Эндотелиальная дисфункция при сепсисе

Обновлено: 28.03.2024

Роль антитромбина в диагностике и лечении сепсиса

Журнал: Анестезиология и реаниматология. 2018;(3): 19‑24

Тяжесть состояния и исход заболевания при сепсисе определяются органной дисфункцией. Синдром диссеминированного внутрисосудистого свертывания крови (ДВС-синдром) признан одним из ведущих патофизиологических механизмов развития полиорганной недостаточности при сепсисе. Основным звеном ДВС-синдрома является нарушение баланса между свертывающей и противосвертывающей системами крови в сторону преобладания тромбообразования и истощения естественных антикоагулянтов, в том числе основного антикоагулянта антитромбина. В обзоре представлен анализ результатов исследований влияния антитромбина на гемостаз и воспаление. Учитывая важную роль антитромбина в патобиологии сепсиса и ДВС-синдрома, ряд исследователей считают, что устранение дефицита антитромбина может рассматриваться как одно из возможных направлений лечения этого заболевания.

Сепсис признан основной причиной смерти при возникновении инфекционных осложнений и заболеваний. Эксперты ВОЗ считают, что сепсис ежегодно приводит примерно к 6 млн случаев смерти в мире, большинство из которых можно было бы предотвратить [2].

Синдром системного воспалительного ответа, представляющий собой адаптационную реакцию организма на действия инфекционного агента, и система коагуляция априори участвуют в формировании и разрешении воспаления как компоненты иммунного ответа [3, 4]. Активация свертывания крови, формирование микротромбоза ограничивают очаг инфекции за счет блока кровотока в нем и этим препятствуют ее распространению. Локализация очага проходит под контролем общих метаболических и местных клеточных факторов и систем [5]. В случае высокой вирулентности патогена и/или неспособности систем, регулирующих воспалительный процесс, к поддержанию гомеостаза происходит распространение инфекции и тромбоза за пределы первичного очага, формируется синдром диссеминированного внутрисосудистого свертывания крови (ДВС-синдром), вовлекаются в воспалительный процесс первично непораженные органы, развивается полиорганная дисфункция [6].

Активация гемостаза происходит при повреждении эндотелия микрососудистого русла токсинами патогена, активированными иммунокомпетентными клетками крови, провоспалительными цитокинами c продукцией и высвобождением тканевого фактора (ТФ), главным образом моноцитами-макрофагами, специфическими клетками в тканях-мишенях, эндотелиальными клетками. Этот процесс рассматривается как один из основных патобиологических механизмов, запускающих тромбообразование [7]. Клетки-мишени могут высвобождать ТФ под влиянием широкого спектра стимулирующих агентов, включающих сами патогены и их токсины: пептидогликаны, липотеиновую кислоту и один из самых мощных индукторов ТФ липополисахарид. ТФ высвобождается из нейтрофилов, эндотелиальных клеток под воздействием фактора некроза опухоли альфа (TNF-α) [8—10]. Экспрессия Т.Ф. может быть стимулирована активированным фактором Х (фактор Ха), при этом ингибирование активности фактора Xa антитромбином снижает выделение ТФ [11].

В патофизиологии сепсиса система гемостаза и иммунитет проявляют свое единство. Локальное повреждение эндотелия и микротромбоз в очаге инфекции направлены первоначально на локализацию процесса воспаления, т. е. на выживание. Однако генерализация инфекции и системная воспалительная реакция ведут к неконтролируемому системному повреждению эндотелия с развитием полиорганной недостаточности [12].

ДВС-синдром является основным видом нарушения свертывания крови у больных сепсисом. Патофизиологический механизм развития ДВС-синдрома при сепсисе чрезвычайно сложен и до настоящего времени окончательно не выяснен. Частота проявления ДВС-синдрома при сепсисе достигает 50% и сопровождается более высокой летальностью, чем в его отсутствие (43 и 27% соответственно) [13—15]. Выраженность коагулопатии при сепсисе варьирует от субклинической активации свертывания крови, гиперкоагуляции с локальным венозным тромбозом до острого диссеминированного внутрисосудистого свертывания, характеризующегося массивным распространенным тромбозом микрососудистого русла и кровотечениями [16—20]. ДВС-синдром не только осложняет, но и предопределяет исход критических состояний. В руководствах по диагностике и лечению сепсиса коррекция нарушений процессов коагуляции рассматривается как неотъемлемая часть диагностики и терапии сепсиса [14], а в оценке качества оказания помощи таким пациентам учитываются объем и качество проведенной антитромботической терапии [21].

Вызванная воспалительным процессом активация свертывания крови проявляется повышенной внутрисосудистой генерацией тромбина с потреблением естественных антикоагулянтов, а так же ингибированием системы фибринолиза. Механизмами подавления активности плазмина, вероятно, являются повышение содержания ингибитора активатора плазминогена 1-го типа (PAI-1, Plasminogen activator inhibitor-1), а также активация, опосредованная тромбином — участием активируемого тромбином ингибитора фибринолиза (Thrombin activatable fibrinolysis inhibitor — TAFI) [22—24].

Тромбин, фактор Xа, комплекс ТФ—VIIa способны активировать эндотелиальные клетки, тромбоциты и лейкоциты для воспалительного ответа. Чрезмерная генерация тромбина и последующее отложение фибрина на эндотелии сосудов микроциркуляторного русла вызывают и усиливают ишемию и воспаление. Тромбообразование в микроциркуляторном русле наблюдается уже в течение 3—5 ч бактериемии и эндотоксемии [25, 26]. Данные аутопсий умерших от сепсиса подтверждают наличие тромбозов микроциркуляторного русла органов, вовлеченных в воспалительный процесс [27].

Активация гемостаза и высвобождение тканевого фактора могут являться следствием повреждения гликокаликса эндотелия, вызванного микробной клеткой, ее токсинами, цитокинами воспаления [28, 29].

Гиперкоагуляция крови и ДВС-синдром рассматриваются как независимые факторы риска летальных исходов у пациентов с сепсисом, и стратегия терапии сепсиса предусматривает предупреждение и коррекцию повышенной коагуляции [14, 26].

Нарушение гемостаза при сепсисе и ДВС-синдроме — результат одновременно протекающих нескольких патофизиологических процессов: повышения прокоагулянтной активности крови; дисфункции физиологических антикоагулянтных систем (истощения активности антитромбина и протеина С); супрессии фибринолитической системы; активации воспаления [31]. С этой позиции рассматривается вопрос управления процессом тромбообразования путем воздействия на его основные звенья, в том числе на поддержание должной активности естественных антикоагулянтов (антитромбина, протеинов C и S), так как уже на ранних стадиях ДВС-синдрома происходит снижение их уровня. При дефиците активности антитромбина (АТ) становится невозможным адекватное функционирование всей антикоагулянтной системы [32].

АТ представляет собой гликопротеин, независимый от витамина K и синтезируемый в большей степени клетками печени, частично эндотелием. АТ содержит 432 аминокислоты с молекулярной массой 58 000 Да. АТ будучи естественным антикоагулянтом ингибирует тромбин, факторы VIIа, IXa, Ха, XIa, XIIa, трипсин, плазмин, калликреин. Широкий спектр активности АТ делает его ключевым регулятором коагуляционного каскада. Конформационные изменения в молекуле АТ после взаимодействия с пентасахаридными фрагментами гепарина обеспечивают его ковалентные связи с сериновыми протеазами (тромбин, фактор Xа), ускоряя инактивацию этих протеаз, в чем и проявляется основное антикоагулянтное действие АТ [33].

В плазме крови присутствуют две изоформы АТ-a и АТ-b, не отличающиеся друг от друга по ингибирующему действию на тромбин, но обладающие различным сродством к гепарину. Известно, что 85—95% циркулирующего АТ плазмы представлено изоформой АТ-a, 5—15% —изоформой АТ-b. Последняя имеет аффинитет к гепарину в 3—10 раз выше, чем изоформа АТ-a. Доказано, что изоформа АТ-b является более мощным ингибитором факторов Xa и IXа, чем изоформа АТ-a. При сепсисе наблюдается преимущественно потребление изоформы АТ-b. АТ ингибирует тромбин в отношении 1:1, образуя антитромбин-тромбиновый комплекс с последующим выведением его из циркуляции [34, 35]. Ингибирующее влияние АТ на тромбообразование усиливается в присутствии гепарина. После связи АТ с гепарином скорость ингибирования протеаз возрастает в 1000 раз и более [32, 36].

Тромбин служит важным звеном воспалительного процесса, поскольку способен самостоятельно индуцировать воспалительный ответ эндотелия, активировать лейкоциты с привлечением их к эндотелиоцитам, что обусловливает роллинг лейкоцитов по эндотелию и их адгезию [37—39]. Клеточные эффекты тромбина проявляются тем, что он активирует эндотелиальные рецепторы PAR-1 (Protease-activated receptor 1) — рецепторы клеточных мембран, активируемые протеиназами, инициирующими ответ клетки в регуляции провоспалительной реакции [40].

АТ не только оказывает влияние на коагуляцию крови, но также напрямую регулирует воспалительную реакцию. Лечебное действие АТ при инфекции впервые продемонстрировали F. Taylor и соавт. [44] на модели септического шока, вызванного внутривенным введением обезьянам летальных доз кишечной палочки. Снижение смертности при использовании АТ в эксперименте авторы связывали с ингибированием АТ генерации тромбина.

Однако блокированный сайт фактора Ха (основной ключ генерации тромбина) не может полностью предотвратить развитие полиорганной недостаточности и летального исхода, поэтому протективный эффект АТ должен быть реализован непосредственно через модуляцию воспалительной реакции [40].

T. Yamauchi и соавт. [45], S. Gando и соавт. [46]показали, что АТ может проявлять противовоспалительное действие и предупреждать возникновение эндотелиальной дисфункции, связываясь с пентасахаридсодержащими гликозаминогликанами гликокалекса.

N. Kaneider и соавт. [47], P. Souter и соавт. [48] доказали, что противовоспалительный эффект АТ осуществляется посредством прямого взаимодействия с рецепторами синдекан-4 эндотелиальных клеток, нейтрофилов, лимфоцитов и моноцитов, высвобождением простациклина, ингибированием активации нуклеарного фактора NF-κB, контролирующего экспрессию генов иммунного ответа, апоптоза, а также снижением продукции интерлейкинов (IL) IL-6, IL-8, TNF. Простациклин проявляет противовоспалительное действие подавлением активности нейтрофилов, моноцитов и тромбоцитов, блокируя синтез провоспалительных цитокинов, что препятствует адгезии лейкоцитов на эндотелии, позволяет сохранять целостность эндотелиальной выстилки сосудов, уменьшить капиллярную проницаемость.

В экспериментальных работах на моделях абдоминального сепсиса и ишемии K. Nishijima и соавт. [49], U. Koca и соавт. [50] показали, что введение АТ предотвращает индуцированное липополисахаридом повреждение сосудов легких, реперфузионное повреждение гликокаликса коронарных сосудов. Активность А.Т. при сепсисе снижается за счет его потребления в процессе образования комплексов АТ—тромбин, разрушением его эластазой, высвобождающейся из активированных лейкоцитов, нарушением синтеза в печени [33, 37].

Гепарин как синергист АТ связывается с сайтом молекулы АТ, участвующим во взаимодействии с синдеканом-4, этим он способен блокировать противовоспалительный эффект АТ [51, 52].

Вопрос возможности использования АТ как лекарственного препарата у пациентов с сепсисом и ДВС-синдром обсуждается с 1980 г. Основанием послужили исследования, показавшие, что воспаление и нарушения коагуляции играют ведущую роль в патогенезе сепсиса. Системный воспалительный ответ развивается на фоне дефицита естественных антикоагулянтов, и сниженное содержание АТ может быть причиной низкой эффективности проводимой терапии [42].

Использование терапевтических доз АТ, по данным работ J. Hoffmann и соавт. [55], M. Hayakawa и соавт. [56], при введении эндотоксина устраняло адгезию лейкоцитов на эндотелии капилляров. Однако противовоспалительное действие АТ утрачивалось, если в лечение включали гепарин. В обзоре 4 плацебо-контролируемых рандомизированных исследований применения АТ в лечении пациентов с сепсисом F. Fourrier и соавт. [57] отметили незначительное снижение 30-дневной летальности. При этом анализ в соответствии с регрессионной моделью Кокса, позволяющей учесть исходные различия между основной и контрольной группами применительно к выживаемости, выявил значительное снижение риска смерти у пациентов, получавших А.Т. Статистически значимым признано сокращение продолжительности пребывания пациентов, получавших АТ, в отделении интенсивной терапии.

По проблеме использования АТ в лечении сепсиса опубликовано более 400 научных работ. Эксперты, авторы международных рекомендаций по лечению сепсиса указывают, что имеющиеся в настоящее время данные не позволяют рекомендовать применение препарата АТ в клинической практике, однако при этом отмечают, что лечение АТ больных тяжелым сепсисом и септическим шоком с ДВС-синдромом может повысить выживаемость и привести к значительному снижению летальности [1].

Заключение

Антитромбин является основным естественным антикоагулянтом; его дефицит способствует развитию синдрома диссеминированного внутрисосудистого свертывания и усугубляет течение и исход воспалительного процесса при сепсисе. Данные литературы о влиянии антитромбина на выживаемость при сепсисе неоднозначны. Авторы исследований единодушны во мнении о ведущей роли антитромбина в патофизиологии сепсиса и рекомендуют продолжить исследования по диагностике его активности при сепсисе и возможности использования препаратов антитромбина в клинической практике.

Финансирование. Исследование не имело спонсорской поддержки.

Авторы заявляют об отсутствии конфликта интересов.

Реферат

Гликокаликс представляет собой гелеобразный слой, покрывающий поверхность сосудистых эндотелиальных клеток. Он состоит из прикрепленных к мембране протеогликанов, гликозаминогликановых цепей, гликопротеинов и адгезивных белков плазмы. Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. При сепсисе и септическом шоке происходит повреждение и сброс гликокаликса. Деградация гликокаликса активируется активными формами кислорода и провоспалительными цитокинами, такими как фактор некроза опухоли (TNF) и интерлейкин-1β (ИЛ-1β). Опосредованная воспалением деградация гликокаликса приводит к гиперпроницаемости сосудов, нерегулируемой вазодилатации, тромбозу микрососудов и усиленной адгезии лейкоцитов. Клинические исследования продемонстрировали корреляцию между уровнями гликокаликсных компонентов в крови и дисфункцией органов и смертностью при сепсисе и септическом шоке. Индуцированное воспалением повреждение гликокаликса может быть причиной ряда специфических клинических эффектов сепсиса, включая острое повреждение почек, дыхательную недостаточность и дисфункцию печени. Инфузионная терапия является неотъемлемой частью лечения сепсиса, но сверхагрессивные методы инфузионной нагрузки (приводящие к гиперволемии) могут усиливать деградацию гликокаликса. Более того, некоторые маркеры деградации гликокаликса, такие как циркулирующие уровни синдекана-1 или гепарансульфат, могут использоваться в качестве маркеров эндотелиальной дисфункции и тяжести сепсиса.

Ключевые слова: эндотелиальный гликокаликс, эндотелий, сепсис, септический шок, сброс гликокаликса, сосудистая проницаемость

Поступила: 08.02.2019

Принята к печати: 26.03.2019

Эндотелиальный гликокаликс (ЭГ) представляет собой важную часть сосудистого барьера. Гликокаликс — это гелеобразная структура, расположенная между потоком крови и эндотелиальными клетками сосудистой стенки. Сепсис и септический шок сопровождаются тяжелым повреждением эндотелиальной системы и деградацией ЭГ, что приводит к нарушениям регуляции гомеостаза и проницаемости сосудистой стенки, вызывая повреждение микроциркуляторного русла [1, 2]. ЭГ играет ключевую роль в физиологии системы микроциркуляции и эндотелия и участвует в регуляции тонуса микроциркуляторного русла и сосудистой проницаемости, поддержании онкотического градиента через эндотелиальный барьер, а также адгезии/ миграции лейкоцитов и профилактике тромбообразования [3–6]. Конформационные изменения в структуре ЭГ приводят к высвобождению оксида азота, что способствует регуляции вазомоторного тонуса и тканевой перфузии [6]. Локальное и системное воспаление ведет к изменениям в структуре и физиологии гликокаликса и в результате — к дисфункции эндотелия. Разрушение гликокаликса при воспалении связано с усилением капиллярной проницаемости и выходом альбумина и жидкости в межклеточное пространство [5]. Деградация гепарансульфата ведет к возникновению прокоагулянтного состояния с последующим микротромбозом и потере антиоксидантных свойств с прогрессирующим окислительным повреждением эндотелия [7–12].

Строение эндотелия и эндотелиального гликокаликса

Эндотелий является одной из крупнейших клеточных систем человеческого организма. Его общий вес и площадь составляют приблизительно 1 кг и 5000 м2 соответственно, а его толщина варьирует от 0,1 до 1 мкм [13]. Гликокаликс — важная часть сосудистого барьера и представляет собой гелеобразную структуру, расположенную между потоком крови и эндотелиальными клетками сосудистой стенки. ЭГ взаимодействует с плазмой и липидами [14] и представляет собой поверхностный слой, состоящий из гликопротеинов, протеогликанов и боковых цепей гликозаминогликанов. Протеогликаны имеют в своей структуре протеиновое ядро, к которому прикрепляются отрицательно заряженные гликозаминогликаны. К протеиновым ядрам относят, в частности, синдеканы, глипиканы, мимеканы, перлаканы и бигликаны. Их основными задачами являются передача сигнала из внеклеточного окружения в клетку и везикулярный транспорт. Выделяют пять типов боковых цепей гликозаминогликанов, которые на 50–90 % состоят из гепарансульфата, а также включают дерматансульфат, кератансульфат и гиалуронан [3, 4, 15]. Известно, что гликозаминогликаны участвуют в процессах передачи клеточного сигнала, эмбрио- и ангиогенеза, регуляции коагуляции крови, а также в развитии и метастазировании опухоли [16]. Такие растворимые компоненты, как альбумин, несвязанные молекулы гиалуроновой кислоты, тромбомодулин и различные сывороточные протеины (например, супероксиддисмутаза и антитромбин III), могут быть связаны с поверхностью гликокаликса [17]. Структура ЭГ схематически представлена на рис. 1.


Рис. 1. Структура эндотелиального гликокаликса [18] Ec-SOD — супероксиддисмутаза 3; АТ III — антитромбин III; ГАГ — гликозаминогликаны

Повреждение ЭГ приводит к росту в плазме компонентов его деградации, таких как синдекан-1 (S1), гепарансульфат-протеогликан (HSPG) и гиалуронан, которые могут быть определены методом иммуноферментного анализа [19].

Шок-индуцированная гиперактивация симпатоадреналовой системы приводит к повреждению эндотелиальных клеток и ЭГ [15]. К наиболее частым причинам эндотелиопатии относят сепсис и септический шок [20], геморрагический шок [21], атеросклероз [22], острый коронарный синдром [23], заболевания почек [24], сахарный диабет [25], гиперволемию [26], обширные хирургические вмешательства, ишемию/ реперфузию [27–29], искусственное кровообращение (ИК) [19, 30]. Структура интактного и поврежденного ЭГ представлена на рис. 2.


Рис. 2. Структура неповрежденного (А) и поврежденного (Б) эндотелиального гликокаликса [Josef Pflug. Vascular Laboratory, 2016]

Функции эндотелиального гликокаликса

ЭГ регулирует сосудистую проницаемость и взаимодействие между клетками крови и сосудистой стенкой, реологические свойства крови и микросреду [13]. Adamson et al. в своих работах доказали, что ЭГ (ранее не рассматриваемый в концепции Старлинга) непосредственно определяет процессы фильтрации в сосудистом русле через создание градиентов гидростатического и онкотического давления, что играет важную роль в регуляции проницаемости сосудистой стенки [13, 31, 32].

ЭГ отталкивает эритроциты от люминальной поверхности эндотелия, способствуя их дальнейшему продвижению по сосудистому руслу. Таким же образом ЭГ препятствует адгезии тромбоцитов к сосудистой стенке [18]. Кроме того, ЭГ ослабляет взаимодействие между тромбоцитами и лейкоцитами. Во-первых, его отрицательный заряд отталкивает клетки, во-вторых, в структуру ЭГ входят молекулы адгезии, такие как PECAM-1 (platelet/endothelial cell adhesion molecule-1, молекула адгезии тромбоцитов с эндотелием-1), VCAMs (vascular cell adhesion molecule, сосудистая молекула клеточной адгезии) и ICAMs (intercellular adhesion molecule, молекула клеточной адгезии) [13, 18]. Эти молекулы становятся активными во время воспаления и облегчают скольжение и адгезию клеток во время диапедеза [33].

Гликокаликс защищает эндотелиальные клетки от напряжения сдвига, индуцированного потоком крови, путем генерации адаптивного клеточного ответа на воздействие кровотока, необходимого для поддержания гемостаза. Напряжение сдвига — это сила, прикладываемая к верхнему слою ламинарно текущей жидкости, вызывающая смещение нижележащих слоев относительно друг друга в направлении прикладываемой силы [34]. Таким образом, увеличение напряжения сдвига, опосредованное через ЭГ, увеличивает выработку оксида азота (NO), что, в свою очередь, расширяет сосуды и снижает напряжение сдвига [35]. Кроме того, эндотелиальные клетки, подверженные напряжению сдвига, усиливают в 2 раза выработку гиалуроновой кислоты в гликокаликсе, что также уменьшает напряжение сдвига [14]. Повреждение гликокаликса нарушает эти механизмы и реакцию эндотелия на напряжение сдвига, что может приводить к развитию тромбоза и атеросклероза [36].

С системой ЭГ взаимодействует несколько компонентов системы антикоагуляции, в том числе антитромбин III, который является ингибитором тромбина и активированных факторов IX и X. Антикоагулянтная активность антитромбина III усиливается за счет связывания с гепарансульфатом, который является структурным звеном ЭГ. Еще один антикоагулянт, тромбомодулин, вырабатывается эндотелиальными клетками и содержит хондроитинсульфат, который взаимодействует с тромбином, что приводит к активации протеина С. И, наконец, ингибитор пути тканевого фактора связывается через гепарансульфат для ингибирования факторов VIIa и Xa [33].

Повреждение эндотелия и эндотелиального гликокаликса при септическом шоке

При сепсисе и септическом шоке отмечается тяжелое повреждение эндотелиальной системы с деградацией ЭГ, которое приводит к нарушениям регуляции гомеостаза и проницаемости сосудистой стенки, вызывая повреждение микроциркуляторного русла [1, 2]. При сепсисе поврежденный слой ЭГ истончается, что ведет к выходу белков (альбумина) и жидкости через сосудистую стенку в интерстициальное пространство, а в дальнейшем — к гиповолемии, гипоальбуминемии и отеку тканей [37]. Таким образом, недостаточность системы эндотелия и ЭГ на фоне сепсиса запускает механизм полиорганной недостаточности (ПОН). Основными триггерами ПОН являются провоспалительные медиаторы, включая интерлейкин-1 (ИЛ-1), ИЛ-2, ИЛ-6, фактор некроза опухолей (TNF) и другие молекулы, высвобождающиеся при воспалении (брадикинин, тромбин, гистамин, фактор роста эндотелия сосудов), которые вызывают повреждение и активацию компонентов ЭГ при септическом шоке, а также стимулируют выброс межклеточных и сосудистых молекул клеточной адгезии. Эти медиаторы приводят к скоплению, адгезии и миграции лейкоцитов, что запускает воспалительные процессы в эндотелии и тканях и ведeт к дальнейшему повреждению ЭГ с прогрессированием капиллярной утечки в интерстициальное пространство [38].

Окислительный стресс при сепсисе также играет значимую роль в повреждении ЭГ. In vitro было показано, что выброс супероксидных радикалов и гидроксильных радикалов приводит к фрагментации гликозаминогликанов с последующей утратой части их компонентов [39, 40]. При деградации ЭГ клетки эндотелия подвергаются окислительному стрессу, который сопровождается увеличением пористости и проницаемости сосудов и интерстициальными потерями альбумина. Эти процессы наблюдаются не только у пациентов с септическим шоком, но и на фоне сахарного диабета, а также при артериальной гипертензии [6, 29]. Повреждение ЭГ приводит к высвобождению оксида азота (NO) и эндотелина, которые регулируют сокращение клеток гладкой мускулатуры и являются основными медиаторами, регулирующими сосудистый тонус [41], в том числе на фоне септического шока [42].

Системное воспаление и повреждение ЭГ при септическом шоке также вносят значимый вклад в развитие нарушений в коагуляционной системе и определяются как протромботическое и антифибринолитическое состояние, которое может привести к диссеминированному внутрисосудистому тромбозу с последующей ишемией органов и развитием ПОН. Клинически этот феномен может проявиться одним из следующих фенотипов: ДВС-синдром, тромботическая тромбоцитопеническая пурпура, гемолитико-уремический синдром, тромбоцитопения, ассоциированная с ПОН. Деградация гепарансульфата ведет к возникновению прокоагулянтного состояния с последующим микротромбозом и потере антиоксидантных свойств эндотелия с его прогрессирующим окислительным повреждением [7–12].

В ходе ряда крупных многоцентровых исследований Johansson et al. продемонстрировали, что у пациентов с сепсисом отмечалась более высокая концентрация S1 в плазме в отличие от больных без воспалительного очага [15, 43, 44]. Steppan et al. в своей работе также показали более высокую концентрацию S1 в плазме у пациентов с септическим шоком по сравнению с группой пациентов, которым проводились обширные абдоминальные вмешательства [45]. В своей недавней работе Ostrowski et al. установили значимую положительную корреляцию между уровнем S1 и тяжестью ПОН, оцененной по шкале SOFA (Sequential Organ Failure Assessment), у пациентов на искусственной вентиляции легких с клиникой септического шока [46]. Также было установлено, что повышение концентрации в плазме крови S1 ассоциируется с дальнейшим повреждением эндотелия и коррелирует с активацией воспалительных цитокинов [47], коагулопатией и повышением частоты летальных исходов [44].

Необходимо отметить, что эндотелий представляет собой высокогетерогенную в морфологическом и функциональном плане систему, которая отличается не только в сосудах (т. е. в артериях, артериолах, капиллярах, венулах и венах), но и в тканях органов. Этими различиями будет определяться и гетерогенный ответ различных органов при септическом шоке [48]. В настоящее время обсуждается теория адекватного или нормального и патологического ответа организма на воспалительный процесс. Так, при появлении очага инфекции (например, пневмония или инфекция мягких тканей) вначале будут отмечаться адекватная или нормальная реакция организма в виде местной вазодилатации и увеличение проницаемости капилляров в пораженной области, что позволяет обеспечить адекватное скопление лейкоцитов в месте размножения микроорганизмов. Кроме того, активация системы свертывания и вазоконстрикция на границе очага помогают предупредить дальнейшее распространение инфекции. Однако на более поздних стадиях сепсиса изменения эндотелия и ЭГ будут способствовать снижению сосудистого тонуса, что приводит к нарушению микрососудистой перфузии, генерализации капиллярной утечки и ДВС-синдрому [49].

Следует отметить, что чрезмерная инфузионная терапия при сепсисе может приводить к деградации ЭГ.

В ходе ряда исследований было установлено, что гиперволемия приводит к растяжению стенок предсердия и высвобождению предсердными кардиомиоцитами предсердного натрийуретического пептида, который, в свою очередь, оказывает негативный эффект на ЭГ, вызывая его повреждение, что в последующем приводит к увеличению сосудистой проницаемости, воспалению и отеку тканей [60].

Потенциальные терапевтические подходы для подавления деградации гликокаликса при сепсисе

В настоящее время изучается ряд новых молекул, которые могут оказывать благоприятное протективное воздействие на ЭГ. Так, например, S1P (сфинголипид) может сохранять целостность ЭГ, предотвращая деградацию и сброс синдекана-1. S1P активирует рецептор S1P1, а активация рецептора S1P1 ослабляет активность матриксной металлопротеиназы (MMP), которая и вызывает повреждение и деградацию синдекана-1 [50]. В своем недавнем исследовании Coldewey et al. установили, что низкий уровень S1P в плазме у пациентов с сепсисом и септическим шоком ассоциирован с тяжестью течения воспалительного процесса и ПОН [51]. Известно, что гепарин защищает гликокаликс от деградации при сепсисе, выступая в качестве ингибитора гепараназы, которая выделяет гепарансульфат из ЭГ. Лабораторные исследования показали, что истончение ЭГ в микрососудах легких связано с деградацией гепарансульфата [52]. Поскольку активация гепараназы может повышать уровень экспрессии ММР, гепарин также может приводить к снижению уровня экспрессии ММР путем ингибирования активности гепараназы [53].

Сулодексид, высокоочищенный продукт экстракции из слизистой оболочки кишечника свиньи, как сообщалось, также ингибирует гепараназную активность [54]. В экспериментальном исследовании Song et al. [55] сообщили, что введение сулодексида мышам при сепсисе приводило к уменьшению сброса гепарансульфата и синдекана-4.

Фактор роста фибробластов (FGF) является медиатором физиологической репарации гликокаликса. Он быстро активируется циркулирующими фрагментами гепарансульфата, образующимися при деградации гликокаликса, и связывается с рецептором FGF, что служит сигналом для активации молекул, отвечающих за восстановление гликокаликса, таких как экзостозин-1, фермент, ответственный за синтез гепарансульфата. Однако при сепсисе этот процесс репарации значительно сокращается, поскольку передача сигналов от активированного рецептора FGF ингибируется [56]. Усиление этого сигнала, восстанавливающего структуру гликокаликса, ослабленного при сепсисе, является потенциальным терапевтическим подходом для восстановления слоя гликокаликса и улучшения его функции [57].

Важным аспектом терапии сепсиса служит контроль уровня гликемии, который может снижать степень повреждения и сброса гликокаликса при сепсисе и сохранять функцию эндотелия [58, 59]. В своей работе Nieuwdorp et al. показали, что гипергликемия, не корригированная в течение 6 ч, приводит к снижению системного объема гликокаликса примерно на 50 % от исходных значений. Кроме повреждения гликокаликса, гипергликемия ведет к увеличению в плазме фактора свертывания VIIa и тканевого тромбопластина. С системой гликокаликса связаны и ингибитор тромбина, и фактор Xa [33]. Таким образом, изменения системы ЭГ оказывают непосредственное влияние на коагуляцию и фибринолитический ответ [59]. Интересно, что повреждение гликокаликса, вызванное гипергликемией, можно уменьшить назначением N-ацетилцистеина [59].

Определенную роль в защите гликокаликса играет и альбумин. С помощью альбумина осуществляется перенос синдекана-1 от эритроцитов к эндотелию, где он способствует восстановлению гликокаликса, подавляя активность ММР [50, 61]. Jacob et al. в своих работах на животных показали, что альбумин предупреждает повреждение гликокаликса более эффективно, чем 6% гидроксиэтилкрахмал или 0,9% раствор натрия хлорида [62, 63]. Спорным остается вопрос о протективном воздействии свежезамороженной плазмы на ЭГ. Ряд авторов в ходе исследований на животных в модели геморрагического шока показал негативный эффект свежезамороженной плазмы на гликокаликс [64–66]. Тем не менее в клинической работе Straat et al. продемонстрировано, что после введения свежезамороженной плазмы пациентам с септическим шоком отмечалось значимое снижение концентрации синдекана-1 по сравнению с исходными значениями [67].

Кортикостероиды могут снижать воспалительное повреждение эндотелия и ЭГ [68]. Известно, что кортикостероиды ингибируют синтез цитокинов, в частности ТNF-α, который приводит к перестройке клеток эндотелия, и могут способствовать сохранению целостности эндотелия при сепсисе [69]. На функцию гликокаликса может влиять и целый ряд других препаратов — ингаляционные, местные и внутривенные анестетики, а также многочисленные лекарственные средства, применяемые для лечения сопутствующей патологии у больных с сепсисом, однако аспекты их применения находятся вне рамок данного обзора.

Таким образом, повреждение ЭГ является важным компонентом патогенеза сепсиса, требующим поиска новых терапевтических воздействий. Компоненты ЭГ могут служить маркерами повреждения эндотелия при сепсисе, отражая тяжесть системного воспаления.

Источники финансирования. Исследование выполнено при поддержке гранта Президента РФ для ведущих научных школ НШ-3927.2018.7.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов. Ильина Я.Ю. — работа с научной литературой, сбор информации, написание текста. Фот Е.В., Кузьков В.В. — редактирование статьи; Киров М.Ю. — редактирование, утверждение окончательного варианта статьи.

Реферат

Полиорганная недостаточность (ПОН) — наиболее тяжелый исход критического состояния любого генеза (сепсис, травма, ишемия и реперфузия), планка летальности при данном синдроме не имеет тенденции к снижению. Обзорная статья предлагает прежде всего знакомство с ключевыми научными направлениями, по которым на данный момент развивается теория ПОН (исследование значимости аларминов, митохондриальная дисфункция, барьерная недостаточность, иммунологическое и неврологическое сопряжение, формы программированной гибели клеток, индуцированная иммуносупрессия, разрешение воспаления). Исследования доказывают целесообразность введения персонифицированного подхода к диагностике ПОН путем обоснования эндофенотипа критического состояния на основании комплекса иммунологических, геномных и клинических показателей.

Ключевые слова: системный воспалительный ответ, полиорганная недостаточность, алармины, митохондрии, иммунная супрессия, барьерная недостаточность, эндофенотип

Поступила: 22.02.2019

Принята к печати: 26.03.2019

Теория danger — принципиальный прорыв в патогенезе, в том числе и критических состояний, — объединила врожденный и приобретенный иммунитет и доказала схожесть и универсальность формирования так называемого ответа хозяина (host response) как при сепсисе, так и при воздействии на пациента неинфекционного характера повреждения (травма, ишемия/ре- перфузия) [8].

Среди кандидатных аларминов в разные годы были рассмотрены (и была доказана их роль в генезе ПОН) циркулирующие митохондриальные и ядерные ДНК, белки теплового шока, связанные с гистонами белки, компоненты внеклеточного матрикса [9–11]. В области тканевого повреждения (или в очаге инфекции) нейтрофилы, резидентные макрофаги и дендритные клетки определяют и координируют воспалительный ответ посредством передачи сигналов через систему DAMP-PRR и дальнейшей активации инфламмасом — многомерных белковых цитозольных комплексов, которые вовлекаются в активацию врожденного иммунитета [12]. Связывание DAMP и PRR ведет к сигнальной трансдукции, что реализуется через активность ряда транскрипционных факторов, таких как ядерный фактор каппаби (nuclear factor κB — NF-κB), который вызывает экспрессию генов системного воспаления. Инфламмасомы активируют каспазу-1, которая, в свою очередь, переводит потенциально провоспалительные интерлейкины ИЛ-1β и ИЛ-18 в их активные формы [13].

Выраженная деструкция тканей, значительная нагрузка микроорганизмами или инвазия высоковирулентных возбудителей вызывают дисрегуляцию системного воспалительного ответа. Локальный выброс цитокинов и активация воспаления могут быть избыточными в ответ на инфекционный или неинфекционный стимул. Цитокины активируют эндотелиоциты и вызывают фиксацию на поверхности эндотелиальной выстилки комплемента, в дополнение к этому неспецифические иммунные клетки (нейтрофилы и макрофаги) путем выброса свободных радикалов (СР) кислорода и токсических гранул могут вызвать локальный тканевой некроз. Все перечисленное ведет к дополнительному выбросу DAMP и потенцированию круга активности иммунного ответа [14].

Некроптоз и пироптоз являются вариантами несвязанной с апоптозом программированной клеточной гибели при дисрегуляции воспаления. С учетом альтернативного пути активации клеточной гибели подобный механизм ведет к выбросу дополнительных DAMP. Выброс ДНК из нейтрофилов и макрофагов формирует так называемые нейтрофильные внеклеточные ловушки (neutrophil extracellular trap — NET), которые выключают участок кровотока из системного кровообращения и способны уничтожать бактерии и клетки собственного организма путем нетоза (от аббревиатуры NET). Особенностью является и тот факт, что гибель клеток ведет к выбросу цитокинов вне локального очага повреждения, тем самым реализуя дистантный эффект потенцирования СВР и ПОН [15].

Митохондриальная ДНК (митДНК) уже в течение нескольких лет рассматривается как один из многообещающих кандидатных аларминов. Когда из поврежденных митохондрий вследствие разрыва мембран клеток выбрасывается содержимое, специфические компоненты митохондрий распознаются организмом PRR-системы первичного иммунитета как РАМР из-за схожести с N-формильными компонентами стенки клеток бактерий с последующей реализацией системного воспалительного ответа [16]. Особенностью является тот факт, что мит- ДНК способна индуцировать СВР вне наличия первичной бактериальной нагрузки. Более того, выброс мит- ДНК, который превышает возможности внутриклеточной аутофагии в отношении снижения уровня мит- ДНК, ведет к TLR-9 опосредованному системному воспалительному ответу в эндотелиоцитах, что может быть компонентом формирования системной барьерной недостаточности [17].

Барьерная недостаточность

Эндотелий — избирательная мембрана, регулирующая движение воды, электролитов, микро- и макромолекул и клеток между тканями и кровью. Известно, что эндотелий обладает свойствами активной регуляции подобных перемещений, и ряд авторов доказали важнейшую роль, которую играет эндотелий в реализации СВР и ПОН как при сепсисе, так и при неинфекционной СВР. Так, Deutschman et al. в своем обзоре показали, что основой для расстройства гомеостаза при ПОН может являться так называемая барьерная недостаточность. По сути, есть два компонента взаимосвязи ПОН и барьерной недостаточности: активация сигнальных молекул и вовлеченность эндотелиальной выстилки в генерализацию воспалительного ответа и формирование капиллярной утечки с активацией молекул, участвующих в системе гемостаза и развитии микротромбозов [18].

Могут быть выделены разные пути активации системы гемостаза на уровне микроциркуляции при системном воспалительном ответе. Важнейшим является формирование тромбина, обусловленное выбросом тканевого фактора. В условиях СВР основными источниками тканевого фактора являются моноциты, макрофаги, кроме того, усиливается роль в выбросе тканевого фактора активированного эндотелия [22, 23].

Нейтрофильные внеклеточные ловушки
Гликокаликс

Апикальная поверхность эндотелиальных клеток, расположенных в кровеносных, лимфатических сосудах и сердце, покрыта гликокаликсом, слоем глубиной от 1 до 3 мкм. Компонентами гликокаликса являются заякоренные к клеткам протеогликаны, боковые цепи глюкозаминогликанов и сиалопротеины [30, 31]. В состав протеогликанов входит белковое ядро, в которому фиксированы глюкозаминогликаны; в состав белкового ядра входят синдикан, глипикан и перлекан. Данная сеть обволакивает поверхность эндотелия со стороны просвета кровеносного сосуда с проникновением в межклеточную расщелину вплоть до соприкосновения с внеклеточным матриксом базальной мембраны. Все растворимые компоненты (альбумин, тромбомодулин) и ряд сывороточных белков (антитромбин III, молекулы клеточной адгезии) связаны с внутрипросветной фазой гликокаликса.

Визуализация гликокаликса затруднена по причине нестабильности и хрупкости трехмерного слоя.

Классический метод — трансмиссионная электронная микроскопия — ограничена в использовании по причине технических особенностей методики и прежде всего невыполнимости метода in vivo. Другим методом является оценка флюоресценции гликокаликса с использованием флюоресцентных меток и конфокальной микроскопии. Прижизненная микроскопия и/ или использование полупроницаемых меток и оценка внутрисосудистого распределения являются одними из вариантов прижизненной оценки повреждения гликокаликса in vivo. Кроме того, методом иммуноферментного анализа могут быть определены сывороточные концентрации компонентов гликокаликса (синдикан) с оценкой ангиопоэтинов и уровня микроальбуминурии [32].

Гликокаликс играет ключевую роль в физиологии микроциркуляции и проницаемости эндотелиального барьера, поддерживая онкотический градиент, регулируя адгезию/миграцию лейкоцитов и ингибируя микроциркуляторный тромбоз [33].

В ходе системного воспаления структура и функция гликокаликса нарушаются с активным участием нарушенной функции в реализации эндотелиального повреждения и барьерной недостаточности. Наиболее значительным является разрушение нормальной парацеллюлярной проницаемости и перераспределения альбумина в интерстициальное пространство, далее по значимости идет нарушение сосудистого тонуса с депонированием крови в микроциркуляции, повреждение гепаран-сульфата с формированием прокоагулянтного локального внутрисосудистого гомеостаза и микротромбозами, экспрессия молекул межклеточной адгезии и усиление трафика лейкоцитов по эндотелиальной поверхности, оксидативное повреждение эндотелия [36, 37].

Неврологические и иммунологические сопряжения

Нервные импульсы также способны распространяться по симпатическим нервам из ствола головного мозга, что в окончательном итоге выражается в выбросе адренергических нейротрансмиттеров в тканях, взаимодействующих с клетками врожденного иммунитета и экспрессирующих α-и β-адренергические рецепторы, что вызывает модуляцию выброса цитокинов [42]. Еще одним эфферентным путем, который модулирует ответ цитокинов при СВР, является передача нервных импульсов по блуждающему нерву с регуляцией выброса допамина. Взаимодействия лигандов с допаминовыми рецепторами D1, экспрессирующихся на моноцитах и макрофагах, ослабляют воздействие ЛПС на выброс ФНО [43].

Следовательно, СВР инфекционного и неинфекционного генеза и тяжесть ответа (и, соответственно, тяжесть тканевого повреждения) зависят от исходного статуса вегетативной нервной системы, принимающей участие в регуляции врожденного иммунного ответа.

Митохондриальная дисфункция

Все компоненты патофизиологии критических состояний (нарушение доставки и потребления кислорода, ишемия и реперфузия, сепсис) вызывают клеточный стресс и нарушают физиологию митохондрий. Ингибирование окислительного фосфорилирования и синтеза аденозинтрифосфорной кислоты (АТФ) нарушает электролитный (прежде всего кальциевый) гомеостаз, что в итоге вызывает увеличение продукции СР. Кроме того, отмечается нарушение структуры митохондрий — деструкция и фрагментация [44]. Считается, что продукция СР является важнейшим фактором митохондриальной дисфункции. Активность митохондрии регулируется наличием субстратов и доступностью АДФ и иными формами посттрансляционной модификации [45]. Считается, что предотвращение продукции СР митохондриями снижает выброс провоспалительных цитокинов, что может быть основой для коррекции интенсивной терапии ПОН путем целенаправленного воздействия на дисфункцию митохондрий. Последствиями митохондриальной дисфункции являются истощение запасов АТФ, выброс цитохрома С и апоптоз-индуцирующего фактора, выброс СР и оксида азота, нарушение аутофагии [46, 47].

Критическое состояние (ишемия, гипоксия) ведет к нарушению сопряжения окислительного фосфорилирования и протонного градиента за счет открытия во внутренней мембране митохондрии митохондриальных пор проницаемости, снижению концентрации АТФ, к потере митохондриального матрикса и разрушению митохондрий, формированию микровезикул в эндоплазматическом ретикулуме и цитоплазме, выбросу лизосомальных ферментов, что ведет, в свою очередь,к гибели клеток [48].

Нарушение функции митохондрий сопровождается выбросом проапоптотических факторов (цитохром С) из межмембранного пространства с активацией каспаз. Считается, что ведущими в этом процессе являются активность СР и липопероксидация мембран. Вторым значимым для активации апоптоза белком считается апоптоз-индуцирующий фактор. Проапоптотическая активность потенцируется ишемией и реперфузией за счет увеличения содержания внутриклеточного кальция, что вызывает, в свою очередь, деполяризацию мембраны митохондрии [49–51].

Митохондриальная дисфункция и нарушение биогенеза митохондрий и аутофагии считаются одними из важнейших компонентов ПОН, включая острое повреждение почек, ОРДС и нарушение функции сердечно-сосудистой системы. Морфологические нарушения при ПОН характеризуются снижением массы митохондрий, фрагментацией митохондрий и потерей структуры крист [53].

В качестве вариантов патофизиологии вовлечения митохондрий в генез ПОН исследователи называют опосредованное СР нарушение структуры и функции клеток, выброс мит- ДНК в качестве DAMP и дисфункцию биогенеза и аутофагии, энергетическую недостаточность клетки [54].

Иммунная супрессия

Первичный иммунный ответ в виде контролируемой или неконтролируемой СВР вызывает выброс медиаторов, который, в свою очередь, объясняет клеточный и гуморальный ответы организма. Ответ включает активность нейтрофилов, фагоцитарную активность, повреждение эндотелиального барьера и синтез острофазовых реактантов, хемотаксис нейтрофилов в очаг воспаления и/или тканевого повреждения, активность системы свертывания. Первичный провоспалительный ответ в зависимости от выраженности базовой активности медиаторов СВР сменяется компенсаторным противовоспалительным ответом, однако абсолютной ясности в последовательности этих фаз до сих пор нет, т. к. анализ больших баз данных генетического материала показал одновременную ап- и даун-регуляцию транскрипции генов, отвечающих за ответ. Известно, что вторая фаза — фаза противовоспаления — инициирует индуцированную иммуносупрессию. Фазность СВР зависит от многих факторов: коморбидность, факторы собственно возбудителя при сепсисе или выраженности тканевого поражения при стерильной СВР и, конечно, генетики. Ряд авторов считает, что собственно фаза индуцированной иммуносупрессии является адаптивным ответом, что, вероятно, расширяет возможности в терапии путем ее целенаправленной индукции [55, 56].

Одним из компонентов индуцированной иммуносупрессии является апоптоз иммунных клеток. Первичными агентами апоптоза служат каспазы митохондриального происхождения, наряду с ядерными факторами транскрипции они активируют программу апоптоза клеток. Апоптоз активируется параллельно с провоспалительным пиком медиаторов СВР. Т-клетки адаптивного иммунитета CD-4 и CD-8 особенно подвержены апоптозу, что доказывается экспериментами in vitro, когда сыворотка пациентов с сепсисом, будучи добавлена к культуре лимфоцитов, вызывала апоптотическую гибель клеток [57].

ИЛ-10, как ведущий цитокин с противовоспалительными свойствами, обнаруживается у пациентов в большинстве представленных исследований с ПОН. ИЛ-10 продуцируется регуляторными Т-лимфоцитами (Treg) и Т2-лимфоцитами, подавляя ответ CD-8 Т-клеток, что, в свою очередь, снижает активность по выбросу и синтезу моноцитами медиаторов воспаления. Данный феномен подавления провоспалительной активности моноцитов и называется собственно иммунным параличом, характеризуется апоптозом лимфоцитов (лимфопения), увеличением числа Treg и снижением экспрессии молекул основного комплекса гистосовместимости (MHC [major histocompatibility complex] класса II — HLA-DR [human leukocyte antigens]).

Клеточное истощение — характерный иммунологический симптом иммуносупрессии, характеризуется экспрессией Т-лимфоцитами ингибиторных рецепторов (PD-1, CD-69, CD-25), что не позволяет клеткам продуцировать цитокины. Одним из объяснений может быть чрезмерная нагрузка внешними антигенами (вирусы, бактерии) [59].

Воспалительный метаболический комплекс

Нарушения метаболизма являются специфичными для ПОН и СВР. Имеются данные, что СВР вызывает метаболическую дисфункцию, специфичную для воспалительного ответа. Известно, что метаболиты сами по себе являются не только субстратами для метаболических процессов, но и субстратами для модификации иммунных клеток, служат медиаторами для передачи сигналов внутри и между клетками, регуляторами экспрессии генов, ингибиторами или активаторами ферментов [60]. Септическая кахексия — один из наиболее явных признаков проявления воспалительного метаболического комплекса. Кахексия — комплексный метаболический синдром, характеризирующийся потерей скелетной мышечной массы, что ассоциируется обычно с воспалением (вероятно персистирующим), инсулинорезистентностью и катаболизмом белков. Мышечная слабость как проявление индуцированной СВР кахексии считается ведущим условием персистирующей ПОН наряду с полинейропатией и полимиопатией критических состояний [61]. Системное воспаление посредством активации факторов транскрипции усиливает экспрессию генов убиквитина, атрогина-1, тем самым ускоряя разрушение белков [62]. Сопряжение воспаления и кахексии включает механизм выброса и активации супрессорных клеток миелоидного происхождения, клеток, которые одинаково активируются при септической и раковой кахексиях [63].

Нарушение функции желудочно – кишечного тракта и микробиом
Разрешение воспаления

Исторически сложилось, что воспалительный процесс является пассивным, предполагает устранение стимула воспаления, снижение вплоть до остановки продукции хемоаттрактантов, разведение градиентов хемокинов и предотвращение последующего рекрутмента лейкоцитов. Однако за последние десятилетия рядом авторов было показано, что разрешение (резолюция) воспаления — процесс активный, связанный с синтезом биологически активных медиаторов, которые являются ведущими в отношении возвращения воспалительного гомеостаза. Исследователями доказано, что разрешение воспаления (подавления воспалительной реакции) характеризуется прекращением хемотаксиса, снижением синтеза провоспалительных и вновь образуемых медиаторов, снижением активности макрофагов, нейтрофилов и лимфоцитов. Важную роль в разрешении воспаления играют так называемые медиаторы восстановления (proresolving mediators) [68].

Эндофенотип полиорганной недостаточности

Примером подобного могут служить три воспалительных фенотипа, связанных с педиатрическим сепсисом, что обусловлено взаимоотношениями между воспалением и свертыванием и объясняет определенный ответ на терапию: 1) ПОН, ассоциированная с иммунным параличом; 2) ПОН, ассоциированная с тромбоцитопенией; 3) последовательная ПОН [69]. Для каждого фенотипа были характерны иммунносупрессорные или гипериммунные проявления определенной выраженности (изменение ответа клеток ex vivo на эндотоксин или цитокины, нарушение экспрессии HLA-DR и/или лимфопения, изменение системного содержания цитокинов), которые характеризовались клиническими критериями (время с момента начала критического состояния, выраженность гемостазиологических расстройств) [69].

Заключение

СВР, ее дисрегуляция и формирование сложного ансамбля взаимоотношений аларминов, активности паттерн-распознающих рецепторов, включения в механизм системного эндотелиального повреждения, повреждения гликокаликса, митохондриального дистресс-синдрома, индуцированной иммуносупрессии, комплекса сопряжения метаболизма и воспаления и финального аккорда — активного процесса разрешения воспаления — делают практически сложной курацию пациентов с ПОН, объясняя как отсутствие понимания диагностических биохимических критериев органной недостаточности, так и провалы множества модулирующих стратегий, направленных на удаление/ ингибирование медиаторов СВР. Персонификация диагностических поисков и формирование эндофенотипа критического пациента как портрета со специфическими иммунологическими, генетическими и клиническими чертами — вероятный путь улучшения клинических исходов у пациентов с ПОН.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов. Е.В. Григорьев, Д.Л. Шукевич, Г.П. Плотников — концепция статьи, анализ литературных источников; А.Н. Кудрявцев, А.С. Радивилко — сбор источников литературы.

Читайте также: