Что такое инфекционные нуклеиновые кислоты

Обновлено: 23.04.2024

НУКЛЕИНОВЫЕ КИСЛОТЫ — класс биополимеров, ответственных за хранение, передачу и воплощение генетической информации; универсальные компоненты всех живых организмов.

Имеется два типа Н. к.: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), углеводные компоненты к-рых представлены дезоксирибозой (см.) и рибозой (см.) соответственно. Биол, роль этих типов Н. к. заключается в том, что у большинства живых организмов ДНК несет функцию хранения и воспроизведения наследственной информации, в то время как РНК отвечает за воплощение этой информации в процессе синтеза белков (см. Дезоксирибонуклеиновые кислоты, Рибонуклеиновые кислоты).

Различают следующие основные виды РНК: информационная, или матричная (иРНК, или мРНК), к-рая служит матрицей для синтеза белков; рибосомная (рРНК), являющаяся компонентом белоксинтезирующего аппарата клетки — рибосомы (см.); транспортная (тРНК), функция к-рой состоит в переносе активированных аминокислот в место синтеза белка — рибосому. РНК служит генетическим материалом многих вирусов.

Основная часть ДНК эукариотов содержится в хромосомах. Кроме того, ДНК присутствует в хлоропластах растений и митохондриях животных и растений. В нек-рых клетках, напр, спермиях, содержание ДНК может составлять около половины веса всей клетки. Удобным источником для получения ДНК являются лимфоциты вилочковой железы. РНК преимущественно находится в цитоплазме. Содержание РНК в клетках сильно варьирует в зависимости от интенсивности белкового синтеза в них. Много РНК содержится, напр., в поджелудочной железе, а также в быстрорастущих эмбриональных и опухолевых клетках. Высокоспециализированные мышечная и нервная ткани содержат относительно мало РНК.

Н. к. были открыты в 1868 г. швейцарским химиком Мише ром (F. Miescher), к-рый показал, что они локализованы в ядрах клетки, обладают кислотными свойствами и в отличие от белков содержат фосфор.

Химически Н. к. представляют собой полинуклеотиды, состоящие из мономерных звеньев — так наз. мононуклеотидов (нуклеотидов). Каждый нуклеотид содержит одно из четырех типов азотистых оснований: пурины — аденин (А) и гуанин (Г) и пиримидины — цитозин (Ц) и тимин (Т). В нуклеотидах РНК вместо тимина присутствует урацил (У). Основание, соединенное с углеводом — пентозой, образует так наз. нуклеозид, фосфорилированные производное к-рого называется нуклеотидом. Нуклеотиды в Н. к. соединены посредством фосфодиэфирной связи, где R — H (водород) для ДНК и — OH (гидроксил) для РНК.

Специфичность Н. к. определяется порядком чередования азотистых оснований, что определяет так наз. первичную структуру Н. к. Первичная структура установлена для многих тРНК, рРНК, иРНК, а также ряда РНК- и ДНК-содержащих вирусов и бактериофагов. Пространственная структура Н. к. определяется нековалентными взаимодействиями: водородными связями между основаниями, гидрофобными взаимодействиями между плоскостями пар оснований, электростатическими взаимодействиями с участием отрицательно заряженных фосфатных групп и противоионов.

Важнейшим достижением молекулярной биологии (см.) было открытие в 1953 г. Дж. Уотсоном и Ф. Криком двойной спирали ДНК, в молекуле к-рой две антипараллельно расположенные сахарофосфатные цепи удерживаются водородными связями между аденином и тимином или гуанином и цитозином. Последовательность азотистых оснований в одной цепи определяет последовательность оснований в другой. Размеры комплементарных пар А — T и Г — Ц одинаковы. Это позволяет нуклеотидной цепи, состоящей из комплементарных пар оснований в произвольной последовательности, свернуться в правильную двойную спираль (вторичная структура Н. к.). В физиол, условиях двойная спираль ДНК близка к так наз. B-форме, в к-рой пары оснований, лежащие одна над другой (стопкой), перпендикулярны оси спирали.

На один виток спирали приходится 10 пар оснований. В солевом растворе Н. к. число пар азотистых оснований, приходящихся на один виток спирали, варьирует, уменьшаясь при увеличении концентрации соли в р-ре и понижении температуры.

Синтез Н. к. в клетке осуществляется по принципу копирования молекулы-матрицы белками-полимеразами, при этом происходит реакция поликонденсации нуклеозидтрифосфа-тов с отщеплением пирофосфата. Последовательность азотистых оснований в молекуле продукта этого ферментативного процесса определяется последовательностью азотистых оснований в молекуле-матрице. Синтез ДНК называется репликацией (см.) и осуществляется комплексом белков, состоящим из ДНК-полимеразы, белка, разделяющего нити ДНК, нуклеазы, лигазы и т. д. Синтез РНК — транскрипция (см.) происходит по матрице ДНК, причем РНК-полимеразы считывают одну, так наз. значащую, нить двойной спирали. В процессе транскрипции образуется РНК-копия гена (см.). В последовательности оснований мРНК заключена информация для синтеза специфических белков. Каждой аминокислоте белка соответствуют определенные тройки нуклеотидов — триплеты, образующие генетический код (см.). Поэтому изменения нуклеотидной последовательности в ДНК — мутации (см.) сказываются на структуре синтезируемых белков, влияют на их функцию и на наследственную информацию. Искажение наследственной информации может быть причиной наследственных болезней (см.), напр, серповидно-клеточной анемии, фенилкетонурии, или наследственных аномалий, напр, альбинизма. Мутации могут подхватываться естественным отбором и служат фактором эволюции. Естественная частота мутирования очень низка, но она значительно повышается при воздействии ионизирующего, ультрафиолетового излучений или хим. мутагенов. В ходе эволюции живые организмы выработали эффективные механизмы репарации (восстановления) Н. к., устраняющие повреждения в их молекулах (см. Репарация генетических повреждений).

В соответствии с хим. строением полинуклеотидной цепи существуют три группы методов количественного определения Н. к.: по содержанию азотистых оснований [обычно пользуются определением величины поглощения в ультрафиолетовой части спектра, т. е. спектрофотометрией (см.)], по содержанию углеводного компонента [всевозможные цветные реакции (см. Углеводы)], по количеству фосфора. Спектрофотометрические методы дают удовлетворительные результаты только при незначительном количестве примесей в исследуемом образце. Методы второй группы специфичны к типу Н. к. и позволяют отличать ДНК от РНК.

Библиография: Органическая химия нуклеиновых кислот, под ред. Н. К. Кочеткова и Э. И. Будовского, М., 1970; Химия и биохимия нуклеиновых кислот, под ред. И. Б. Збарского и С. С. Дебова, JI., 1968; Ш а б а р о в а 3. А. и Богданов А. А. Химия нуклеиновых кислот и их компонентов, М., 1978; Chromatin, Cold Spr. Harb. Symp. quant. Biol., v. 42, pt 2, 1978; Handbook of biochemistry and molecular biology, nucleic acids, ed. by G. D. Fasman, v. 1, Cleveland, 1975.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.

Вирусы [от лат. virus, яд] — наименьшие по размерам агенты, имеющие геном, окружённый белковой оболочкой. Вирусы не воспроизводятся самостоятельно, они — облигатные внутриклеточные паразиты, репродуцирующиеся только в живых клетках. Все вирусы существуют в двух формах. В настоящее время известны вирусы бактерий (бактериофаги), грибов, растений и животных.

Внеклеточная форма — вирион — включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма — вирус — может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов. Классификация вирусов.

Морфология вирусов. Размеры вирусов.

Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пуле-видные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму (рис. 2-1). При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр — ДНК-содержащие, а тогавирусы, пикорнавирусы — РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный — более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, — своеобразные маркёры вирусной ДНК.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов. Классификация вирусов.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека.

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными — от 2 сегментов у ареновирусов до 11 — у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) — +РНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Структура и типы РНК человека: транспортная, ядерная, рибосомальная, митохондриальная и т.д.

Гетерогенная ядерная и информационная РНК

ГяРНК и её производное — информационная (или матричная) РНК переносят генетическую информацию от ядерной ДНК к цитоплазме.

Количество видов гяРНК равно количеству генов, так как она служит прямой копией кодирующих последовательностей генома. В процессе транскрипции РНК с ДНК ключевую роль играет фермент РНК-полимераза II. Информационная РНК образуется в результате процессинга гяРНК, при котором происходят вырезание некодирующих участков (интронов) и склеивание кодирующих экзонов. Таким образом, в состав иРНК входят кодирующая информация соответствующих видов гяРНК, а также фланкирующий лидерный и трейлерный участки, по этой причине она значительно короче.

Транспортная РНК

Так, например, тРНК, антикодон которой имеет последовательность 5'-ЦЦА-3', может нести только аминокислоту триптофан. Следует отметить, что данная зависимость лежит в основе передачи генетической информации, носителем которой выступает тРНК.

Транскрипция молекул тРНК происходит с кодирующих её последовательностей в ДНК при участии фермента РНК-полимеразы III. Различают более 40 семейств тРНК, которые, в свою очередь, подразделяют на несколько видов.

РНК человека

Рибосомальная РНК

Существует несколько субъединиц рРНК, которые различаются по коэффициенту седиментации (осаждения), измеряемому в единицах Сведберга (S). Данный коэффициент зависит от скорости осаждения субъединиц при центрифугировании в насыщенной водной среде.

Траскрипция рРНК с ДНК происходит при помощи двух дополнительных РНК-полимераз. РНК-полимераза I транскрибирует 5S, 5,8S и 28S в виде одного длинного 45S-тpaнскрипта, который затем разделяется на необходимые части. Таким образом обеспечивается равное количество молекул. В организме человека в каждом гаплоидном геноме присутствует примерно 250 копий последовательности ДНК, кодирующей 45S-транскрипт. Они расположены в пяти кластерных тандемных повторах в коротких плечах хромосом 13, 14, 15, 21 и 22.
Данные участки известны как ядрышковые организаторы, так как их транскрипция и последующий процессинг 45S-транскрипта происходят внутри ядрышка.

Не менее чем в трёх кластерах хромосомы 1 существует 2000 копий 5S-pPHK гена. Их транскрипция протекает в присутствии РНК-полимеразы III снаружи ядрышка. Затем они доставляются к местам сборки рибосом при помощи рибосомальных белков.
В рРНК насчитывают около 95 псевдоуридиновых участков, образованных посредством изомеризации уридина малой ядрышковой РНК.

Малая ядерная РНК. Превращение гяРНК в иРНК путём удаления интронов проходит в ядерном комплексе РНК-белков, называемом сплайсомой. У каждой сплайсомы есть ядро, состоящее из трёх малых (низкомолекулярных) ядерных рибонуклео-протеинов, или снурпов. Каждый снурп содержит хотя бы одну малую ядерную РНК и несколько белков. Существует несколько сотен различных малых ядерных РНК, транскрибируемых в основном РНК-полимеразой II.
Считают, что их основная функция — распознавание специфических рибонуклеиновых последовательностей посредством спаривания оснований по типу РНК—РНК. Для процессинга гяРНК наиболее важны Ul, U2, U4/U6 и U5.

Малая ядрышковая РНК. Малая (низкомолекулярная) ядрышковая РНК в основном участвует в направлении или проведении модификаций оснований в рРНК и малой ядерной РНК, таких, как, например, метилирование и псевдоуридинизация. Большинство малых ядрышковых РНК находятся в интронах других генов.

Сигналраспознающая РНК. Сигналраспознающая РНК распознаёт сигнальную последовательность белков, предназначенных для экспрессии, и участвует в их переносе через цитоплазматическую мембрану.

Митохондриальная РНК

Митохондриальная ДНК представляет собой непрерывную петлю и кодирует 13 полипептидов, 22 тРНК и 2 рРНК (16S и 23S). Большинство генов находятся на одной (тяжёлой) цепи, однако некоторое их количество расположено и на комплементарной ей лёгкой. При этом обе цепи транскрибируются в виде непрерывных транскриптов при помощи митохондриоспецифической РНК-полимеразы. Данный фермент кодируется ядерным геном. Длинные молекулы РНК затем расщепляются на 37 отдельных видов, а мРНК, рРНК и тРНК совместно транслируют 13 мРНК. Большое количество дополнительных белков, которые поступают в митохондрию из цитоплазмы, транслируются с ядерных генов.

У пациентов с системной красной волчанкой обнаруживают антитела к снурп-белкам собственного организма. Кроме того, считают, что определённый набор генов малой ядерной РНК хромосомы 15q играет важную роль в патогенезе синдрома Прадера—Вилли (наследственное сочетание олигофрении, низкого роста, ожирения, гипотонии мышц).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Строение вирусов. Классификация вирусов

Вирусы классифицируют по типу генетического материала, способам репликации, строению и расположению структурных белков (капсидов), а также наличию или отсутствию оболочки.

Генетическая структура и способы репликации ДНК-вирусы. Могут быть только двунитевыми и одноните-выми. К. первым относят вирус оспы, герпес-вирусы, аденовирусы, паповавирусы и полиомавирусы. Последние два вируса вызывают развитие доброкачественных (бородавки) и злокачественных (рак шейки матки) опухолей. Вирус гепатита В частично дву- и однонитевой. К однонитевым вирусам относят парвовирусы, вызывающие инфекционную эритему.

Репликация ДНК-вирусов обычно происходит в ядре клеток хозяина и сопровождается продукцией полимераз, воспроизводящих вирусную ДНК. При этом последняя не всегда встраивается в хромосомную ДНК хозяина.

строение вируса

РНК-вирусы. Эти вирусы содержат однонитевую РНК, но различаются по стратегии репродукции, (вирусы, содержащие плюс-однонитевую РНК и минус-однонитевую РНК). У плюс-однонитевых вирусов РНК транслируется в структурные белки и служит матрицей (мРНК) для РНК-зависимой РНК-полимеразы.

В состав минус-однонитевых вирусов входит собственная РНК-зависимая РНК-полимераза, продуцируемая на базе генома вируса мРНК. Последняя в свою очередь может быть матрицей для продукции вирусной (минус-однонитевой) РНК.

классификация вируса

Строение капсидов вирусов. Вирусная нуклеиновая кислота покрыта белковой оболочкой, состоящей из повторяющихся единиц (капсида) с икосаэдрическим (кубическим) или спиральным типами симметрии. Капсиды вирусов с икосаэдрическим типом симметрии имеют практически сферическую форму. Спиральный тип симметрии свойствен РНК-вирусам, капсиды которых окружают нуклеиновую кислоту, располагающуюся в виде спирали.

Капсид состоит из повторяющихся компонентов (капсомеров), количество генов, кодирующих его, снижено, тем самым облегчён процесс сборки вируса.

Оболочка вирусов. В некоторых случаях нуклеиновая кислота и капсидные белки вируса (нуклеокапсид) окружены липидной оболочкой, состоящей из компонентов клетки хозяина или ядерных мембран. Мембрана клетки хозяина изменяется под действием белков, кодируемых вирусом, или гликопротеинов, выступающих в роли рецепторов для других клеток хозяина. Покрытые оболочкой вирусы чувствительны к действию веществ, растворяющих липидную мембрану (например, эфиров).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: