность патогенного организма (индивида, расы) заражать и вызывать заболевание определенного растения-хозяина (вида или сорта). Например, гриб Synchytrium endochioticum – возбудитель рака картофеля – патогенный гриб. Но его патогенность проявляется только по отношению к картофелю, и, следовательно, он вирулентен только для этой культуры.

Агрессивность – способность патогенна к размножению в тканях восприимчивого растения-хозяина. Высокоагрессивными (по сравнению с другими равновирулентными организмами) считаются те возбудители, которые отличаются высокой энергией размножения, способностью быстро распространяться на далекие расстояния, устойчивостью к экстремальным условиям и т.д. Меньшая продолжительность инкубационного периода показатель более высокой агрессивности.

3. Возникновение и развитие патологического процесса.

Инфекционное заболевание – сложный процесс биологического взаимодействия возбудителя болезни и растения-хозяина. Развитие инфекционного заболевания происходит при непрерывном взаимодействии паразита, растения-хозяина и условий внешней среды.

Патологический процесс при инфекционных болезнях растения состоит из нескольких взаимосвязанных и последовательно сменяющих друг друга этапов. Основными из них являются:

2. инкубационный период;

3. собственно болезнь, т.е. ее проявление и развитие.

Заражение. Развитие инфекционного заболевания начинается с заражения, которое возможно только в том случае, когда патоген (возбудитель болезни) попадает на восприимчивое к нему растение и находит соответствующие условия окружающей среды для прорастания, внедрения и преодоления защитных свойств растения.

Заражение следует отличать от механического загрязнения растений спорами гриба или от механической примеси семян растения-паразита к семенам растения-хозяина.

Перенос заразного начала от больного растения к здоровому может осуществляться:

1. каплями дождя (гидрохлория) – так распространяются возбудители ложной мучнистой росы;

2. животными (зоохория) – распространение вирусной инфекции;

3. воздушными течениями (анемохория) – распространение ржавчины;

4. человеком (антропохория) и т.д.

Проникновение возбудителей в растение возможно через естественные отверстия - устьица (фитофтороз картофеля и ложные мучнистые росы), канал завязи (пыльная головня пшеницы и ячменя, спорынья злаков), механические повреждения (вирусные и бактериальные болезни, черный рак семечковых). Однако ростовые гифы спор многих паразитов благодаря деятельности ферментов, разрушающих кутикулу, могут проникать и через неповрежденные наружные покровы растений (ржавчинные и головневые грибы, мучнисторосяные и некоторые несовершенные грибы).

Инкубационный период . Начавшееся после заражения развитие болезни некоторое время протекает латентно, без внешних признаков. Проявление болезни, видимое простым глазом, обнаруживается ,как правило, лишь через несколько дней. Иногда скрытое развитие паразита внутри растения длится неделями, месяцами и дольше. Период развития болезни от заражения растения до появления внешних симптомов заболевания называют скрытым или инкубационным периодом.

Продолжительность инкубационного периода зависит от индивидуальных особенностей возбудителя болезни, степени восприимчивости растения (или органа растения) и условий окружающей среды, особенно температуры.

Проявление болезни. Инкубационный период любого инфекционного заболевания завершается проявлением внешних симптомов. Характер этих симптомов зависит в первую очередь от возбудителя болезни и может быть самым разнообразным – гнили, пятнистости, увядание, деформация, налеты и т.д.

Проявление внешних признаков заболевания означает, что в результате взаимодействия растения - хозяина, патогена и внешней среды в растении наступили те патологические (физиологические, анатомо-морфологические и др.) изменения, которые характерны для данного вида болезни. Итогом этих патологических изменений является снижение продуктивности растения, связанное с отмиранием отдельных частей или всего растения.

Выздоровление больного растения наблюдается очень редко, хотя в отдельных случаях и возможно. Восстановление и нормализация нарушенных заболеванием физиологических функций может происходить и естественным путем (под влиянием резкой смены погодных условий), но чаще при помощи человека.

4. Иммунитет растений к инфекционным заболеваниям.

В настоящее время понятие иммунитет растений формулируется как проявляемая им невосприимчивость к болезням в случае непосредственного контакта их (растений) с возбудителями, способными вызвать данную болезнь при существовании необходимых для заражения условий.

Наряду с полной невосприимчивостью (иммунитетом) различают также очень сходные между собой понятия – устойчивость или резистентность и выносливость или толерантность.

Устойчивыми (резистентными) считают те растения (виды, сорта), которые поражаются болезнью, но в очень слабой степени.

Выносливостью (толерантностью) называют способность больных растений не снижать свою продуктивность (количество и качество урожая или снижать ее настолько незначительно, что практически это не ощущается)

Восприимчивость (поражаемость) – неспособность растений противостоять заражению и распространению патогена в его тканях, т.е. способность заражаться при контакте с достаточным количеством инфекционного начала при соответствующих внешних условиях.

У растений имеются все перечисленные типы проявления иммунитета.

Иммунитет (невосприимчивость) растений к болезням может быть врожденным и передаваться по наследству. Такой иммунитет называется естественным.

Врожденный иммунитет может быть активный и пассивный.

Активным иммунитетом называют свойство растений активно противостоять возбудителю. Сюда относят антитоксические реакции растений, образование защитных некрозов (участков отмершей ткани вокруг паразита).

Пассивный иммунитет - это свойство растений препятствовать развитию паразита независимо от наличия инфекции. Он связан с анатомо-морфологическими, физико-химическими, физиолого-биохимическими и другими особенностями растений (наличие воскового налета, толщина кутикулы, химический состав растений, осматическое давление, реакция клеточного сока, наличие физиологически активных веществ, эфирных масел, фитонцидов и т.д.). Однако такое деление иммунитета на категории условно.

Наряду с естественным иммунитетом растениям может быть свойственен приобретенный (искусственный) иммунитет - свойство растений не поражаться тем или иным возбудителем, приобретенное растением в процессе онтогенеза.

Приобретенный иммунитет может быть инфекционный, если возникает у растения в результате выздоровления от болезни.

Неинфекционный приобретенный иммунитет может быть создан с помощью специальных приемов под влиянием обработки растений или семян иммунизирующими средствами. Этот тип иммунитета имеет большое значение в практике защиты с.х. растений от болезней.

Повышение устойчивости растений к болезням с помощью искусственных приемов называют иммунизацией, которая может быть химической и биологической.

Химическая иммунизация заключается в использовании различных химических веществ, способных повышать устойчивость растений к болезням. В качестве химических иммунизаторов используют удобрения, микроэлементы, антиметаболиты. Приобретенный неинфекционный иммунитет может быть создан путем использования удобрений. Так, увеличение дозы калийных удобрений повышает лёжкость корнеплодов в период хранения.

Биологическая иммунизация заключается в использовании в качестве иммунизаторов других живых организмов или продуктов их жизнедеятельности (антибиотиков, ослабленных или убитых культур фитопатогенных организмов и т.д.).

Устойчивость растений может быть достигнута обработкой их вакцинами – ослабленными культурами патогенов или экстрактами из них.

Company name

Болезни, возникающие в результате влияния неблагоприятных факторов окружающей среды, воздействия неживой природы ( абиотических факторов ) - засуха, наводнение, заморозки, недостатки питательных веществ и т.д.

К инфекционным болезням относятся болезни, вызываемые грибами, бактериями, вирусами, растениями паразитами и т.д. Возбудители инфекционных болезней относятся к объектам живой природы, т.е. являются биотическими факторами .
Для возбудителей инфекционных болезней характерно явление паразитизма - когда патоген не может самостоятельно обеспечить себя необходимыми питательными веществами и забирает их у растения-хозяина (растения, на котором он паразитирует). В фитопатологии выделяются три типа паразитизма (см. следующий раздел).

Инфекционные болезни, возникающие на фоне угнетения растений абиотическими факторами (неинфекционных болезней). Например - инфекционные заболевания, возникающие у растений ослабленных недостатком питательных веществ, засухой, заморозками и т.д.

Фитопатогенные объекты (паразиты) преимущественно питающиеся отмершими тканями растений (некрозными тканями), но иногда (факультативно) питающиеся живой тканью растения-хозяина.
Данный тип паразитизма является самым распространённым. Большинство возбудителей болезней растений являются факультативными паразитами.

Фитопатогенные объекты (паразиты) преимущественно питающиеся живыми тканями растений, но иногда (факультативно) питающиеся отмершими клетками растения-хозяина.

Фитопатогенные объекты (паразиты) питающиеся исключительно живой тканью растения-хозяина.
Данный тип паразитизма характерен в первую очередь для вирусов, поскольку вирусы живут и размножаются внутри живой клетки растения-хозяина. Вместе с тем, к облигатным паразитам относятся и некоторые грибы.

Формирование на поражённых органах растений пятен разной формы, преимущественно состоящих из отмерших (некрозных) тканей. Причиной возникновения могут быть как инфекционные болезни, вызванные грибами, бактериями, а иногда и вирусами, так и абиотические факторы - недостаток питания, солнечные ожоги, гербицидные токсикозы.
Некрозы могут проявляться на листьях, стеблях или плодах растений;


Обзор

Автор
Редакторы


Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Чем болеют растения?

Для начала несколько слов о том, от чего, собственно, специалистам приходится защищать сельскохозяйственные растения. Причинами заболевания растений могут быть как факторы среды (летняя засуха или зимние морозы, недостаток питательных веществ в почве или их избыток и т.п.), так и различные паразитические организмы (бактерии, вирусы, грибы, круглые черви (нематоды) и даже другие растения).

Грибы, бесспорно, являются основными патогенами культурных растений. Известно, например, что из 162 серьёзных заболеваний в Центральной Европе 135 (83%) вызываются грибами [2]. Фитопатогенные грибы — многочисленная группа; их описано свыше 10 000 видов, различных по систематическому положению, степени паразитизма, специализации и т.д. [3]. Они широко распространены в природе и при благоприятных для их развития условиях наносят значительный урон урожаю и сельскохозяйственным продуктам при хранении. Даже самые осторожные оценки говорят об уничтожении болезнями 10–20% потенциального урожая; без контрмер масштабы этих потерь резко возросли бы [2].

Именно о проблемах диагностики болезней растений, вызываемых фитопатогенными грибами, пойдёт речь в данной статье.

Врага надо знать в лицо

Зачем же нужно, с одной стороны — обнаружение, а с другой — быстрое и точное (желательно — до вида, или даже расы) определение фитопатогенных грибов?

На данный момент самым распространённым методом борьбы с фитопатогенными грибами является обработка растений фунгицидами. Понятно, что невозможно защитить культуры от всех возможных потенциальных угроз: это и сложно, и экономически невыгодно, да и для окружающей среды далеко не полезно. Именно поэтому важно знать, желательно — своевременно, с чем именно придётся бороться. Чем раньше обнаружена болезнь, тем больше шансов, что, приняв соответствующие меры, удастся её победить. Это верно для заболеваний как человека, так и растений. Кстати, точное определение вида грибов важно ещё и в довольно неожиданной области — реставрации деревянных строений — поскольку используемые там антисептические меры также очень сильно зависят от типа поражения [4].

Кроме этого, идентификация фитопатогенных грибов необходима для изучения их таксономии и эволюции, их взаимоотношений с растениями-хозяевами, генетических основ восприимчивости и устойчивости растений, что, в конечном счете, должно помочь в разработке способов борьбы с патогенами и в селекции растений, невосприимчивых к болезням [5].

И, наконец, крайне важна сертификация зерна и посадочного материала в рамках карантинных программ. Известно, что фитопатогенные грибы могут распространяться многими путями — как естественными (с током воздуха, водой, насекомыми, животными), так и при помощи человека, перевозящего заражённые растения или их части не только между различными странами, но и между континентами. Зачастую такое перемещение приводит к неожиданному и масштабному распространению заболеваний.

Например, пузырчатая ржавчина (Cronartium ribicola) была эндемична для Альп и востока России. Этот паразит, в цикле развития предполагающий обязательную смену хозяев, обитает круглый год на пятихвойных соснах, а летом поражает листья смородины; ни в одном из исходных ареалов он не причинял серьёзного ущерба. Однако веймутова сосна, завезённая в начале XVIII века из Америки в ряд областей Европы, оказалась крайне восприимчивым хозяином для данного гриба. За счёт этого распространившаяся инфекция причинила большой вред культурам смородины и высаженным веймутовым соснам, а в 1909 году была завезена с их рассадой в Америку, где встретила многочисленных хозяев для обеих фаз развития. Здесь стали страдать, прежде всего, лесообразующие пятихвойные сосны. Поэтому, чтобы разорвать инфекционную цепь паразита с обязательной сменой хозяев, пытаются уничтожать дикорастущие виды смородины [2].

Ещё один показательный пример: возбудитель голландской болезни вяза (Ophiostoma ulmi) уже в XX столетии был занесён из континентальной Европы в Северную Америку. Начиная примерно с 1970 г., после того, как он был завезён в Великобританию, он успел уничтожить половину английских вязовых насаждений [2]. Теперь этот вид встречается и в России.

Для того чтобы избежать подобного впредь, созданы списки карантинных организмов, и при перемещении растений или их семян между странами (или даже частями одной страны) обязательно проводится их обследование.

Как только что было показано, идентификация фитопатогенных грибов крайне важна, возник вопрос — каким образом она производится?

Наиболее простой способ — это идентификация патогена по внешним признакам заболевания (симптомам), то есть по тому воздействию, которое он оказывает на поражённое растение [6]. Но здесь проблема в том, что к одним и тем же повреждениям растения-хозяина могут приводить совершенно разные микроорганизмы, отличающиеся разной устойчивостью к фунгицидам, вредоносностью и другими характеристиками. Как пример, здесь можно привести три листовые пятнистости пшеницы (рис. 1).

Листовые пятнистости пшеницы

Рисунок 1. Листовые пятнистости пшеницы. Слева — септориоз листьев пшеницы (возбудитель — Mycosphaerella graminicola). По центру — септориоз листьев и колоса пшеницы, проявление на листьях (возбудитель — Phaeosphaeria nodorum). Справа — жёлтая пятнистость пшеницы (возбудитель — Pyrenophora triticirepentis). Обратите внимание: несмотря на то, что это разные заболевания, поражения листьев очень похожи.

Ещё одна проблема заключается в том, что далеко не все заболевания проявляются сразу же после заражения растения. Например, возбудитель пыльной головни ячменя (Ustilago nuda) обычно проникает во время цветения пшеницы в формирующуюся зерновку. Гриб не препятствует формированию зародыша, само зерно развивается нормально, ничем внешне не отличаясь от здорового. Мицелий зимует в зерновке. Весной одновременно с прорастанием семян происходит и рост мицелия, который по мере роста растения распространяется по различным его органам. Проявляется заболевание только в период колошения. При этом разрушаются все части колоса, превращаясь в чёрную споровую массу, после распыления которой остаются лишь ости и стержень колоса (рис. 2) [8].

Пыльная головня ячменя

Рисунок 2. Пыльная головня ячменя: поражённое соцветие со спорами

Стандартный для фитопатологов подход при определении фитопатогенных грибов — это выделение их в чистую культуру на какой-либо питательной среде, получение характерных образований (чаще всего это, конечно, спороношения) и затем идентификация гриба под микроскопом.

Но здесь возникают определённые трудности. Основная из них заключается в том, что далеко не все паразитические грибы возможно культивировать на искусственных питательных средах: многим требуется наличие живых тканей растения-хозяина, либо присутствие других представителей сложного сообщества [10]. Но даже если гриб удаётся выделить в культуру, следующий вопрос — это то, сколько времени понадобится, чтобы добиться от него появления спороношения. Например, возбудитель белосоломенной болезни пшеницы и ржи (Gibellina cerealis), хотя и хорошо культивируется, даёт спороношение только после четырёх–пяти недель роста. Естественно, что меры по борьбе с патогеном необходимо принимать сразу после его обнаружения, а не через месяц, когда может оказаться, что спасать уже нечего.

Сравнение конидий типовых образцов

Рисунок 3. Сравнение конидий типовых образцов Alternaria longipes (вверху), Alternaria tenuissima (в центре), Alternaria alternata (внизу). Видно, что на основе сравнения только формы конидий этих трёх видов однозначно различить их крайне сложно. При идентификации видов в данном случае специалист использует не только форму конидий, но и другие признаки (например, способ образования конидий, их взаимное расположение и т.п.).

И даже с определением тех фитопатогенных грибов, спороношения которых получить сравнительно просто, могут возникать сложности. К примеру, идентификация многих микромицетов сопряжена с рядом трудностей, таких как сходство морфологических характеристик разных видов и одновременно внутривидовая вариабельность признаков. Несмотря на внешнее сходство, возбудители могут значительно отличаться по патогенности, токсигенности, степени специализации, генетике взаимоотношений с растением-хозяином, вредоносности, чувствительности к фунгицидам и т.д. То есть разные виды обладают совершенно разными экологическими особенностями и хозяйственной значимостью [12]. Хорошим примером здесь является определение различных видов рода Alternaria (рис. 3). Очевидно, что для идентификации до вида нужны достаточно широкие познания в данной области и немалый опыт работы с исследуемым фитопатогеном.

Ещё один способ, пригодный для обнаружения некоторых фитопатогенных грибов, заключается в смыве с субстрата, фильтрации и микроскопическом определении (и даже подсчёте, что даёт количественные данные) их спор. Чаще всего, таким способом оценивается количество грибных спор в зерне или в почве. Несмотря на то, что идентификация до вида на основании одних только спор чаще всего затруднена, этот способ широко применяется, а для анализа получаемых при помощи микроскопа изображений разрабатываются специальные компьютерные программы [14]. Например, таким образом определяют заражённость зерна возбудителем твёрдой головни (Tilletia caries) (рис. 4) [15]. Несмотря на использование компьютерных технологий, этот метод весьма трудоёмок и не подходит для исследования большого количества образцов.

Зерновки, поражённые твёрдой головнёй пшеницы

Рисунок 4. Зерновки, поражённые твёрдой головнёй пшеницы

Молекулярная биология на службе фитопатолога

Во всех описанных случаях на помощь исследователям могут прийти широко развивающиеся в последнее время молекулярные методы анализа. Сейчас в основе большинства из них лежит применение ELISA (enzyme-linked immunosorbent assay, иммуноферментный анализ) [11], либо ПЦР (полимеразная цепная реакция, polymerase chain reaction) [17].

Иммуноферментный анализ состоит из двух основных этапов: иммунной и ферментативной реакций. Иммунная реакция заключается в специфическом связывании характерного для данного микроорганизма антигена с диагностическим антителом. Ферментативная реакция необходима для обнаружения этого связывания. Как правило, она сопровождается изменением цвета, причём степень этого изменения может быть использована для определения количества присутствующего антигена.

Прибор CSL Pocket Diagnostic

Рисунок 5. Прибор CSL Pocket Diagnostic TM lateral flow immunodiagnostic kit. Растительный экстракт помещается на площадку (a), которая содержит латексные шарики, покрытые специфическими антителами; смесь мигрирует вдоль мембраны (b) к абсорбирующей поверхности (c). При этом имеющиеся в растворе целевые антигены связываются со специфичными антителами на латексных шариках. Мембрана содержит полосу антител, отличающихся необходимой специфичностью (измерительную полосу) (d) и полосу других антител, которые связываются с первыми антителами (контрольную полосу) (e). Латексные шарики, содержащие связанный антиген, задерживаются в тестовой зоне, давая видимую линию, тогда как излишние латексные шарики, которые не содержат антигена, задерживаются в контрольной зоне, показывая, что анализ работает. Наличие двух линий соответствует положительному результату (positive), наличие только одной линии (контрольной) говорит о негативном результате (negative).

Основанные на иммуноферментном анализе методы широко применяются для обнаружения вирусов (в том числе поражающих растения) и значительно реже — для идентификации грибов и бактерий. Основной причиной этого является трудность получения антител с необходимой специфичностью: строение клеточных стенок грибов и бактерий гораздо сложнее, чем вирусного капсида, к тому же может изменяться в ходе их жизненного цикла. В результате получаемые антитела могут оказаться специфичны как сразу к большой группе видов, так и исключительно к отдельным жизненным формам данных микроорганизмов. Тем не менее, основанные на ELISA методы идентификации фитопатогенных грибов всё же разрабатываются: например, существует метод идентификации спор уже упоминавшейся в данной статье твёрдой головни [19].

ПЦР — это ферментативная реакция, в результате которой происходит накопление большого количества копий какого-либо не слишком большого (чаще всего, 200–1500 пар нуклеотидов) фрагмента ДНК. Так как ДНК любого организма содержит как вариабельные (отличающиеся даже у близкородственных организмов), так и консервативные (сходные у эволюционно далёких видов) участки, возможно на основе выбора диагностического участка варьировать специфичность протекающей реакции.

Таким образом, данный метод позволяет обнаруживать последовательности нуклеиновой кислоты, специфичные для конкретного организма или группы сходных организмов и, тем самым, выявлять его (их) присутствие в анализируемой пробе. Методы, основанные на ПЦР, позволяют идентифицировать патогенные виды как в чистой культуре, так и непосредственно в растительном материале, минуя этап изоляции грибов [20]. Как пример, здесь приведены результаты ПЦР, разработанной для идентификации грибов рода Pyrenophora (рис. 6), представители которого являются возбудителями жёлтой пятнистости злаков, в частности — пшеницы (рис. 1).

Идентификация грибов рода Pyrenophora

Рисунок 6. Разделённые при помощи электрофореза продукты ПЦР, разработанной для идентификации грибов рода Pyrenophora. М — маркер, представляющий собой набор фрагментов ДНК известного размера, 1–10 — ДНК, выделенная из различных образцов листьев пшеницы, поражённых листовыми пятнистостями. Здесь продукт реакции (фрагмент ДНК известного размера) должен наблюдаться только в том случае, если в образце присутствует ДНК целевого организма, а именно — гриба рода Pyrenophora. В итоге видно, что растения под номерами 3–6, 8 и 9 больны жёлтой пятнистостью, а остальные — каким-либо другим внешне схожим заболеванием.

Существует достаточно много модификаций метода ПЦР, большинство из которых применяется в изучении возбудителей болезней растений. Например, RAPD и RFLP анализы используются для уточнения родственных связей между различными грибами; ПЦР, специфичная для ДНК представителей отдельных родов или видов — для идентификации фитопатогенов (в том числе — в форматах nested и multiplex); ПЦР с регистрацией в режиме реального времени (real-time PCR) — для определения количества присутствующей целевой ДНК.

Рассмотрим подробнее один из самых перспективных методов на основе ПЦР — ПЦР с регистрацией в режиме реального времени (рис. 7). В отличие от большинства других форматов ПЦР, он позволяет не только констатировать факт присутствия ДНК целевого патогена, но и измерить её количество. В качестве примера здесь приведено определение в двух образцах количества ДНК ещё одного возбудителя листовой пятнистости.

ПЦР с регистрацией в режиме реального времени

Интересно применение данного метода для анализа заражённости зерна твёрдой головнёй (рис. 4): при наличии соответствующих калибровочных графиков возможно получение результатов в виде числа спор, имеющихся в образце [7].

Ложка дёгтя в бочке мёда

Хотя преимущества и перспективы применения молекулярных методов идентификации сложно переоценить, на пути их практического использования имеется целый ряд трудностей. Несмотря на универсальность методов при конечном анализе, для их разработки и проверки требуется достаточно много времени и немалая экспериментальная база. Основной проблемой здесь является отсутствие возможности чисто теоретически оценить специфичность разрабатываемых методов.

Ну и самая большая проблема всех описанных в данной статье методов — это цена, ограничивающая их широкое применение в условиях небогатых российских хозяйств.

Несколько слов о будущем

Несмотря на все имеющиеся проблемы, молекулярные методы анализа интенсивно развиваются (о чём можно судить хотя бы по числу публикаций на соответствующие темы, которое с каждым годом становится всё больше). Старые методы постоянно совершенствуются, в то же время разрабатываются новые (например, метод биочипов [21] и секвенирование следующего поколения [22]), а цена одного анализа становится всё ниже. Поэтому можно надеяться, что не за горами то время, когда все упоминавшиеся в данной статье методики и их более совершенные аналоги действительно найдут широкое применение и облегчат жизнь фитопатологов и агрономов.


Обзор

коллаж автора статьи

Автор
Редакторы


Партнер номинации — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Ученые-биологи давно отметили: паразитические создания коварно расчетливы и владеют искусством манипуляций , управляя поведением своих хозяев, а иногда заставляя изменять их облик. Для каждого паразита и паразитоида организм хозяина — непосредственная среда обитания, которую он может изменять, формировать и перестраивать так, чтобы пребывание в теле жертвы было максимально комфортным.

Эти враги всего живого способны диктовать хозяину свои правила: как взаимодействовать с окружающей средой, как себя вести — и даже какого пола быть! Доходит даже до превращения страдающего хозяина в зомби, всецело повинующегося своему кукловоду.

Многообразие паразитов не уступает числу их хозяев, ведь паразиты приспособились обживать организмы практически всех живых существ в мире, иногда прибегая к помощи тайных союзников.

Собственный боец осы для злодейских махинаций

Паразитоидная оса-браконида

Рисунок 1а. Паразитоидная оса-браконида Cotesia congregata.

Паразитоидная оса-браконида

Рисунок 1а. Паразитоидная оса-браконида Cotesia congregata.

Как и другие бракониды, C. congregata с помощью этих вирусных частиц активно подавляет иммунитет насекомого-жертвы [4]. Все полиднавирусы содержат гены, кодирующие тирозиновые протеинфосфатазы [5], активация которых гарантирует серьезные перебои в чувствительной иммунной системе гусеницы [2]. Эти ферменты препятствуют перестройке микрофиламентов — актиновых цитоскелетных нитей [6], — из-за чего возникают проблемы с цитоскелетом: циркулирующие иммунные клетки (гемоциты) гусеницы не смогут соединиться друг с другом и дать паразиту отпор, инкапсулируя его [4], [7].

Рогатый томатный червь

Рисунок 2а. Рогатый томатный червь Manduca quinquemaculata.

Табачный червь

Рисунок 2б. Табачный червь Manduca sexta. Взрослые самки C. congregata ищут на поверхности листьев своих будущих хозяев. Как только подходящее существо будет найдено, оса отложит в нем яйца. Спустя некоторое время личинки паразитоида выйдут наружу с плетеными белыми коконами, внутри которых браконида развивается во взрослое насекомое.

Личинки C. congregata

Рисунок 2в. Личинки C. congregata выходят из своего хозяина — табачного рогатого червя Manduca sexta — перед тем, как сплести белые коконы.

Такое нарушение помогает паразиту не попасться в ловушку, приготовленную иммунитетом жертвы. Вот так под защитой вирусов личинки наездника вылупляются из яиц в теле хозяина и развиваются, обходя сопротивление его иммунной системы.

Жизненный цикл паразитоидной осы

Рисунок 3. Жизненный цикл паразитоидной осы и полиднавирусов (PDV), паразитирующих на хозяине — рогатом черве.

Личинки наездника, как любые паразиты и паразитоиды, существуют в непрерывной конкуренции с хозяином за принадлежащие ему ресурсы и плоть. Впрочем, все, что использует хозяин для своего организма, с таким же успехом пригодится и паразиту для развития. Тем не менее, полностью лишить сил своего хозяина и погубить его жизненно необходимые функции означало бы смерть и для личинок. Гусеница еще должна потрудиться в поисках пропитания на благо паразиту внутри себя, поэтому оказывать воздействие на ее мозг было бы колоссальной ошибкой. Но паразит не был бы паразитом, если бы обошел стороной другие органы хозяина. Поэтому у ос-браконид все продумано: паразитоиды наносят свой удар на половые органы выбранной жертвы, и у насекомого-хозяина происходит атрофия тестикул [12].

Взрослая особь паразитоидной осы

Рисунок 4. Взрослая особь паразитоидной осы Zatypota sp. (слева) и личинка осы, прикрепившаяся к брюшку паука-тенетника (справа).

Структура паутины

Zatupota sp.

Рисунок 5б. Zatupota sp. убивает своего хозяина.

Воспользовавшись хозяином, паразитоид в конечном итоге убивает паука и съедает его. А затем заселяется в новое удобное пристанище, из которого ихневмотида выйдет уже взрослой особью и продолжит зомбировать новых пауков-тенетников [13], [15]. Таким образом, для собственной выгоды личинка осы манипулирует особым поведением пауков, которое у незараженных особей активируется только в определенный сезон [14].

В плане не должно быть просчетов!

После вылупления все осы живут на суше, однако многим паразитам необходимо попасть в водную среду. Взрослые особи паразитических нематод Gasteromermis sp. живут и откладывают яйца в проточных водах — ручьях [16]. Личинки нематоды используют в качестве хозяина обитающую неподалеку личинку поденки Baetis bicaudatus (рис. 6) [17]. Внутри хозяина паразиты растут вместе с ним, расходуя часть его пищи для собственного развития [17].

Превратившись в длиннокрылое взрослое насекомое, самец поденки покидает реку и летит на поиски самки [16]. Когда насекомые находят себе пару, они торопятся продолжить свой род. Все непаразитированные самцы после спаривания никогда больше не возвращаются в воду [16]: их жизненное предназначение исполнено, а сами они погибают где-нибудь в траве, вдали от воды. А самки летят вдоль ручья, чтобы найти хорошее место на каком-нибудь камне и отложить яйца, подергивая брюшком [16]. Однако если самка B. bicaudatus заражена нематодой, то уже сформировавшийся паразит прогрызает брюшко поденки, после чего уже сам отправляется на поиски своей пары [16].

Самец B. bicaudatus

Рисунок 6а. Самец B. bicaudatus.

Самка B. bicaudatus

Рисунок 6б. Самка B. bicaudatus.

Морфология зараженной и чистой особи B. bicaudatus

Рисунок 7. Морфология зараженной и чистой особи B. bicaudatus. Вид головы сверху и вид наружных половых органов снизу: непаразитированного самца (a), непаразитированной самки (б), паразитированной интерсексуальной взрослой особи (в).

Но что будет, если нематода паразитирует тело самца? Ей не очень хочется погибать вместе с ним, так и не добравшись до ручья. На этот счет у Gasteromermis sp. есть план-капкан: нематода изменит морфологические половые признаки самца, сделав его похожим на самку (рис. 7) [16]. В процессе созревания у зараженной мужской особи не формируются типичные для их пола специальные крючки на гениталиях и специфичные выпученные глаза, а потому внешне бывший самец будет неотличим от самки [16]. Такая интерсексуальная особь не произведет яйцеклеток и будет лишена внутренних репродуктивных органов, характерных для самок. Самое хитрое здесь то, что под гнетом нематоды самец не только будет выглядеть как самка, но и его половое поведение станет типичным для женской особи [16].

Инфицированный самец насекомого полетит к воде откладывать несуществующие яйца, а в это время Gasteromermis sp. по старой схеме прогрызет себе дорогу через его брюшко и вновь окажется в нужном биотопе, продолжив свой жизненный цикл [16]. Нематода способна управлять ситуацией, ведь она не может знать наверняка, какого пола окажется его хозяин. Это всегда лотерея, в которую паразит выигрывает при любых обстоятельствах.

Нетипичный паразит

Изобретательность, коварство и предприимчивость паразитов не знают границ. Если вы в этом до сих пор не убедились, то наверняка не знакомы с паразитическим рачком Cymothoa exigua (рис. 8).

Рыба-клоун

Рисунок 8а. Рыба-клоун Amphiprion polymnus. Если присмотреться внимательнее, можно заметить, что во рту у нее находится существо с черными глазками. Это и есть изопода — паразитический рачок Cymothoa exigua.

Читайте также: