Действие лекарств направленное на возбудителя инфекции

Обновлено: 28.03.2024

В борьбе за существование микроорганизмы создали и усовершенствовали оружие, которое позволяет им отстаивать свою среду обитания. Это оружие – специальные вещества, названные антибиотиками. Они безвредны для хозяина, но смертельно опасны для его врагов. С их помощью микроорганизмы успешно защищают, а при случае и расширяют “свои территории”. Наблюдение за жизнью микроорганизмов, позволившее человеку создать новый класс лекарств – антибиотики, заставило отступить многие ранее непобедимые болезни.

Считается, что открытие антибиотиков прибавило примерно 20 лет к средней продолжительности жизни человека в развитых странах. В каждой семье есть человек, который остался в живых благодаря антибиотикам. Микробиолог Зинаида Ермольева, получившая в 1942 году первые в СССР образцы пенициллина, объясняла значение антибиотиков так: “Если бы в XIX веке был пенициллин, Пушкин бы не умер от раны”.

История антибиотиков насчитывает чуть более 70 лет, хотя роль микроорганизмов в развитии инфекционных заболеваний была известна уже со второй половины XIX века. Начало этой истории положили наблюдения Флеминга за борьбой микроорганизмов между собой.

Термин “антибиотики” ввел в обращение американский микробиолог З. Ваксман, получивший в 1952 году Нобелевскую премию за открытие стрептомицина. Именно он предложил называть все вещества, вырабатываемые микроорганизмами для уничтожения или нарушения развития других микроорганизмов-противников, антибиотиками. Сам же термин антибиос (“анти” – против, “биос” – жизнь), отражающий форму сосуществования микроорганизмов в природе, когда один организм убивает или подавляет развитие “противника” путем выработки особых веществ, был придуман Л. Пастером, вложившим в него определенный смысл – “жизнь – против жизни” (а не “против жизни”).

Первый антибиотик – пенициллин – был выделен из плесневого гриба пенициллиум нотатум, чему и обязан своим названием. За его создание в 1945 году три ученых Флеминг, Флори и Чейн были удостоены Нобелевской премии. История создания первого в мире антибиотика довольно интересна. В 20-х годах в одной из лондонских больниц работал Александр Флеминг. Он готовил для учебника по бактериологии статью о стрептококках (вид бактерий) и ставил эксперименты. Однажды Флеминг обнаружил, что плесень, случайно попавшая на поверхность среды с культурой стрептококка, как бы растворила ее. Стало очевидным, что плесень вырабатывает какое-то удивительное вещество, с огромной силой действующее на бактерий. Это гипотетическое вещество Флеминг назвал пенициллином (от латинского penicillium – плесень). В 1929 году он опубликовал свое открытие, а в 1936 – рассказал о нем на II Международном конгрессе микробиологов. Однако научная общественность осталась равнодушной, отчасти может быть из-за того, что Флеминг, по признанию современников, был плохим оратором. Дальнейшая разработка пенициллина была связана с работой, так называемой Оксфордской группы, во главе которой стояли Говард Флори и Эрнст Чейн. Чейн занимался выделением пенициллина, а Флори – испытанием его на животных. В результате был получен малотоксичный и эффективный пенициллин. 12 февраля 1941 года пенициллин был впервые применен для лечения человека. Первым пациентом оказался лондонский полицейский, умиравший от заражения крови. После нескольких инъекций ему стало лучше, через день он уже ел без посторонней помощи. Но запас с таким трудом полученного пенициллина закончился, и больной скончался.

Промышленный выпуск препарата был налажен только в 1943 году в США, куда Флори передал технологию получения нового лекарства. Причем американский штамм (подвид) плесени был найден на одной из гнилых дынь, выброшенных на помойку.

В нашей стране пенициллин создали в 1942 году два биолога З.В. Ермольева и Т.И. Балезина с сотрудниками. В одном из московских подвалов они обнаружили штамм пенициллиум крустозум, который оказался продуктивнее английских и американских родичей. Это отметил и Флори, приезжавший в январе 1944 года в СССР с американским штаммом. Он был удивлен и восхищен тем, что у нас есть более продуктивный штамм и уже налажено промышленное производство пенициллина.

У пенициллина оказалось столько достоинств, что он до сих пор широко применяется в медицинской практике. Главные из них – высочайшая антибактериальная активность и безопасность для человека. Поначалу его действие вообще производило впечатление волшебной палочки: очищались гнойные раны, зарастали кожей ожоги и отступала гангрена. Так получилось, что изучение свойств пенициллина совпало по времени со второй мировой войной, и он быстро нашел применение для лечения раненых солдат. Введение пенициллина сразу после ранения позволяло предупреждать нагноение ран и заражение крови. В результате в строй возвращались свыше 70% раненых.

После того, как была доказана возможность получения антибиотиков из микроорганизмов, открытие новых препаратов стало вопросом времени. И, действительно, в 1939 году был выделен грамицидин, в 1942 – стрептомицин, в 1945 – хлортетрациклин, в 1947 – левомицетин (хлорамфеникол), а уже к 1950 году было описано более 100 антибиотиков. Многие антибиотики были выделены из микроорганизмов, обитающих в почве. Оказалось, что в земле живут смертельные враги многих болезнетворных для человека микроорганизмов – возбудителей тифа, холеры, дизентерии, туберкулеза и других. Так стрептомицин, который с успехом применяется до сих пор для лечения туберкулеза, тоже был выделен из почвенных микроорганизмов. При этом, чтобы отобрать нужный штамм, З. Ваксман (автор стрептомицина) исследовал за три года более 500 культур, прежде чем нашел подходящую – выделяющую в среду обитания достаточные количества (больше, чем другие) стрептомицина.

Поиск новых антибиотиков – процесс длительный, кропотливый и дорогостоящий. В ходе подобных исследований изучаются и отбраковываются сотни, а то и тысячи культур микроорганизмов. И только единицы отбираются для последующего изучения. Но это еще не значит, что они станут источником новых лекарств. Низкая продуктивность культур, сложность процессов выделения и очистки лекарственных веществ ставят дополнительные, порой непреодолимые барьеры на пути новых препаратов. Поэтому со временем, когда очевидные возможности были уже исчерпаны, разработка каждого нового природного препарата стала чрезвычайно сложной исследовательской и экономической задачей. А новые антибиотики были очень нужны. Выявлялись все новые возбудители инфекционных болезней, и спектр активности существующих препаратов становился недостаточным для борьбы с ними. К тому же микроорганизмы быстро приспосабливались и становились невосприимчивыми к действию казалось бы уже проверенных препаратов. Поэтому, наряду с поиском природных антибиотиков, активно велись работы по изучению структуры существующих веществ, с тем, чтобы модифицируя их, получать новые и новые, более эффективные и безопасные препараты. Таким образом, следующим этапом развития антибиотиков стало создание полусинтетических, сходных по строению и по действию с природными антибиотиками, веществ.

Сначала в 1957 году удалось получить феноксиметилпенициллин, устойчивый к действию желудочного сока, который можно принимать в виде таблеток. Природные пенициллины, полученные ранее феноксиметилпенициллина, были неэффективны при приеме внутрь, так как они разрушались в кислой среде желудка. Впоследствии был создан метод получения полусинтетических пенициллинов. Для этого молекулу пенициллина “разрезали” с помощью фермента пенициллиназы и, используя одну из частей, создавали новые соединения. Таким способом удалось получить препараты более широкого спектра действия (амоксициллин, ампициллин, карбенициллин), чем исходный пенициллин.

Другой антибиотик, цефалоспорин, выделенный в 1945 году из сточных вод на острове Сардиния, дал жизнь новой группе полусинтетических антибиотиков – цефалоспоринам, оказывающим сильнейшее антибактериальное действие и практически безопасным для человека. Цефалоспоринов получено уже более 100. Некоторые из них способны убивать и грамположительные, и грамотрицательные микроорганизмы, другие действуют на устойчивые штаммы бактерий.

В настоящее время число выделенных, синтезированных и изученных антибиотиков исчисляется десятками тысяч, около 1 тысячи применяются для лечения инфекционных болезней, а также для борьбы со злокачественными заболеваниями.

Использование антибиотиков отодвинуло на второй план многие ранее смертельные заболевания (туберкулез, дизентерия, холера, гнойные инфекции, воспаление легких и многие другие). С помощью антибиотиков удалось значительно снизить детскую смертность. Большую пользу приносят антибиотики в хирургии, помогая ослабленному операцией организму справляться с различными инфекциями. Знаменитый французский хирург XIX века А. Вельпо с горечью писал: “Укол иглой уже открывает дорогу смерти”. Эпидемии послеоперационной горячки уносили в могилу до 60% всех прооперированных, и такая огромная смертность тяжелым грузом лежала на совести хирургов. Теперь с большинством больничных инфекций можно успешно бороться при помощи антибиотиков. Так началось время, которое врачи справедливо называют “веком антибиотиков”.

Существуют антибиотики с антибактериальным, противогрибковым и противоопухолевым действием. В этом разделе мы рассматриваем антибиотики, влияющие преимущественно на бактерии.

В чем же главное отличие антибактериальной терапии от других видов медикаментозного лечения, и почему мы выделяем ее в отдельную тему? Отличие заключается в том, что антибактериальная терапия – это лечение, направленное на устранение причины заболевания (этиотропная терапия). В отличие от патогенетической, борющейся с развитием болезни, этиотропная терапия направлена на уничтожение возбудителя, вызвавшего конкретное заболевание.

Основные правила антибактериальной терапии можно сформулировать следующим образом:
1. Установить возбудителя заболевания.
2. Определить препараты, к которым возбудитель наиболее чувствителен.
3. При неизвестном возбудителе использовать либо препарат с широким спектром действия, либо комбинацию двух препаратов, суммарный спектр которых включает вероятных возбудителей.
4. Начинать лечение надо как можно раньше.
5. Дозы препаратов должны быть достаточными для того, чтобы обеспечить в клетках и тканях препятствующие размножению (бактериостатические) или уничтожающие бактерии (бактерицидные) концентрации.
6. Продолжительность лечения должна быть достаточной; снижение температуры тела и ослабление других симптомов не являются основанием для прекращения лечения.
7. Значительную роль играет выбор рациональных путей введения препаратов, учитывая, что некоторые из них не полностью всасываются из желудочно-кишечного тракта, плохо проникают из крови в мозг (через гематоэнцефалический барьер).
8. Комбинированное применение антибактериальных средств должно быть обоснованным, так как при неправильном сочетании может как ослабляться суммарная активность, так и суммироваться их токсические эффекты.

Каким же образом действуют антибиотики на микроорганизмы, убивая их или не позволяя им развиваться? Механизм действия многих противомикробных средств не вполне выяснен. Тем не менее, можно утверждать, что действие большинства антибиотиков заключается в нарушении проницаемости клеточной мембраны и угнетении синтеза веществ, образующих клеточные мембраны бактерии или белка внутри микробной клетки (в том числе и путем угнетения синтеза РНК). В первом случае страдает обмен веществ между бактериальной клеткой и внешней средой. Во втором, клетка, оставаясь без оболочки или с ослабленной оболочкой, растворяется в среде обитания и перестает существовать как живой организм. Наконец, в третьем, недостаточность белкового синтеза приводит к остановке процессов жизнедеятельности и микроорганизм “засыпает”. Во всех случаях микробная клетка перестает вырабатывать токсины и, следовательно, перестает быть болезнетворной. Основные точки приложения действия антибиотиков в микробной клетке приведены на рисунке 3.11.1.

Рисунок 3.11.1. Точки приложения действия антибактериальных средств

Ценность антибиотиков как лекарств ни у кого не вызывает сомнения. Но, казалось бы, зачем такое количество лекарств, если достаточно нескольких наиболее активных? А поиски новых антибиотиков все продолжаются и продолжаются. Тому есть несколько очень серьезных причин.

Во-первых, даже наиболее активные антибиотики действуют лишь на ограниченное число микробов, а поэтому могут применяться только при определенных болезнях. Набор микроорганизмов, которые обезвреживаются антибиотиком, называется спектром действия. И этот спектр не может быть бесконечным. Природный пенициллин, например, несмотря на высокую активность, действует лишь на небольшую часть бактерий (преимущественно на грамположительные бактерии). Есть в настоящее время препараты (например, некоторые полусинтетические пенициллины и цефалоспорины) с очень широким спектром действия, но и их возможности не безграничны. Значительная часть антибиотиков не поражает грибы, среди которых есть достаточное количество болезнетворных. По спектру действия основные группы и препараты антибиотиков можно представить следующим образом:

– влияющие преимущественно на грамположительные бактерии (бензилпенициллин, оксациллин, эритромицин, цефазолин);

– влияющие преимущественно на грамотрицательные бактерии (полимиксины, уреидопенициллины, монобактамы);

– широкого спектра действия (тетрациклины, хлорамфеникол, аминогликозиды, полусинтетические пенициллины и цефалоспорины, рифампицин).

Вторая причина заключается в том, что антибиотики не обладают абсолютной избирательностью действия. Они уничтожают не только наших врагов, но и союзников, которые охраняют рубежи нашего организма – на поверхности кожи, на слизистых оболочках, в пищеварительном тракте. Это может нанести значительный урон естественной микробной флоре человека. В результате развивается дисбактериоз – нарушение соотношения и состава нормальной микрофлоры. Дисбактериоз может проявиться сравнительно невинно – вздутием живота, небольшим поносом и другими симптомами, но может протекать тяжело и в отдельных случаях даже приводить к смертельному исходу. На фоне дисбактериоза могут проявиться ранее “дремавшие” в организме инфекции, в частности грибковые, устойчивые к антибактериальным средствам. Такие инфекции в ослабленном болезнью организме, в особенности у детей и пожилых пациентов, представляют серьезную проблему. Поэтому вместе с антибиотиками нередко назначают противогрибковые средства.

Третья причина – появление устойчивых к действию антибиотиков разновидностей микроорганизмов. Микробы, обладая очень хорошей приспособляемостью к быстро меняющимся условиям окружающей среды, “привыкают” к антибиотикам. При этом они становятся нечувствительными к антибиотику, в том числе вследствие выработки ферментов, разрушающих его. В основе этого явления, известного как устойчивость, или резистентность, возбудителей заболеваний, лежит естественный отбор. Когда бактерии сталкиваются с антибиотиком, они проходят через сито селекции: все бактерии, чувствительные к антибиотику, погибают, а те немногочисленные, которые в результате естественных мутаций оказались к нему невосприимчивы, выживают. Эти резистентные бактерии начинают стремительно размножаться на территории, освободившейся в результате гибели конкурентов. Так возникает резистентная разновидность (штамм). Резистентные бактерии быстро захватывают как отдельный организм, так и целую семью, летний лагерь, целые районы, и даже “путешествуют” из одной части света в другую. Это очень серьезная проблема химиотерапии, так как появление устойчивых видов обесценивает противомикробное средство. Разумеется, устойчивые штаммы появляются тем больше, чем шире (и длительнее) применяется препарат.

Многолетнее использование пенициллинов при различных заболеваниях привело к появлению микроорганизмов, продуцирующих специальный фермент – пенициллиназу, нейтрализующий пенициллины. Такие бактерии, например стафилококки, стали серьезной клинической проблемой и даже причиной гибели многих больных. Дело в том, что существует еще перекрестная резистентность, то есть микроорганизмы, научившиеся “справляться” с бензилпенициллином (природным антибиотиком), нередко устойчивы к полусинтетическим представителям этого ряда, а также к цефалоспоринам, карбапенемам. Перекрестная устойчивость, как правило, развивается в отношении препаратов с одинаковым механизмом действия. Можно отсрочить появление резистентных штаммов рациональным применением антибиотика, особенно нового, с оригинальным механизмом действия. Эти новые антибиотики оставляют в резерве (“группа резерва”) и стараются назначать только в критических случаях, когда не помогают известные химиопрепараты, к которым возбудитель инфекции устойчив. Одним из методов борьбы с устойчивостью микроорганизмов является создание комбинированных препаратов, содержащих антибиотик и средства, угнетающие активность микробного фермента, разрушающего этот антибиотик.

И, наконец, четвертая причина – побочные действия. Антибиотики, как и другие лекарства, являются чужеродными для человеческого организма веществами, поэтому при их применении возможны различные неблагоприятные реакции. Наиболее частая из них – аллергия: повышенная чувствительность организма к данному препарату, которая проявляется при повторном его применении. Чем дольше существует препарат, тем больше становится пациентов, которым он противопоказан по причине аллергии. Не менее серьезными могут быть и другие побочные эффекты антибиотиков. Например, тетрациклин обладает способностью связываться с кальцием, поэтому может накапливаться в растущих тканях костей и зубов детей. Это приводит к неправильному их развитию, увеличению склонности к кариесу и окрашиванию зубов в желтый или коричневый цвет. Стрептомицин, положивший начало победному наступлению на туберкулез, и другие аминогликозидные антибиотики (канамицин, гентамицин) могут вызвать поражение почек и ослабление слуха (вплоть до глухоты). Хлорамфеникол угнетает кроветворение, что может привести к развитию малокровия (анемии). Поэтому применение антибиотиков всегда проводится под наблюдением врача, что позволяет своевременно выявить побочные реакции и произвести корректировку дозы или отменить препарат.

Разнообразие форм микроорганизмов и их способность быстро приспосабливаться к внешним воздействиям обусловили появление большого числа антибиотиков, которые принято классифицировать по их молекулярной структуре (таблица 3.11.2). Представители одного класса действуют по аналогичному механизму, подвергаются в организме однотипным изменениям. Сходны и их побочные действия.

Бактериостатические антибиотики ингибиторы синтеза белка

Синтез белка представляет собой реализацию генетической информации, т. е. построение пептидной цепи с помощью мРНК. Сборка цепи из аминокислот (АК) происходит на рибосоме. В доставке аминокислот к мРНК участвуют разные транспортные молекулы РНК (тРНК), каждая из которых связывает конкретную АК.

Каждая тРНК несет антикодон триплета нуклеотидных оснований, которые комплементарны определенной кодирующей единице мРНК к(одон, состоит из трех нуклеиновых оснований).

Синтез белка состоит из следующих этапов:
1. Первый этап, инициация, включает сборку аппарата для синтеза белка из мРНК, малой и большой рибосомных единиц и инициирующего комплекса тРНК-АК. За этим следуют этапы удлинения.
2. Рибосома фокусируется на двух кодонах мРНК. Один (слева) связывает комплекс тРНК-АК, а АК уже добавлена к пептидной цепи. Другой (справа) готов принять следующий комплекс тРНК-АК.
3. После последнего присоединения аминокислоты двух смежных комплексов связываются в результате воздействия рибосомной пептидсинтетазы (пептидилтрансферазы). Она является рибозимом, т. е. ферментом, каталитическая функция которого обеспечивается рибосомной РНК. Одновременно отсоединяется левый комплекс тРНК-АК.
4. Левая тРНК отсоединяется от мРНК. Рибосома двигается вдоль нити мРНК и фокусируется на следующем кодоне.
5. Затем правый комплекс тРНК-АК перемещается влево, что дает возможность связать справа следующий комплекс.

Эти отдельные этапы могут ингибироваться антибактериальными препаратами. В отличие от линезолида, который продуцируется синтетически путем, все антибиотики, указанные на рисунке ниже, получают преимущественно из Streptomyces spp. Ниже обсуждаются группы препаратов в соответствии с этапами синтеза белков.

В классификации, построенной по принципу терапевтической важности, имеются градации. Во главе стоят макролиды и тетрациклины, которые имеют значение при амбулаторном лечении. За ними следуют аминогликозиды, вводимые парентерально и поэтому предназначенные для стационарного лечения, и в конце — линезолид (резервный препарат) и хлорамфеникол, который в настоящее время почти не используется.

2а. Тетрациклины ингибируют связывание комплексов тРНК-АК. Они обладают бактериостатическим свойством и поражают возбудителей многих видов. Тетрациклины всасываются из ЖКТ в различной степени в зависимости от вещества, причем полностью всасываются доксициклин иминоциклин. Внутривенная инъекция требуется редко. Наиболее частым побочным эффектом является нарушение со стороны ЖКТ (тошнота, рвота, диарея и т. д.), возникающее вследствие
1) прямого раздражающего действия на слизистую этих веществ и
2) подавления естественной бактериальной кишечной флоры (антибиотики широкого спектра), что позволяет патогенным микроорганизмам, включая грибы рода Candida, колонизировать кишку.
Не следует одновременно принимать антациды или молоко, т. к. тетрациклины образуют нерастворимые комплексы с многовалентными ионами (Са 2+ , Mg 2+ , AI 3+ , Fe 2+/3+ ), что приводит к их инактивации, т. е. к нарушению всасывания, отсутствию антибактериальной активности и местному раздражающему действию. Свойство тетрациклинов образовывать комплексы с Са 2+ обусловливает их способность накапливаться в растущих зубах и костях.

В результате происходит необратимое желто-коричневое окрашивание зубов и обратимое торможение роста костей. Исходя из этих нежелательных реакций, тетрациклины не следует применять после 2-го месяца беременности и назначать детям в возрасте до 8 лет. К другим побочным эффектам относятся повышенная фоточувствительность кожи и повреждение печени в основном после в/в введения.

Тигециклин — производное тетрациклина с измененной структурой (глицилциклин). Это резервный препарат при тяжелых инфекциях, эффективен также против тетрациклин-резистентных бактерий.

2b. Аминогликозиды вызывают образование аномальных комплексов тРНК-АК, что приводит к появлению ошибок при синтезе белка. Аминогликозиды являются бактерицидными средствами. Их спектр активности охватывает в основном грамотрицательные организмы. Стрептомицин и канамицин используются преимущественно при лечении туберкулеза.

Аминогликозиды состоят из аминосахаров, соединенных гликозидной связью с агликоновым фрагментом (см. гентамицин С1а, компонент смеси гентамицина). Они содержат несколько гидроксильных групп и аминогруппы, которые связывают белки. Следовательно, эти вещества имеют высокую полярность, плохо проникают через мембраны и плохо всасываются в кишечнике. Неомицин используется только местно накожно и для нанесения на слизистые оболочки.

Аминогликозиды для системного лечения серьезных инфекций вводят в виде инъекций (гентамицин, тобрамицин, амикацин, нетилмицин). Аминогликозиды проникают внутрь бактерий за счет бактериальных транспортных систем. В почках они проникают в клетки проксимальных канальцев посредством системы захвата олигопептидов. Канальцевые клетки чувствительны к повреждающему действию аминогликозидов (в основном обратимая нефротоксичность). Во внутреннем ухе могут повреждаться чувствительные клетки вестибулярного аппарата и спирального органа (в некоторых случаях развивается необратимая ототоксичность).

3. Хлорамфеникол ингибирует пептидсинтетазу. Он обладает бактериостатическим свойством против широкого спектра возбудителей, полностью всасывается после приема внутрь и легко преодолевает диффузионныебарьеры, например ГЭБ. Несмотря на эти благоприятные свойства, хлорамфеникол используется только в редких случаях (при инфекции ЦНС) из-за риска повреждения костного мозга.

4. Макролиды подавляют синтез белка на рибосомах. Они оказывают преимущественно бактериостатическое действие, которое направлено главным образом против грамлоложительных бактерий. Кроме того, поражаются внутриклеточные бактерии, например, хламидии и микоплазмы. Макролиды эффективны при введении внутрь. Прототипом препаратов этой группы является эритромицин, который также применяется как резервный препарат при аллергии или резистентности к пенициллину. Кларитромицин, рокситромицин и азитромицин являются производными эритромицина с одинаковой активностью, тем не менее они медленно выводятся, что позволяет снизить дозу и вводить их менее часто.

Макролиды обычно хорошо переносятся. Они вызывают желудочно-кишечные расстройства, возможно, из-за стимуляции рецепторов эндогенного посредника мотилина, который активирует перистальтику.

Эритромицин и другие макролиды ингибируют реполяризацию миокарда, в результате чего возникает риск сердечных аритмий у пациентов с уже имеющимся удлинением интервала ОТ на ЭКГ или у пациентов получающих одновременно другие препараты, удлиняющие интервал ОТ. Вследствие ингибирования изоферментов CYP, например CYP3A4, появляется риск неблагоприятных лекарственных взаимодействий. Длительное использование приводит к повреждению печени с холестазом.

5. Линкозамиды. Клиндамицин обладает такой же антибактериальной активностью, как и эритромицин. Он оказывает бактериостатическое действие в основном на грамположительные аэробы, а также на анаэробные возбудители. Клиндамицин хорошо всасывается после приема внутрь и достигает эффективных концентраций даже в костной ткани, поэтому он используется при лечении стафилококкового остеомиелита.

Тетрациклины, макролиды, аминогликозиды

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Иммунитет - наша естественная защита от инфекций. Вакцины, помогающие приобрести иммунитет к определенным инфекционным болезням. Лекарства, способные усиливать или подавлять наш иммунитет. Лекарства, помогающие бороться с аллергией.

Еще в древности в Египте и Греции за чумными больными ухаживали люди, прежде переболевшие чумой: опыт показывал, что они уже не подвержены заражению.

Люди интуитивно пытались обезопасить себя от инфекционных болезней. Несколько веков назад в Турции, на Ближнем Востоке, в Китае для профилактики оспы втирали в кожу и слизистые оболочки носа гной из подсохших оспенных гнойников. Люди надеялись, что, переболев каким-то инфекционным заболеванием в легкой форме, они приобретут устойчивость к действию возбудителей в последующем.

Так зарождалась иммунология - наука, изучающая реакции организма на нарушение постоянства его внутренней среды.

Нормальное состояние внутренней среды организма является залогом правильного функционирования клеток, не общающихся напрямую с внешним миром. А такие клетки образуют большинство наших внутренних органов. Внутреннюю среду составляют межклеточная (тканевая) жидкость, кровь и лимфа, а их состав и свойства во многом контролирует иммунная система.

Трудно найти человека, который не слышал бы слово "иммунитет". Что же это такое? Иммунитет (от латинского immunitas освобождение, избавление) - защита организма от внешних и внутренних биологически активных агентов (антигенов), направленная на сохранение постоянства внутренней среды (гомеостаза) организма. Другими словами, это невосприимчивость организма к инфекционным агентам и веществам, обладающим антигенными свойствами.

Антигены - общее название чужеродных для организма агентов и веществ. Ими могут быть продукты жизнедеятельности микроорганизмов - возбудителей различных заболеваний, ядовитые соединения растительного и животного происхождения, погибшие или переродившиеся клетки самого организма и другие вещества.

В жизни нас окружает бесчисленное множество невидимых простым глазом микроорганизмов, многие из которых очень опасны для организма. Поражает их воспроизводство. 1 бактерия в течение 1 ч порождает 8 себе подобных особей, через 2 ч их образуется уже 64, через 24 ч - 4772 триллиона. При размножении в течение 1 года получилась бы масса бактерий, равная массе Солнца. Но в природе все находится в равновесии и беспрепятственного увеличения числа микробов не происходит. Научился сопротивляться этим агрессорам и наш организм. Одним из главных механизмов такого рода сопротивления является иммунная система.

Иммунная система человека (рисунок 2.11.1) включает центральные органы - костный мозг и вилочковую железу (тимус) и периферические - селезенку, лимфатические узлы, лимфоидную ткань. Эти органы вырабатывают несколько типов клеток, которые и осуществляют надзор за постоянством клеточного и антигенного состава внутренней среды. Основные клетки иммунной системы - фагоциты и лимфоциты (В - и Т-лимфоциты). Они циркулируют по кровеносной и лимфатической системе, некоторые из них могут проникать в ткани. Все клетки иммунной системы имеют определенные функции и работают в сложном взаимодействии, которое обеспечивается выработкой специальных биологически активных веществ - цитокинов. Вы, наверное, слышали такие названия, как интерфероны, интерлейкины и тому подобные. Это так называемые цитокины, с помощью которых клетки иммунной системы могут обмениваться информацией и осуществлять координацию своих действий. Фагоциты (в переводе на русский язык - "пожирающие") бросаются на пришельцев, поглощая и разрушая микробы, ядовитые вещества и другие, чужеродные для организма клетки и ткани. При этом погибают и сами фагоциты, высвобождая вещества (медиаторы), вызывающие местную воспалительную реакцию и привлекающие новые группы фагоцитов на борьбу с антигенами. Лимфоциты вырабатывают специфические белки (антитела) - иммуноглобулины, взаимодействующие с определенными антигенами и связывающие их. Антитела нейтрализуют активность ядов, микробов, делают их более доступными для фагоцитов.

Таким образом защитные реакции организма обеспечиваются клетками-фагоцитами, а также белками-антителами.

Иммунная система "запоминает" те чужеродные вещества, с которыми она хоть раз встречалась и на которые реагировала. От этого зависит формирование невосприимчивости к "чужим" агентам, терпимости к собственным биологически активным веществам и повышенной чувствительности к аллергенам. Нормально функционирующая иммунная система не реагирует на внутренние факторы и, в то же время, отторгает чужеродные воздействия на организм. Она формирует иммунитет - противоинфекционный, трансплантационный, противоопухолевый. Иммунитет защищает организм от инфекционных болезней, освобождает его от погибших, переродившихся и ставших чужеродными клеток. Иммунные реакции являются причиной отторжения пересаженных органов и тканей. При врожденных или приобретенных дефектах иммунной системы возникают заболевания - иммунодефицитные, аутоиммунные или аллергические, вызванные повышенной чувствительностью организма к аллергенам.

Человек уже с рождения невосприимчив ко многим болезням. Такой иммунитет называют врожденным. Например, люди не болеют чумой животных, потому что у них в крови уже содержатся готовые антитела. Врожденный иммунитет передается по наследству от родителей. Организм получает антитела от матери через плаценту или с материнским молоком. Поэтому часто у детей, находящихся на искусственном вскармливании, ослаблен иммунитет. Они больше подвержены инфекционным заболеваниям. Врожденный иммунитет сохраняется всю жизнь, но он может быть преодолен, если дозы заражающего агента увеличатся или ослабеют защитные функции организма.

В некоторых случаях иммунитет возникает после перенесенных заболеваний. Это приобретенный иммунитет. Переболев один раз, люди приобретают невосприимчивость к возбудителю. Такой иммунитет может сохраняться десятки лет. Например, после кори остается пожизненный иммунитет. Но при других инфекциях, например при гриппе, ангине, иммунитет сохраняется относительно недолго, и человек может заболеть много раз в течение всей жизни.

Врожденный и приобретенный иммунитет называют естественным.

Инфекционный иммунитет всегда конкретен или, другими словами, специфичен. Он направлен только против определенного возбудителя и не распространяется на прочих.

Существует также искусственный иммунитет, который вырабатывают, чтобы уберечь человека от заражения опасными для него инфекциями. К таким заболеваниям относятся, например, дизентерия, брюшной тиф, дифтерия, полиомиелит, туберкулез. Чтобы вызвать образование в организме защитных антител, человеку делают прививки, то есть вводят инактивированных или сильно ослабленных (выращенных в специальных условиях) возбудителей болезни (вакцины). После прививки человек чаще всего не болеет, или заболевает в очень легкой форме, при этом образуются защитные антитела. Если же человек заболел до вакцинации, то в качестве экстренной помощи ему вводят лечебные сыворотки, которые готовят из плазмы крови переболевших этим заболеванием людей или животных. Они содержат готовые антитела для борьбы с заболеванием. До появления сыворотки из каждых 10 детей, заболевших, например дифтерией, умирали 6-7 человек. Некоторые сыворотки, в частности, противостолбнячную, применяют не только для лечения, но и для профилактики заражения. Следует только отметить, что при использовании лечебных сывороток антитела в организме не образуются, они вводятся с сывороткой (процесс называют пассивной иммунизацией), поэтому через некоторое время человек становится снова восприимчивым к болезни.

Давайте немного подробнее рассмотрим основные группы лекарств, воздействующих на иммунную систему человека, а именно вакцины, иммуномодуляторы и средства, влияющие на аллергические реакции.

Микроорганизмы вокруг нас: бактерии, вирусы, грибы, простейшие, а также гельминты и другие паразиты. Элементарные знания и правила поведения, помогающие существенно уменьшить вероятность заражения и предотвратить возникновение серьезных инфекционных заболеваний. Лекарственные средства, действующие на микроорганизмы: каким образом они помогают нам не заболеть или вылечиться.

До сих пор мы рассматривали работу систем и органов человека в идеальных условиях в отсутствии воздействия болезнетворных микробов (микроорганизмов). В повседневной жизни нас постоянно окружают микробы. Они находятся в воздухе, которым мы дышим, в почве, в воде, на нашей коже и даже внутри нас. Большинство из них относительно безвредны для человека, но много и опасных.

Особенно опасны микроорганизмы, способные вызвать эпидемию, когда распространение инфекционной болезни значительно превышает уровень заболеваемости, обычно регистрируемый в данной местности, или даже шире – пандемию, когда болезнь быстро распространяется на территории ряда стран и континентов. В истории человечества наиболее известны пандемии чумы и холеры.

Специалисты считают, что не войны и стихийные бедствия помешали населению нашей планеты за 150000 лет существования превзойти 10-миллиардный уровень населенности, а пандемии.

Кроме холеры и чумы, миллионы жизней уносили и другие инфекционные заболевания – дизентерия, брюшной тиф. От последнего только в Петербурге в XIX веке каждый год умирало около 1000 человек.

Однако не только такие угрожающие жизни инфекции заставляют страдать человечество. Вспомним хотя бы грибковые поражения ногтей.

Слово “инфекция” пришло к нам из латинского языка и в переводе означает “заражать”. В настоящее время под инфекцией понимают заболевание, вызванное микроорганизмами, к которым относят бактерии, вирусы, грибы и простейшие.

Чуть выше мы уже упоминали, что не все микроорганизмы вызывают заболевания – существуют, и их много, вполне безвредные для человека и животных микробы, которые привыкли мирно сосуществовать, не вторгаясь в чужие сферы жизни. В этой главе мы будем говорить только о способных привести к инфекционной болезни (патогенных по отношению к человеку) микроорганизмах.

Инфекционные заболевания сопровождают человечество с самого его появления, но многие тысячелетия истинная природа инфекций не была известна. Только в конце XIX века французский химик Луи Пастер открыл причину этих заболеваний – микроорганизмы, и сделал возможным поиск лекарств для борьбы с ними. По иронии судьбы, Л. Пастер только в 60 лет был избран членом Академии наук и не за это открытие, а за работы по кристаллографии, выполненные им еще в молодости.

История открытия возбудителей инфекционных заболеваний изобилует многими яркими страницами. Вот одна из них.

Кто же они, наши невидимые “враги”, заставляющие иной раз трепетать все человечество и приносящие ему столько бед?

Бактерии – одноклеточные микроорганизмы. Они бывают шаровидными (кокки), в форме палочки (бациллы), вытянутые и изогнутые (спирохеты, лептоспиры, вибрионы). Бактерии, для жизнедеятельности которых требуется кислород, называют аэробами, а те, которые растут в отсутствии кислорода, – анаэробами. Кроме того, все бактерии подразделяются на грамположительные и грамотрицательные. Что это значит? В 1884 году датский бактериолог, фармаколог и врач Грам предложил окрашивать бактерии красителем розанилином (фуксином). Некоторые бактерии имеют в клеточной мембране специальный белок – пептидогликан. Они окрашиваются по методу Грама, поэтому и названы “грамположительными”. Бактерии, в клеточной мембране которых нет такого белка, окрашиванию по Граму не подвергаются и, вследствие этого, получили название “грамотрицательных”. Человеческие клетки не содержат пептидогликана, поэтому антибиотики, нарушающие его синтез, и, следовательно, приводящие к гибели грамположительных бактерий (например, пенициллины), для человека относительно безопасны.

Способность бактерий вызывать инфекционные заболевания называют болезнетворностью, или патогенностью. Патогенными для человека являются те бактерии, которые, попадая в организм, преодолевают барьеры иммунной системы и вырабатывают яды (токсины), отравляющие различные ткани и органы. Бактерии, которые живут внутри нас, относят к естественной микробной флоре человека (например, кишечная флора). Часть их необходима для нашего организма. Они участвуют в переваривании пищи, вырабатывают витамины, помогают бороться с патогенными микробами. Однако другие, их так и называют – условно-патогенными, могут вызвать заболевание лишь в определенных условиях, например, при снижении сопротивляемости организма человека.

Вирусы – внутриклеточные паразиты, являющиеся причиной многочисленных заболеваний человека и животных. Есть вирусы, поражающие даже бактерии, их называют фаги. Вирусы нельзя относить в полном смысле слова к живым существам, так как это организмы, не имеющие клеточного строения, но они проявляют некоторые свойства живого: способны размножаться (только в живых клетках), обладают наследственностью и изменчивостью. В клетку вирусы попадают тем же путем, что и питательные вещества. В ней они начинают быстро размножаться и вызывают гибель клетки. Одна вирусная частица дает потомство в тысячи особей, каждая из которых может вновь поразить здоровую клетку. Известно более тысячи разновидностей вирусов, около половины из них опасны для человека. Примерами являются вирусы натуральной оспы, герпеса, гриппа, бешенства, краснухи, полиомиелита и энцефалитов, иммунодефицита человека (ВИЧ), вызывающие СПИД (синдром приобретенного иммунодефицита) и аденовирусы (вызывают острые респираторные заболевания, или ОРЗ).

Грибы – одноклеточные или многоклеточные микроорганизмы, большинство которых питается разлагающимися органическими веществами растительного или животного происхождения. Часть их патогенна, другие – условно-патогенны и часто входят в состав естественной микробной флоры человека. При ослаблении иммунитета или при нарушении равновесия между бактериями и грибами в полости рта и в кишечнике (например, при длительном применении антибиотиков или гормональных средств) они могут вызывать различные микозы, кандидозы.

Простейшие – микроорганизмы, составляющие подцарство одноклеточных животных. Они широко распространены в природе и, попадая в организм человека, могут паразитировать в нем. Простейшие являются возбудителями амебиаза, лейшманиоза, лямблиоза, малярии и других инфекционных заболеваний.

С открытия роли микроорганизмов в развитии инфекционных заболеваний началась долгая и трудная работа по поиску противомикробных средств. В результате этой многолетней работы медицина сейчас располагает большим арсеналом высокоэффективных лекарств, которые позволяют успешно бороться со многими, ранее неизлечимыми заболеваниями.

Впоследствии родился новый термин “химиотерапия”, который предложил один из основоположников иммунологии немецкий ученый П. Эрлих.

Химиотерапия – подавление лекарственным средством жизнедеятельности возбудителей инфекции или опухолевых клеток без причинения вреда (в идеале) клеткам человека.

В основе терминов химиотерапия и родившегося от него химиотерапевтические средства лежит избирательность воздействия на чужеродную или ставшую таковой (например, под влиянием вируса) клетку внутри человеческого организма.

Очень важно правильно применять химиотерапевтические средства, так как микроорганизмы легко изменяются (мутируют) и становятся устойчивыми к действию антибиотика, который действовал на них раньше.

Препараты, не обладающие избирательностью действия, антисептики и дезинфицирующие средства, губительно влияют на большинство микроорганизмов и, увы, человеческие клетки, а значит, их, как правило, нельзя применять для лечения системных инфекционных заболеваний, а дезинфицирующие средства – даже местно.

Главу мы назвали “Противомикробные и противопаразитарные средства”, так как рассматриваем в ней не только те лекарства, которые действуют на микроорганизмы, но и те, которые убивают паразитов, не относящихся к микроорганизмам – глистов (гельминтов), вшей, чесоточных клещей.

Читайте также: