Что такое паразит и симбионты

Обновлено: 25.04.2024

Круглые черви могут защищать от астмы и аллергии, ослабляя иммунную реакцию организма (фото с сайта www.nature.com)

Что бы там ни говорили ксенофобы, даже такие нежелательные гости человеческого организма, как паразиты, живущие в кишечнике, могут приносить своим невольным хозяевам существенную пользу. Например, защищать их от проявлений астмы и разнообразных аллергических состояний.

К такому выводу пришли исследователи из Эдинбургского университета, занявшиеся выяснением тонкостей взаимоотношений между разными видами глистов и зараженными ими людьми (а таких по всему миру сегодня насчитывается примерно два миллиарда человек). Несмотря на то что присутствие паразитов зачастую приводит к возникновению расстройств пищеварительной системы, дизентерии, замедлению физического развития зараженного и постоянному недоеданию, в некоторых случаях кишечные черви могут приносить и пользу, расплачиваясь, так сказать, за стол и ночлег. Тоже, впрочем, невольно.

Первые подозрения на этот счет появились у западных биологов еще в минувшем году по итогам исследования, проведенного на территории Габона. Тогда, как пишет журнал Nature, было обнаружено, что зараженные глистами дети демонстрируют пониженный уровень аллергических реакций. Автор исследования предположил, что этот неожиданный эффект как-то связан с усилением работы иммунной системы, пытающейся избавиться от агрессора и выделяющей повышенный объем T-клеток, регулирующих синтез иммуноглобулинов. Эти клетки не только заставляют B-клетки атаковать патогены, но и подавляют их ненужную активность, когда они пытаются атаковать безвредные вещества, вызывая аллергическую реакцию.

Аллергическое воспаление дыхательных путей (лиловый цвет) у зараженных паразитами мышей (внизу) было значительно меньше (фото с сайта www.jem.org)

И вот недавно британским ученым удалось найти этому предположению экспериментальное подтверждение. Аргументы в пользу этой гипотезы были найдены в ходе обследования нескольких лабораторных мышей, зараженных паразитом Heligmosomoides polygyrus — круглым червем из класса нематод, достигающим пяти миллиметров в длину. Черви этого вида обитают в кишечнике носителя, цепляясь к ворсинкам, которыми покрыт кишечник.

Предварительное обследование показало, что иммунная система зараженных мышей выделяет значительно больше регулирующих T-клеток. Когда часть T-клеток была изъята у зараженных мышей и введена в кровь здоровых грызунов, клетки немедленно мигрировали в легкие своих новых хозяев и подавили астматическую реакцию, возникающую при вдыхании пыли, в которой обитают микроскопические клещи — обычный источник аллергии как у людей, так и у животных.

Авторы исследования, опубликованного в издании The Journal of Experimental Medicine, надеются, что полученные ими результаты приведут к созданию новых видов противоаллергенных препаратов, позволяющих добиться схожего эффекта, но более гуманным способом, не требующим заражения астматиков глистами.


Обзор

Автор
Редакторы


Эта Статья заслужила приз зрительских симпатий.

Однако есть заболевания, возможно, не столь смертельные, но куда сильнее бьющие по нам экономически. Это аутоиммунные заболевания, такие, как рассеянный склероз, системная красная волчанка или диабет 1-го типа. Если рак и инсульты чаще всего встречаются у пожилых людей, то аутоиммунные состояния обычно манифестируют (проявляются в виде симптомов) у молодых людей трудоспособного возраста и либо ложатся тяжким бременем на бюджет страны или больного (россияне, больные диабетом, если не получают инсулин от государства, тратят на поддержание собственной жизни от 1 до 5–6 тысяч рублей в месяц), либо, как в случае рассеянного склероза, просто ставят крест на карьере и жизни пациента.

Особенность аутоиммунных заболеваний состоит в том, что практически ни для одного из них мы за долгие годы исследований и экспериментов не научились достигать стойкой ремиссии. Текущие решения сводятся либо к поддерживающей терапии (как в случае с инсулинозависимым диабетом), либо к попыткам отсрочить терминальную стадию заболевания, на что нацелены препараты от рассеянного склероза. До недавнего времени ситуация выглядела довольно плачевно. Дополнительно усугубляет ее тот факт, что количество людей с аутоиммунными заболеваниями растет каждый год, и мы находимся на пороге настоящей эпидемии.

Однако там, где фармацевтическая отрасль терпит одну неудачу за другой, внезапно сама природа показала, куда смотреть исследователям и откуда брать по-настоящему работающее лекарство.

История вопроса

Чтобы понять, откуда возникла проблема с аутоиммунными заболеваниями, придется заглянуть далеко в прошлое.

Дело в изменившемся в ходе FET образе жизни человека. До этого мы жили небольшими группами, состоявшими не более чем из 50 особей, занимавшими довольно обширные пространства. К тому же мы постоянно меняли место жительства, нигде не оставались надолго. Культура гигиены была довольно низкой — зачем следить за чистотой убежища, если ты уже съел всех мамонтов вокруг и завтра надо искать новое место?

В ходе FET люди начали надолго оставаться на одном месте, формировать более крупные группы для защиты от набегов соплеменников. Скученность и загрязнение места обитания создали оптимальные условия для развития у нас инфекций. Начались эпидемии, которые были тем свирепее, чем больше был город и чем плотнее жили в нем люди.

Воины Апокалипсиса

Довольно долгое время, около 5000 лет, понадобилось человечеству, чтобы научиться справляться с инфекциями. Где-то раньше, где-то позже люди осознали важность гигиены для жизни и здоровья. Были эмпирически найдены лекарства от многих болезней. Можно сказать, весь прогресс медицины и человечества в целом происходил под постоянно довлеющим страхом новых эпидемий.

Le petit journal 1912 года

Рисунок 2. Обложка Le petit journal от 1 сентября 1912 года, посвященного эпидемии холеры в Индии и на Ближнем Востоке в начале 20-го века.

В настоящее время мы настолько чисты, насколько не были никогда в истории. Особенно хорошо это видно в развитых странах. Мы привыкли к тому, что во все дома подведена вода и всегда есть возможность принять ванную или душ. Мы пользуемся мылом, влажными салфетками, асептическими гелями. Мы даже моем наши дороги шампунем!

Казалось бы, ну чистые и чистые, что тут такого? При чем тут аутоиммунные заболевания? Оказывается, связь самая прямая.

Гигиеническая гипотеза

Этот переход стал возможен благодаря появлению антибиотиков и других высокоэффективных противопаразитических лекарств. В развитых странах он завершился к концу 20-го века. Если в середине века в Европе каждый третий житель был поражен гельминтами [1], то в настоящий момент обнаружение носителя этих паразитов скорее редкость. Россия в этом отношении практически не отстает от развитого мира благодаря нашим сильным гигиеническим традициям. Дополнительный вклад вносит городской образ жизни, централизованное снабжение очищенной водой, контроль качества пищи и так далее.

Инфекционные заболевания и аутоиммунные расстройства

Рисунок 3. Обратное отношение между частотой инфекционных заболеваний и частотой иммунных расстройств с 1950 по 2000 годы. а — Изменение относительного количества заболевших различными инфекционными заболеваниями. б — Относительный рост заболеваемости аутоиммунными заболеваниями за тот же период.

Впоследствии многие исследователи показали то же самое на примере других аллергий и аутоиммунных реакций. К примеру, если детям из неблагополучных по гигиене регионов вроде Чили или Тайланда провести европейскую программу дегельминтизации, у них букетом высыпают аллергии [4].

Наверное, самым интересным примером тут является история с рассеянным склерозом [5–8]. Ученые решили посмотреть, что происходит, когда больной этим страшным заболеванием заражается гельминтами, и начали искать инфицированных червями пациентов с РС. Результаты были ошеломляющи. У пациентов, которые заражались определенными гельминтами (например, власоглавом Trichuris trichiura) течение заболевания практически останавливалось [6]. Во время инфекции у них на 95% снижалось количество новых бляшек в мозге (рис. 4). Результат, недостижимый ни одним современным методом терапии! Если же по каким-то причинам гельминтов требовалось удалить (например, развивалось острое воспалительное поражение кишечника), болезнь возобновлялась с той стадии, на которой остановилась при инфекции.

График появления новых бляшек в мозге

Рисунок 4. График появления новых бляшек в мозге (когортное исследование 2011 года). Круги — неинфицированные гельминтами пациенты, квадраты — инфицированные, треугольники — инфицированные, но вылеченные от гельминта (момент излечения показан черной стрелкой).

Иммунный ответ

Иммунная система призвана защищать организм от внутренних и внешних врагов. Внешними врагами являются вирусы, бактерии, простейшие и черви, которые постоянно попадают в наш организм и уничтожаются на дальних рубежах. Внутренними врагами являются раковые клетки, а также клетки, зараженные вирусами или внутриклеточными бактериями.

Когда паразит попадает в организм, первым делом его встречает врожденный иммунитет, клетки которого (макрофаги) есть во всех тканях. Антигеном в данном случае служат нехарактерные для нашего организма молекулы — клеточная стенка бактерий, двухцепочечная РНК некоторых вирусов, свободно плавающая в межклеточном пространстве наша ДНК и так далее. При обнаружении пришельцев, клетки врожденного иммунитета пытаются их уничтожить, параллельно выделяя провоспалительные молекулы (рис. 5). Воспаленная ткань блокирует выход паразита из места проникновения в остальной организм и привлекает новые клетки иммунитета к месту повреждения.

Фагоцит пожирает бактерии

Рисунок 5. Фагоцит пожирает бактерии.

Если врожденному иммунитету не удается уничтожить захватчиков, в дело вступает адаптивный иммунитет. Происходит это отнюдь не сразу: активации адаптивного ответа предшествуют 3–4 дня подготовки в лимфоузлах (при этом лимфоузлы увеличиваются в размерах, что является признаком инфекционного заболевания). Начинается все с того, что некоторые из клеток врожденного иммунитета прибывают в лимфоузел, неся на себе антигены из места поражения. Антигенами в данном случае выступают короткие (от 8 до 20 аминокислот) пептиды из белков инфекционного агента и окружающих тканей. По сути, макрофаг (или специализированный активатор адаптивного иммунитета — дендритная клетка) просто захватывает из места воспаления образцы растворенных белков, ошмётков паразита и погибших клеток и приносит в лимфоузел.

В лимфоузле его встречают наивные (неактивированные) клетки адаптивного иммунитета — Т-лимфоциты. Каждый лимфоцит, выйдя из места своего формирования, несет на себе уникальный рецептор, который формируется путем направленного внесения мутаций в геном. Заранее неизвестно, может ли этот рецептор распознать какой-либо антиген, но его вариантов так много (по некоторым оценкам, у нас может быть до 10 48 разных типов этого рецептора, но большая часть их будет нефункциональна), что в течение нескольких часов в лимфоузле обнаруживается как минимум несколько клеток, способных распознать антигены паразита. Затем эти клетки делятся, активируются и отправляются в поврежденную ткань, где отыскивают свои антигены и уничтожают как самих захватчиков, так и зараженные клетки, если мы говорим о вирусе или внутриклеточной бактерии (рис. 6).

Т-лимфоциты убивают раковую клетку

Рисунок 6. Т-лимфоциты (красные) убивают раковую клетку (синяя) своего же организма. После получения сигнала раковая клетка начинает распадаться на небольшие пузырьки, которые затем съедят клетки врожденного иммунитета.

Иммунологическая толерантность

Иммунная система — единственная из систем организма, в чью задачу входит уничтожение других живых существ — отдельных клеток или многоклеточных организмов. Причем наши собственные клетки тоже часто должны уничтожаться, если они заражены вирусом, бактерией или превратились в раковые. При этом необходимо избегать иммунного ответа на нормальные клетки. Если такой ответ развивается — возникает аутоиммунное заболевание.

Периферическая толерантность возникает, когда Т-лимфоцит распознает антиген в лимфоузлах, но никакого воспаления в месте, откуда этот антиген попал в лимфоузел, нет. Напротив, высока концентрация противовоспалительных молекул. Такой лимфоцит опять-таки или уничтожается, или превращается в регуляторный.

Паразиты и симбионты

Миллиарды лет эволюции крупные многоклеточные организмы были домом и едой для более мелких одноклеточных и многоклеточных. Человек тут не исключение — ведь мы являемся как хорошим источником пищи, так и отличным защитником для всего, что сумеет поселиться внутри нас или на нас.

Эволюция поделила этих сожителей на 2 большие группы — паразиты и симбионты. Паразиты делают ставку на быстрое размножение. У них есть возможность подавления врожденного иммунитета, а пока адаптивный активируется, они уже успевают размножиться за счет наших ресурсов и передать инфекцию дальше. Так действует, например, вирус гриппа или бактериальная пневмония.

Симбионты же научились подавлять как врожденный, так и адаптивный иммунитеты. Для этого им пришлось умерить свои аппетиты — если клетки организма постоянно повреждаются, то никакие уловки не смогут предотвратить активацию иммунитета. Потому они поселились на поверхностях нашего тела, прежде всего на поверхности ЖКТ, где они получают лишь часть нашей пищи, но не покушаются на сам организм.

Помимо этого, они научились подавлять воспаление, выделяя вещества, которые похожи на наши противовоспалительные молекулы. Макрофаги врожденного иммунитета, столкнувшись с такими бактериями, могут почувствовать антигены клеточной стенки, но не активируются, так как подавлены противовоспалительным фоном вокруг.

Третьим механизмом защиты стала антигенная мимикрия. Для адаптивного иммунитета основным антигеном являются пептиды из белков. И многие наши симбионты в ходе эволюции поменяли свой белковый состав так, чтобы в нем был максимум пептидов, похожих на наши. Таким образом они встают под защиту регуляторных лимфоцитов. Этот механизм характерен для всех видов наших сожителей — бактерий, червей (рис. 7), вирусов и так далее.

Власоглав

Рисунок 7. Власоглав — один из гельминтов, активно изучаемых в рамках гигиенической гипотезы.

В течение миллионов лет каждая особь нашего вида, рождаясь, сразу же вступала в контакт с симбионтами, населявшими кожу, слизистые и кишечники своих собратьев. Со временем организм научился извлекать выгоду из такого постоянного неустранимого сосуществования. В частности, способность бактерий и червей создавать сильный противовоспалительный фон в месте своего обитания стала за это время ключевым фактором создания периферической толерантности. Она распространилась как на антигены самих сожителей, так и на сопутствующие им — антигены пищи (в кишечнике), пыли и пыльцы (в легких) и собственного организма (те самые антигены, которые сожители развили в ходе антигенной мимикрии).

И снова гигиеническая гипотеза

Особенно сильно на риск развития таких заболеваний влияет первый год жизни. Если в этот период ребенок оказывается в деревне, проводит некоторое время в больших группах сверстников (в больнице или в детском саду) и вообще чаще встречается с инфекциями — риск развития аутоиммунных заболеваний серьезно снижается [11], [12].

Разумеется, не только микробиом (совокупность всех симбиотических микроорганизмов конкретного человека) [13] и гельминты влияют на риск развития аутоиммунных и аллергических реакций. Есть и генетическая предрасположенность, и условия, в которых человек впервые встречается с тем или иным внешним антигеном. Есть некоторые микроорганизмы, которые не защищают, а, напротив, провоцируют аутоиммунные заболевания. Например, стрептококк способен вызывать ревматизм, а некоторые стафилококки производят суперантиген, который неспецифически запускает все клоны Т-лимфоцитов с любым рецептором — это тоже может привести к аутоиммунным заболеваниям.

Таблица. Сводная таблица всех клинических испытаний гельминтной терапии на 2015 год по всему миру. Составлена по [15].
ЗаболеваниеКоличество исследованийОбщее количество пациентовРезультаты
Болезнь Крона 6 543 Показана безопасность и статистически значимые улучшения у большинства пациентов.
Неспецифический язвенный колит 3 192 Показана безопасность и статистически значимые улучшения у большинства пациентов.
Рассеянный склероз 6 156 Показана безопасность, статистически значимые улучшения у части пациентов.
Непереносимость глютена (целиакия) 2 35 Исследования только начались
Расстройства аутического спектра 3 90 Пилотное исследование показало эффективность, подтверждающие только начаты
Псориаз 3 55 Исследования только начались
Аллергия на арахис 1 18 Исследования только начались
Бронхиальная астма 1 32 Зафиксированы статистически недостоверные улучшения
Аллергический риноконъюнктивит 2 130 Эффективность не показана
Ревматоидный артрит 1 50 Исследование только началось

Что же делать нам, простым смертным, пока ученые по кусочкам разбирают эту тайну и ищут решение? Начать стóит со снижения маниакального стремления к чистоте во всем. Я не предлагаю не мыть руки перед едой. Но довольно часто в последнее время мы перегибаем палку. Антибиотики при каждом чихе, асептические спиртосодержащие гели каждые 10 минут, антибактериальное мыло вместо обычного в ванной. Все эти меры способны спасти вас от эпидемии. Но каждодневное их применение, особенно детьми, способно нанести куда больший урон, чем грипп или пищевое отравление.


Обзор

Автор
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Словарик терминов

Биолюминесценция всегда вызывала интерес у исследователей. Ученые стремились разгадать феномен свечения живых существ, в том числе и микроорганизмов.

Среди них есть морские люминесцентные представители, например, микроводоросли динофлагелляты.

Динофлагелляты — одноклеточные водоросли, из-за люминесценции которых мы можем наблюдать феерическую картину — завораживающее синее подсвечивание волн на побережьях (рис. 1).

Noctiluca scintillans

Рисунок 1. Свечение динофитовых водорослей Noctiluca scintillans

Свечение в динофитовых водорослях осуществляется за счет особого окислительного фермента люциферазы [1], заключенного в специальные составляющие цитоплазмы — мембранные емкости, называемые сцинтиллонами [1], [2].

В водорослях содержится связанный с белком субстрат люциферин [1], который способен светиться из-за ряда происходящих химических реакций. Так что именно должно произойти, чтобы возникла вспышка света? А вот что: как раз сейчас в игру вступает вышеупомянутый фермент люцифераза, который окисляет люциферин за счет кислорода. В результате такого превращения в электронно-возбужденном состоянии образуется молекула оксилюциферина. После чего в виде фотона — кванта света — испускается энергия возбуждения электронов [3]. Вот так работает внутренняя биохимия производства света .

Pyrocystis lunula

Рисунок 2. Одноклеточный динофлагеллят в виде полумесяца Pyrocystis lunula на стеклянной микропипетке

Команда исследователей из Кембриджского университета в своей статье, опубликованной в журнале Physical Review Letters [6], решила установить, в чем же заключается физическая составляющая механизма данного явления. Они выяснили, что динофлагеллят Pyrocystis lunula (рис. 2) испускает свет тогда, когда оболочка клетки водоросли подвергается деформации из-за воздействия на нее внешних механических сил — ударов волн (рис. 3).

Pyrocystis lunula

Рисунок 3. Вспышка света динофлагеллятов Pyrocystis lunula при деформации его клеточной стенки. Оранжевые фрагменты — ядра клеток.

Авторы рассказали о связи между производством света и механическим напряжением на уровне отдельно взятой клетки динофлагеллята. Для этого был применен метод высокоскоростной визуализации клеток микроводорослей Pyrocystis lunula. Такой метод представляет собой исследование клеток при помощи покадровой и атомно-силовой микроскопии [6].

Например, с использованием этого метода получилось показать, что свечение динофитов Pyrocystis lunula является ответом на механическое воздействие. Такое поведение клеточной стенки называется вязкоупругим откликом [6], [7].

У Pyrocystis lunula этот механизм связан с транспортными белками — кальциевыми каналами, встроенными в клеточную мембрану [6].

Каналы играют роль тоннеля, который пропускает через мембраны кальций, присутствующий в морской воде. После чего дело остается за биохимией: с помощью работы ионных каналов активируется цепочка химических реакций, которая порождает свет.

Тем не менее динофлагелляты реагируют не на каждый удар. Свечение водорослей запустится при условии, что клетка деформировалась сильно и быстро [6].

Производство света динофитам нужно для того, чтобы отпугивать хищников: водоросли начинают светиться в ответ на сильное внешнее воздействие, напоминающее нападение. В ходе естественного отбора микроорганизмы стали отвечать свечением только на самые сильные и быстрые удары хищников.

Взаимовыгодное сожительство динофлагеллят и кораллов

Важно отметить, что динофлагелляты могут вступать в симбиоз с полипами. Это очень значимые взаимоотношения между организмами, поскольку без водорослей не было бы коралловых рифов [8], [9]!

Ведь динофиты живут в клетках тканей кораллового полипа и играют значительную роль в обеспечении его питания: большее количество пищи полипа приходится на органические вещества, которые образуют водоросли за счет процесса фотосинтеза. А полипы снабжают водоросли биогенными элементами и углекислым газом, а также организовывают им укрытие.

Кораллы очень чувствительны к температуре среды, в которой они обитают. Когда температура воды повышается, происходит нарушение взаимосвязей между организмами: коралловые полипы теряют динофлагеллят, а после обесцвечиваются (рис. 4). Они могут и погибнуть, если неблагоприятные условия затянутся [10].

Обесцвечивание кораллов

Рисунок 4. Обесцвечивание кораллов, пострадавших от воздействия высоких температур и потерявших водоросли-симбионты

Вымирание коралловых полипов представляет собой большую экологическую проблему. Эксперты из Университета Мельбурна, работающие в сфере экспериментальной эволюции динофлагеллят, решили разобраться с вопросом обесцвечивания кораллов и провести исследование.

Ученые отобрали микроводоросли вида Cladocopium goreaui и культивировали их в лаборатории, изолировав от кораллов. В ходе экспериментальных работ применялась техника направленной эволюции. Ученые in vitro воздействовали на динофлагеллят температурой в пределах 27 градусов по Цельсию [10].

На протяжении четырех лет одна часть водорослей находилась при постоянной температуре (27 градусов по Цельсию), а вторая часть подвергалась постепенному повышению температур. Со временем водоросли приобрели адаптивные мутации и приспособились к новым температурным условиям. Так, осторожно повышая температуру среды, исследователи вывели штамм динофлагеллят, способный выживать при температуре 31 градус по Цельсию!

После этого осталось проверить, сможет ли новый термоустойчивый штамм динофитов предотвратить обесцвечивание полипов. Ученые разделили планулы на две группы и соединили их и со штаммами водорослей дикой культуры, и термоустойчивыми модифицированными водорослями.

Подводя итог выполненной работе, можно заметить следующее: при температуре 31 градус по Цельсию коралл с водорослями дикой культуры быстро обесцветился, а коралл с модифицированными термоустойчивыми водорослями сохранил окраску. Таким образом, новый штамм динофитовых водорослей способен предотвратить обесцвечивание полипа и спасти его от гибели.

Полученные результаты, по мнению ученых, говорят о дальнейшей возможности использования модифицированных динофлагеллят в качестве защитников коралловых рифов от обесцвечивания [10].

Биолюминесцентные микропомощники: свет в жизни Euprymna scolopes

Перейдем к наиболее маленьким живым излучателям света — люминесцентным бактериям. Такие бактерии можно обнаружить в основном в морских водах, а также на поверхности разлагающихся рыб и даже в кишечнике морских животных.

Существуют как свободноживущие светящиеся бактерии, так и живущие в симбиозе с животными, например, небольшими моллюсками вида Euprymna scolopes (рис. 5, 6) [11].

Euprymna scolopes

Рисунок 5. Гавайский бобтейл-кальмар Euprymna scolopes

Размер Euprymna scolopes

Рисунок 6. Размер Euprymna scolopes по сравнению с человеческой рукой

Гавайские бобтейл-кальмары — ночные хищники, которые вдобавок обзавелись взаимовыгодным сотрудничеством с люминесцентными бактериями Vibrio fischeri.

Эти бактерии живут в специализированном органе кальмаров — фотофоре, который располагается под мантией (рис. 7а и 7б).

E. scolopes и его фотофор

Рисунок 7. а — Молодая особь кальмара E. scolopes. e — глаза; lo — фотофор, видимый через ткань брюшной мантии. б — Световая микрофотография поперечного сечения фотофора. Внутренняя часть органа содержит выстланные эпителием углубления, в которых находятся бактерии (b). Вокруг фотофора находятся чернильный мешок (is) и рефлекторы (r), способные регулировать излучение света из фотофора во внешнюю среду. в — Световые циклы моллюска. В эксперименте кальмар подвергался воздействию внешнего дневного света в период покоя и в период бактериальной люминесценции фотофора ночью, когда животное подвижно.

V. fischeri получает от кальмаров питательные вещества: сахара и аминокислоты, а также условия для размножения и роста. В свою очередь, вибрионы при помощи своего голубого свечения (рис. 8) обеспечивают моллюску маскировку.

Euprymna scolopes

Рисунок 8. Кальмар Euprymna scolopes испускает голубой свет, благодаря симбиотическим бактериям Vibrio fischeri

За счет люминесценции микропомощников и устройства фотофора, нижняя часть тела гавайских бобтейл-кальмаров способна излучать необходимое количество света в соответствии с освещенностью обитаемой среды. Это означает, что в лунную ночь бактерии-симбионты испускают голубой свет интенсивнее, чем в пасмурную погоду. Таким образом, из темных глубин океана контур тела моллюска становится незаметным для хищников.

Но на этом роль бактерий-симбионтов не заканчивается. Как установили исследователи из Университета штата Висконсин в Мэдисоне, светящиеся бактерии способны определять работу циркадных ритмов моллюска.

В лаборатории Маргарет Макфолл-Най (Margaret McFall-Ngai) и Эдварда Руби (Edward Ruby) ученые изучают кальмаров Euprymna scolopes на протяжении тридцати лет.

В их научной группе определили, что голубой свет активирует (включает) специальные гены, которые кодируют регуляторные белки — криптохромы (CRY) [12].

У кальмаров есть два таких гена, escry2 и escry1, кодирующих криптохромы. Один из таких белков активен в голове, ближе к органам чувств и мозгу, потому что у кальмаров белки циркадного ритма синтезируются в области ЦНС.

А другой криптохром синтезируется в области сосредоточения люминесцентных бактерий — фотофоре. Работа гена escry1, кодирующего второй белок, соответствовала периоду бактериальной голубой биолюминесценции, а не смене времени суток, поскольку кальмар светился в ночное время, когда выходит поохотиться.

Излучаемый моллюском свет соответствует суточным ритмам (рис. 7в), которые имеют особенности циркадного ритма, связанные с симбиозом. Максимальное свечение кальмара происходит не днем, когда тот малоподвижен, а ночью, когда моллюск активен и исследует воды в поисках пищи. Получается, испускание голубого света бактериями-симбионтами происходит во время, отличное от времени естественного освещения среды [12].

Euprymna scolopes

Рисунок 9. Euprymna scolopes под микроскопом. Люминесцентные бактерии (отметка красным цветом) провоцируют экспрессию генов (отметка зеленым цветом) в эпителии фотофора (отметка синим цветом).

С наступлением ночи, циркадный ритм гена (escry1) кальмаров из последней группы не заработал. То же самое происходило и с животными из второй группы, заселенными бактериями без свечения: биологические часы отказали [14].

Даже если на фотофор воздействовали искусственным светом, схожим с бактериальной люминесценцией, то ритмическая активность гена должным образом не работала, а синтез криптохрома не происходил [12].

А заселение яркосветящимися симбиотическими бактериями в световой орган кальмаров из первой группы было необходимо для общей сверки показателей со второй и третьей группами.

Ученые пришли к выводу, что такая нормальная симбиотическая люминесценция необходима для максимального изменения экспрессии генов моллюска [13], [15].

Но достаточно ли одного света для активации гена?

Ключевой момент состоит не только в бактериальном свечении, а еще и в особых молекулах, которые способствуют морфогенезу фотофора: пептидокликане (PGN) и липополисахриде (LPS) [16], [17].

Пептидогликан и липополисахарид — главные компоненты в составе клеточной мембраны люминесцентных бактерий, которые относили к PAMP (патоген-ассоциированным молекулярным паттернам [18]) . Именно эти молекулы и оказались главными активаторами гена escry1 [12].

PAMP — особые вещества, которые запускают иммунные реакции животного и являются универсальным сигналом о проникновении инфекций в его организм. Такие молекулярные структуры свойственны микроорганизмам и отсутствуют в клетках животных. И в связи с этим распознавание PAMP определяется иммунной системой животного как сигнал о наличии патогенного микроорганизма [12], [19].

Но V. fischeri не является патогеном, поскольку никакого вреда кальмару не приносит. Поэтому, в настоящее время вместо аббревиатуры PAMP корректнее использовать аббревиатуру MAMP (ассоциированные с микроорганизмами молекулярные паттерны, или микроб-ассоциированные молекулярные паттерны), поскольку сейчас такие соединения не рассматриваются как патологии.

Более того, исследования говорят о том, что воздействие MAMP играет колоссальную роль в развитии органа моллюска.

Получается, ключевыми составляющими для поддержания циклической экспрессии гена криптохрома в фотофоре и симбиотической связи между моллюском и бактериями являются сразу несколько факторов. А именно: наличие липополисахарида, пептидогликана и голубого света [12]. Присутствие такого биолюминесцентного симбионта, который имеет свои MAMP, необходимо для развития кальмара. Симбионт обязательно должен испускать свет [13], в противном случае микроорганизм выбывает из сотрудничества с моллюском, поскольку дефектные по производству света бактерии не могут в должной мере производить свои микробные молекулы [18].

Как происходит заселение фотофора бактериями в естественных условиях

V. fischeri, находящиеся в воде, попадают в полость тела, а также в сам фотофор кальмара. Фотофор настолько чувствителен, что способен реагировать даже на небольшое количество V. fischeri и определять их среди огромного множества других бактерий. Кальмар реагирует обильной слизью с поверхности фотофора на выделяемый микроорганизмами пептидогликан.

Достаточно лишь нескольких касаний клеток кальмара бактериями, чтобы изменить экспрессию многих генов в фотофоре!

Некоторая доля этих генов принимает участие в работе иммунной системы моллюска. Такие гены способны активировать специальные рецепторные белки распознавания паттернов в слизи, чтобы создать среду, благоприятную для размножения и жизни только бактерий V. fischeri [20].

Клетки светового органа считывают и определяют состав попавших в него микроорганизмов за счет работы рецепторов распознавания паттернов (PRR). Одни из наиболее важных представителей рецепторов распознавания паттернов являются Toll-подобные рецепторы (TLR). Эти рецепторы нацелены на распознавание бактериальных пептидогликанов и липополисахаридов, а также ряда других MAMP [18], [21].

Когда биолюминесцентная бактерия попадает в фотофор, она способна разрушать молекулу хитина в слизи, превращая ее в хитобиозу. Продукт расщепления хитина заманчив для вибрионов, которые его чувствуют и затем приближаются к нему [20].

Таким образом, получается привлекательный химический сигнал для других бактерий V. fischeri, который их заманивает к фотофору кальмара. Любопытно, что это всё происходит достаточно быстро — в течение нескольких часов после вылупления моллюска. Симбиотические отношения между вибрионами и моллюском поддерживаются на протяжении всей жизни [20].

Ученых всех времен интересовало взаимовыгодное сотрудничество между живыми существами. Ведь партнерство с различными микроорганизмами очень важно, поскольку они играют колоссальную роль в жизни и развитии множества организмов!

А некоторые микроорганизмы способны не только поддерживать сотрудничество, но также испускать голубой свет за счет ряда физических и биохимических процессов. Все это доказывает, каким полезным, удивительным и необычайно красивым может быть микромир.

Мириады живых существ в экосистеме находятся в неисчислимом количестве связей с другими существами. Это сложнейшая сеть взаимосвязей между организмами обеспечивает устойчивость экосистемы, служит предметом интереснейшей науки - экологии.

Пеликан

    Симбиоз (греч. symbiosis - совместная жизнь)

Форма существования двух организмов, принадлежащих к разным видам. Некоторые организмы-симбионты никак не могут существовать друг без друга - облигатный симбиоз (лат. obligatus - обязанный). Примером облигатного симбиоза могут служить лишайники, организмы, образованные симбиозом гриба и водоросли.

Симбиоз

Иногда симбиоз между особями возможен, но не является обязательным условием. Если особи могут быть в симбиозе, а могут и поодиночке, то такой симбиоз будет считаться факультативным (франц. facultatif - необязательный).

Известный пример факультативного симбиоза (протокооперации) - отношения между раком-отшельником и актинией. Актиния крепится к панцирю рака-отшельника, своими щупальцами обездвиживает мелких животных, таким образом, достает пищу для себя и рака. Рак-отшельник постоянно перемещает актинию, за счет чего вероятность ее встречи с потенциальной жертвой увеличивается.

Факультативный симбиоз, протокооперация

    Мутуализм (лат. mutual - взаимный)

Форма взаимовыгодного облигатного симбиоза. Примером мутуализма могут послужить взаимоотношения между рыбой-клоуном и актинией. Рыба-клоун спасается от врагов среди щупалец актинии, проводит там санитарную обработку: она удаляет из актинии непереваренные остатки пищи, вентилирует воду.

Внутри пищеварительного тракта коровы происходит мутуализм с бактериями. Особая микрофлора заселяет отдел желудка - рубец. Именно здесь целлюлоза, которая не может быть разрушена пищеварительными ферментами коровы, переваривается бактериями-симбионтами. Без бактерий нормальное расщепление целлюлозы невозможно.

Мутуализм

Комменсализм - способ симбиоза, при котором один из партнеров (комменсал) возлагает на другого (хозяина) регуляцию своих взаимоотношений с внешней средой. При этом комменсал получает пользу от таких взаимоотношений, а хозяин не получает ни вреда, ни пользы.

Примером таких взаимоотношений может послужить "квартиранство", при котором один из организмов использует другой как жилище: в мантийную полость двустворчатых моллюсков откладывают икринки рыбы-горчаки, благодаря чему развивающиеся икринки надежно защищены раковиной моллюска, но не приносят ни вреда, ни пользы самому моллюску.

Также примером является и "нахлебничество". Под этот термин подпадают отношения между акулой и рыбой-прилипалой. Рыба-прилипала (комменсал) прикрепляется к акуле, преодолевает большие расстояния и питается остатками пищи, расплывающимися в стороны после трапезы акулы.

Комменсализм

Паразитизм также является способом симбиоза. При этой форме отношений один организм (паразит) использует другой (хозяина) в качестве источника питания (и среды обитания), при этом частично/полностью возлагая на него регуляцию своих отношений с внешней средой.

Паразитизм бывает облигатный, в случае если паразит не может жить без хозяина, к примеру, у вирусов. Может быть факультативный, если паразит способен существовать без хозяина: комары, блохи, вши, паразитические черви.

Паразитизм

В современной экологии в понятие хищничества вкладывается форма взаимоотношения, при которой один организм питается органами и тканями другого, при этом между двумя организмами отсутствуют симбиотические связи. То есть они никак не зависят друг от друга.

Иногда понятие хищничества обобщается, и в него включают плотоядных, растительноядных, всеядных животных и паразитов.

Хищничество

При этой форме взаимоотношений виды не оказывают друг на друга практически никакого влияния. Они редко встречаются из-за разности типов питания, экологических ниш.

Нейтрализм

    Аменсализм (греч. а - отрицательная частица + лат. mensa -стол, трапеза)

При аменсализме один вид подавляет другой без извлечения выгоды для себя и без обратного отрицательного влияния с подавляемой стороны. Примерами аменсализма являются высокие широкие кроны взрослых деревьев, которые практически не пропускают свет в подлесок и тем самым угнеют рост молодых растений, мхов.

Аменсализм

Аллелопатией называют подавление одного вида организмов другим (и обратное воздействие) вследствие выделения токсичных веществ. Часто встречается у микроорганизмов, грибов.

Примером может считаться выделение антибиотиков двумя близкорасположенными бактериями. В этом случае антибиотик каждой бактерии будет замедлять рост и развитие другой, может приводить к гибели.

Колонии бактерий и грибов

Если у особей, принадлежащих к двум разным видам (или к одному), сходный образ жизни, кормовая база, занимаемая ими экологическая ниша, ограниченные возможности для полового размножения: между ними возникает конкуренция.

Особенно часто возникает конкуренция между особями одного вида, ведь их потребности совершенно одинаковы. Недаром самым ожесточенным вариантом борьбы за существование считается внутривидовая борьба.

Конкурнеция

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Симбионты наши дни. О том как паразиты становятся симбионтами. Биология, Симбиоз, Моллюск, Интересное, Эволюция, Копипаста, Длиннопост

Тихоокеанский лосось рода Oncorhynchus (сем. Salmonidae), неизбежно умирающий после первого же в жизни нереста, является ярким примером природного феномена, названного феноптозом — запрограммированной смерти особи — как способа очистки сообщества организмов от ставших лишними индивидуумов посредством включения ими программы собственной гибели. Все без исключения виды рода Oncorhynchus — кета, горбуша, кижуч, чавыча, нерка, сима и другие — массово гибнут в результате ускоренного старения (прогерии) вскоре после окончания длительной анадромной миграции из океана в реку на нерестилище и вымета икры. Их смерть не связана с перерасходом энергии, так как даже когда кета и горбуша нерестятся в совсем коротких речках — ключах, где течение едва заметно, рыбы все равно умирают в двухнедельный или месячный срок после нереста. Гибель происходит вследствие включения особой биохимической программы, в которой ключевую роль играет продукция стероидных гормонов, в частности гормона стресса кортизола. Ускоренное старение тихоокеанских лососей можно предотвратить, если у неполовозрелых рыб удалить гонады или надпочечники. Тогда жизненный цикл чавычи продлевается в два раза: с 4 до 8 лет. Биологический смысл самоубийства родителей-лососей состоит в том, что тела рыб служат источником пищи для речных беспозвоночных, которые в свою очередь поедаются маленькими лососями. Важными сигналами к включению программы прогерии служит переход лососей из морской воды в пресную, вымет половых продуктов, стрессы от конфронтации на нерестилищах.

В природе, однако, обнаруживается удивительный пример, когда биохимическая программа пострепродуктивного самоубийства атлантического лосося (семги) Salmo salar может выключиться под воздействием симбиотического организма — тканевого паразита эпителия жабр лосося — личинки пресноводной жемчужницы Margaritifera margaritifera. Тем самым предельная продолжительность жизни лососей — хозяев жемчужницы в процессе коэволюции продлевается до 13 лет, и лососи оказываются способными нерестится многократно — от 2 до 6 раз.

Пресноводная жемчужница (сем. Margaritiferidae, отряд Unionoida) — наиболее долгоживущий вид из беспозвоночных животных, достигающий максимального возраста 200 лет. Палеонтологические данные указывают, что жемчужница и лососи рода Salmo (семга и кумжа) совместно эволюционировали в Европе 8 млн. лет, с плиоцена, и современный ареал моллюска вписывается в ареалы этих видов рыб.

К XXI веку в Европе несколько десятков воспроизводящихся популяций М. margaritifera остались в России, странах Фенноскандии и Шотландии. Во время изучения в разных водоемах северо-запада России особенностей развития личинок (глохидиев) жемчужницы на жабрах молоди и взрослых рыб атлантического лосося мы обратили внимание на то, что зараженные личинками производители-лососи не умирают после нереста осенью и не скатываются в море, а продолжают жить в реке без признаков прогерии до следующего лета [12]. При этом дикие лососи вынашивают на жабрах в зимний период до 2–7 тыс. мелких (диаметром 50–70 мкм) глохидиев жемчужниц на 1 рыбу. К лету у этих похудевших, но проворных рыб обычно сохраняется нормальный агрессивный рефлекс — атаковывать блесну спиннингиста.

В экспериментах в садках обнаружилось, что паразит не только не наносит заметного ущерба, например, не нарушает формулу крови и двигательную активность сперматозоидов, но и непосредственно оздоравливает своего хозяина, повышая устойчивость к неблагоприятным факторам среды. Например, у отнерестившегося "лошалого" лосося, инфицированного жемчужницей, наблюдалась неплохая выживаемость (53% по сравнению со стопроцентной летальностью интактного лосося) при таких жестких стрессах, как асфиксия (45-60 с вне воды), или термический ожог жабр от горячих пальцев человека (13%). Выше на 14% также оказалась выживаемость лососей - носителей моллюска при ранениях тела рыбы крючками.

Таблица 1. Сравнение выживаемости двух групп производителей лосося S. salar, (экспериментально зараженных и незараженных личинками жемчужницы) в садках после воздействия трех типов стрессов

Симбионты наши дни. О том как паразиты становятся симбионтами. Биология, Симбиоз, Моллюск, Интересное, Эволюция, Копипаста, Длиннопост

Во время изучения в разных водоемах северо-запада России особенностей развития личинок жемчужницы на жабрах молоди и взрослых рыб атлантического лосося мы обратили внимание на то, что зараженные личинками производители-лососи не умирают после нереста осенью и не скатываются в море, а продолжают жить в реке без признаков прогрессии до следующего лета. При этом дикие лососи вынашивают на жабрах в зимний период до 2-7 тыс. мелких (диаметром 50-70 мкм) личинок жемчужниц на 1 рыбу. К лету у этих похудевших, но проворных рыб обычно сохраняется нормальный агрессивный рефлекс атаковать блесну спиннингиста. В бассейне Белого моря летняя экологическая форма лосося проводит, в реках один год; (с июня по июнь следующего, года), а осенняя: форма почти два года (например с августа 2002 г до июня 2004 г.). Таким образом, осенняя форма лосося может вынашивать личинки жемчужниц дважды за один визит из моря в реку. Летом обе формы производителей лососей скатываются в море и только после этой формы миграции большинство рыб в море погибает от истощения. Наиболее сильные рыбы выживают . Доля повторно, и трех-кратно размножающихся рыб составляет 10 - 40%. Отмечаются случаи 5-ти и 6-кратного нереста.

Симбионты наши дни. О том как паразиты становятся симбионтами. Биология, Симбиоз, Моллюск, Интересное, Эволюция, Копипаста, Длиннопост

Следует отметить; что у самих жемчужниц, даже старых, до недавнего, потепления климата не было отмечено болезней, паразитов и опухолей. Скорее всего особи почтенного возраста погибают не от старческих болезней, а из-за непрерывного аллометрического роста, ведущего к чрезмерному утяжелению раковины к концу жизни.

Многолетние полевые исследования выявили, что не только у взрослых лососей, но и у молоди рыб жемчужница усиливает неспецифическую сопротивляемость к таким опасным заболеваниям , как опухоли-эпителиомы и грибковые поражение сапролегнией. Так, в реке Варзуга где пока еще осталось в живых несколько десятков миллионов жемчужниц и порядка 10 млн. мальков, молодь лосося обнаруживает невиданную мире высокую плотность поселений - 100-170 рыб на 100 м2 (обычная плотность 20-40 рыб). При жизни в таких перенаселенных водоёмах, лососи имеющие территориально- оборонительное поведение, должны были бы находиться в хроническом стрессе из-за территориальных конфронтации. Однако в действительности этого нет, и лососи-пестрятки хорошо уживаются друг с другом (не теряя при этом нормальной агрессивности) на нерестово-выростных угодьях без признаков истощения нервной системы. То, что личинки жемчужницы оптимизируют нейроэндокринный контроль поведения лососей, подтверждается отсутствием заболеваемости молоди лосося в главном русле реки Варзуга где обитает 90% пестряток. Здесь мальки живут в прозрачной воде среди колоний жемчужниц и практически все являются носителями глохидиев : Из просмотренных 3200 мальков за период 1997-2003 гг. при визуальном исследовании нами не было обнаружено ни одного малька с изяъзвлениями кожи, эктопаразитами, опухолями кожи и грибковыми заболеваниями. В то же время в болотистых притоках обитает примерно 10% пестряток. Здесь имеются благоприятные кормовые условия, и мальки достигают более крупных размеров, чем в главном русле. Однако вода малопрозрачна имеет коричневый "чайный"цвет и здесь, отсутствуют колонии жемчужницы. В притоках эпидемиологическая ситуация не столь идеальная - более 50 мальков из 2400 просмотренных оказались пораженными опухолями кожи и грибком-сапролегнией ( табл. 2 )

Симбионты наши дни. О том как паразиты становятся симбионтами. Биология, Симбиоз, Моллюск, Интересное, Эволюция, Копипаста, Длиннопост

Личинки жемчужницы замедляют рост, созревание и продлевают длительность речного периода жизни молоди лосося. Рассмотрим, как это происходит на примере крупнейшей в Европе популяции атлантического лосося реки Варзуга. Специфика гидрологического режима реки (мелководность, отсутствие озер, изобилие болот в водосборе, мелкий нерестовый грунт и др) обусловила формирование стада в основном из небольших рыб, массой 2- 5 кг. Кроме того, селективный промысел неводами в ХХ в. "выбил" крупных рыб старших возрастных групп. Тем не менее у этого стада до сих пор сохраняется неожиданно сложная возрастная структура (12 возрастных категорий). Наблюдаются: следующие возрасты взрослых рыб (число лет в реке + число лет в море): 2+1+, 2+2+, 2+3+, 3+1+, 3+2+, 3+3+, 4+1+, 4+2+, 4+3+, 5+1+, 5+2+, 5+З+.; Ихтиологи давно уже обратили внимание на то, что р. Варзуга молодь лосося скатывается из реки в море при значительно меньшей длине тела (10 см), чем в соседних реках (12-14 см). Притом высказывалось удивление, почему не наблюдается элиминации таких мелких и, казалось бы, не готовых к обитанию пелалагиали моря рыб при их резком переходе из реки и море.

Многолетние данные по возрастной структуре мигрирующих летом вниз по течению посеребрившихся мальков-покатников (смолтов) указывают, что покатники из болотистых притоков скатываются в море уже в возрасте 2-3 лет, в то время как мальки из главного русла живут на колониях моллюска до 3-5 лет и только в этом возрасте покидают реку. В целом под влиянием жемчужницы средняя продолжительность жизни молодых лососей в реке до ската в море значительно больше, чем таковая в притоках (соответственно 3,3 и 2,5 г). Именно минимальный срок в 0.8 г (около 300 сут) требуется молодому моллюску, чтобы полностью завершить свою паразитическую стадию в рыбе. На некоторых крупных колониях жемчужницы среди покатников лосося доля рыб с возрастом 4-5 лет, составляет 70% и средняя продолжительность речного периода жизни лосося достигает рекордных 3,8 г.

Читайте также: