Иммунитет против инфекционных заболеваний

Обновлено: 24.04.2024

Экспериментальные исследования возможности пероральной иммунизации [2] мышей BALB/c убитыми бактериями Klebsiella pneumonia демонстрируют увеличение в слизистых респираторного тракта клеток, содержащих в цитоплазме специфический IgA, и титра специфических IgA антител в сыворотке, но уровень специфических IgG и IgM не изменялся [3]. При этом иммунизированные мыши выжили, а не иммунизированные погибли от пневмонии. Иммунизация крыс убитыми Haemophylus influenzae и Pseudomonas aeruginosa показывает аналогичные результаты, клиренс бактерий через респираторный тракт продолжается до 6 месяцев, что способствует индукции протективного иммунитета [4].

I. Системного действия:

II. Преимущественно топического действия:

Большой проблемой является проведение пероральной вакцинации в различных возрастных группах. Показатели иммунной системы у человека изменяются с возрастом: при том, что нет значительного изменения соотношения CD4+/CD8+–клеток и их количества, отмечается снижение продолжительности жизни клеток, дисбаланс между процессами митоза и апоптоза [5].

В связи с ухудшением экологической обстановки в последние годы наблюдается рост заболеваемости хроническими неспецифическими заболеваниями легких (ХНЗЛ). В 1992 г. в различных странах около 3 млн детей младше 5 лет погибли от острых респираторных инфекций. В США и Канаде каждый год 500 тыс человек умирают от пневмонии, а у 100 тыс больных отмечается развитие септического шока [3].

Патогенез развития острой и хронической инфекции респираторного тракта представлен на рис. 1. Из данных рисунка становится ясно, что прогрессирование инфекции зависит от неспецифической и специфической реакции иммунной системы на введение инфекционного агента.

Рис. 1. Развитие острой и хронической инфекции респираторного тракта (Konnig,1994).

Препараты, содержащие лизаты бактерий, способствуют профилактике инфекций носоглотки и респираторного тракта, не вызывают формирования протективного длительного иммунитета, поэтому правильнее называть их бактериальными иммуномодуляторами, которые можно разделить на две группы (см. врезку).

Бронхо–мунал

Бронхо–мунал содержит лиофилизированные экстракты 8 возбудителей: Haemophilus influenzae, Diplococcus pneumonia, Streptococcus viridans, Streptococcus pyogens, Klebsiella pneumoniae, Klebsiella ozenaе, Staphylococcus aureus, Neisseria (Branhamella) catarrhalis. Он стимулирует В–клетки, повышает уровень IgA, секреторного IgA на слизистых и в слюне, бронхоальвеолярной лаважной жидкости, повышает функциональную и метаболическую активность макрофагов (в т.ч. альвеолярных).

Бронхо–мунал стимулирует секрецию простагландина Е2 и интерлейкина–1 (ИЛ–1) альвеолярными макрофагами, повышает активность макрофагов против инфекционных агентов и клеток опухоли, усиливает секрецию фактора некроза опухоли и ИЛ–2 [6], активирует естественные киллеры, усиливает синтез IgA, ИЛ–8, TNF–a, нейтрофил–активирующего фактора [7].

При назначении бронхо–мунала у больных с заболеваниями респираторного тракта и носоглотки также отмечается повышение уровня сывороточных IgM, G и A, снижается количество Т–супрессоров (CD8+–клетки), повышается иммунорегуляторный индекс (CD4+/CD8+), функциональная активность Т–клеток. Повышение уровня сывороточных иммуноглобулинов сохраняется до 100–150 дней [1,6,8].

Применение бронхо–мунала для профилактики рецидивов хронического бронхита снижает частоту и тяжесть рецидивов, уменьшает частоту госпитализации до 16,2% (в контрольной группе – 23,2%) и ее продолжительность в среднем до 6,4 дней (в контрольной группе – 11,3 дня). У детей с хроническим риносинуситом при приеме бронхо–мунала отмечено снижение частоты рецидивов и тяжести симптомов, в крови отмечали повышение уровня IgA по сравнению с группой плацебо [6,9].

У длительно и часто болеющих детей отмечается снижение в 2–3 раза частоты обострений ОРВИ, хронического фарингита, бронхита [8,10].

ИРС19 выпускается в виде спрея для интраназального применения и содержит лизаты 19 наиболее часто встречающихся возбудителей заболеваний верхних дыхательных путей: Streptococcus, Staphylococcus aureus, Gafkya tetragena, Neisseria, Klebsiella pneuminiae, Moraxella, Haemophilus influenzae и др..

Препарат увеличивает содержание лизоцима, стимулирует фагоцитоз. Специфическое действие препарата связывают с увеличением синтеза секреторного IgA. Препарат действует преимущественно на систему местного иммунитета верхних отделов респираторного тракта и носоглотки. Назначение препарата не приводит к повышению синтеза IgE. По нашим данным, не наблюдается воздействия препарата на показатели системного иммунитета, отмечается повышение IgA в слюне. ИРС19 применяется с профилактической целью и в остром периоде заболеваний носоглотки и верхних отделов респираторного тракта на фоне базисной терапии, сокращая сроки заболевания и потребность в других вмешательствах.

Применение ИРС19 с профилактической целью в группе длительно и часто болеющих детей вне периода обострения в 3 раза снижает частоту ОРВИ и в 3 раза - их длительность. Препарат хорошо переносится детьми [10,11].

Биостим представляет собой гликопротеины Klebsiella pneumoniae в дозе 1мг. Из кишечника биостим попадает в лимфатические и кровеносные сосуды. Наибольшая концентрация биостима в крови наблюдается через 4 часа. Использование биостима, меченного тритием, показало, что препарат определяется в лимфатических узлах, печени, легких и почках [12].

Биостим активирует макрофаги, в том числе перекисную систему окисления, высвобождение лизосомальных ферментов, а также хемотаксис и фагоцитоз, что приводит к усилению опсонизации и адгезии патогенных агентов. Препарат непосредственно действует на В–лимфоциты, усиливая синтез антител, в частности, IgG, при этом не отмечается усиления синтеза IgE [5,13].

У человека на фоне приема биостима отмечается восстановление реакции гиперчувствительности замедленного типа, увеличение Е–РОК у больных с изначальным снижением показателя ниже 40% [1]. Действие препарата направлено не только против Klebsiella pneumonia. Например, назначение биостима в дозе 4 мг или 8 мг в день при вакцинации против гриппа почти в 2 раза повышает выработку специфических противовирусных антител у 50% вакцинированных. Препарат усиливает микробоцидную активность моноцитов в 2 раза по отношению к Candida albicans (in vivo) и в 5 раз по отношению к Staphylococcus aureus в опытах in vitro. После приема биостима в бронхоальвеолярной лаважной жидкости увеличивается количество лимфоцитов, что свидетельствует об активации системы местного иммунитета [14].

Применение биостима с профилактическими целями у взрослых и детей с рецидивирующими инфекциями верхних дыхательных путей и хроническим бронхитом снижает частоту рецидивов с 27% до 18% у взрослых и с 61% до 31% у детей, при этом продолжительность рецидива снижается у взрослых с 20,8 до 4,5 дней, а у детей – с 8,4 до 4,3 дней [14]. Назначение биостима позволяет снизить частоту рецидивов и продолжительность респираторных инфекций у пожилых людей. Одновременное назначение биостима вместе с антибиотиками позволяет ускорить выздоровление и сократить необходимую дозу антибиотиков.

В состав препарата Имудон входят лизаты: Lactobacillus acidophylus, L.fermentum, L.helveticus, L.lactis, Streptococcus pyogenes, Enterococcus faecalis, Streptococcus sanglus, Staphylococcus aureus, Klebsiella pneumoniae, Corynebacterium рseudodiphtheriae, Fusiformis fusiformis, Candida albicans.

Препарат представляет собой поливалентный антигенный комплекс, включающий наиболее распространенных возбудителей рецидивирующих инфекций носоглотки. Имудон активирует фагоцитоз, повышает уровень лизоцима и IgA в слюне.

Клинические результаты показывают эффективность препарата при пародонтозах, афтозном стоматите, альвеолярной пиорее, гингивитах, глосситах, декубитальных язвах, фарингите, хроническом тонзиллите. Имудон применяется в острой фазе и с профилактической целью. По нашим данным, назначение препарата с профилактическими целями у длительно и часто болеющих детей снижает частоту обострений ОРВИ и хронического фарингита в 2–2,5 раза [10].

В состав препарата Рибомунил входят рибосомы Klebsiella pneumonia, Streptococcus pneumonia, Streptococcus pyogenes, Haemophilus influenzae и протеогликаны мембраны Klebsiella pneumoniae. Рибомунил выпускают в виде таблеток, гранулята и спрея. Показаниями к назначению являются рецидивирующие инфекции носоглотки и респираторного тракта. Препарат стимулирует выработку специфических антител IgM, IgG и секреторного IgA, повышает количество CD3+, CD4+–клеток при изначально сниженных показателях, активирует Т–клетки и макрофаги. При назначении рибомунила в виде спрея в основном наблюдаются влияние на систему местного иммунитета и выработка IgА.

Назначение рибомунила снижает частоту рецидивирующих инфекций уха, горла и носа на 40%, при этом длительность эпизодов инфекций снижается с 30 дней до 17 дней и уменьшается потребность в назначении антибактериальной терапии [15].

Вакцина поликомпонентная ВП–4

В состав вакцины поликомпонентной ВП–4 (Россия) входят лизаты Staphylococcus aureus, Proteus vulgaris, Klebsiella pneumoniae, Echerichia coli. Для получения препарата использованы оригинальные штаммы возбудителей, обладающие высокой иммуногенностью, слабыми сенсибилизирующими свойствами и широкой перекрестной активностью антигенов в отношении возбудителей заболеваний респираторного тракта.

В опытах in vitro было показано, что при заражении мышей Klebsiella pneumoniae выживает 95% мышей, вакцинированных ВП–4, и погибает 100% мышей контрольной группы. двукратное подкожное введение ВП–4 вызывает выработку специфических антител ко всем компонентам вакцины и увеличение уровня IgG в крови. В опытах in vitro показано значительное увеличение синтеза ИЛ–1 и ИЛ–2 и пролиферации лимфоцитов в селезенке вакцинированных мышей [16].

ВП–4 может применяться подкожно или назально–оральным методом. Применение ВП–4 при хроническом бронхите после антибактериальной терапии привело к ускорению выздоровления, улучшению состояния больных, снижению числа рецидивов. При этом отмечалось увеличение титра специфических антител и повышение функциональной активности Т–лимфоцитов [16].

Отмечается положительный эффект применения ВП–4 при смешанной форме бронхиальной астмы у взрослых и детей, причем со стороны иммунологических показателей отмечали усиление фагоцитоза, увеличение CD4+, CD8+, CD16+–клеток, сывороточного IgA при изначально сниженных показателях, уровень сывороточного IgE не повышался. Клинически отмечалось снижение частоты приступов затрудненного дыхания, числа рецидивов и тяжести заболеваний респираторного тракта [16].

Ликопид – N–ацетил–глюкозаминил–N–ацетил–мурамил–дипептид (Россия) – синтезирован в 1977 г. [18,19]. Главной мишенью ликопида в организме человека являются клетки моноцитарно–макрофагального звена иммунной системы. Под влиянием ликопида усиливается поглощение и киллинг микроорганизмов; стимулируются цитотоксические свойства макрофагов по отношению к бактериальным и вирус–инфицированным клеткам; усиливается синтез цитокинов: ИЛ–1, ФНО–a, ГМ–КСФ, b–интерферона и др., что, в свою очередь, оказывает стимулирующее действие на продукцию антител и пролиферацию Т– и В–лимфоцитов [17].

Проведенные клинические испытания показали, что применение ликопида перспективно при гнойных послеоперационных осложнениях, папилломатозе, псориазе, хроническом бронхите. Назначение препарата приводит к увеличению длительности ремиссий, уменьшению частоты рецидивов. Наиболее эффективно применять препарат в фазу ремиссии с профилактической целью [10,17].

По нашим данным, применение ликопида в дозе 1мг в течение 10 дней у длительно и часто болеющих детей не оказывает стимулирующего влияния на показатели крови (иммунорегуляторный индекс, CD3+, CD8+, CD19+ –клетки), но стимулирует активность макрофагов. Повышение уровня IgA в слюне наблюдалось у всех больных.

Показания к назначению: длительно и часто болеющие дети, хронический фарингит, хронический тонзилит, хронический бронхит. В остром периоде – на фоне или после окончания базисной терапии; с профилактической целью – без предшествующей базисной терапии.

Проведенные исследования [11] высеваемости микрофлоры из зева у детей дошкольных учреждений г. Москвы в 2000 г. показывают, что наиболее часто высевается стафилококк, в частности Staphylococcus aureus. При этом два и более возбудителя были выделены у 16,3%, а монокультура – у 60,3% обследованных детей. Только 52,8–88,7% выделенных из зева штаммов стафилококка и 45,5–63,8% штаммов стрептококка были чувствительны к различным антибиотикам. Представленные данные подтверждают целесообразность введения бактериальных иммуномодуляторов в комплексное лечение повторных инфекций носоглотки и респираторного тракта.

Таким образом, бактериальные иммуномодуляторы могут назначаться в остром периоде на фоне базисной терапии, а также с профилактической целью. Все препараты оказывают влияние на систему местного иммунитета носоглотки и респираторного тракта, повышают уровень IgA в слюне. Ряд препаратов обладают системным действием на показатели периферической крови.

1. Maul J. Stimulation of immunoprotective mechanisms by OM–85 BV. Respiration,1994, N 61 (Suppl. 1), P.8–15

2. Dunkley M.L., Pabst R.,Cripps A: An important role for intestinally derived T–cells in respiratory defense. Immunology Today, 1995,N 16,P/231–236.

3. Ruedl C.H., Fruhwirth M., Wick G., Wolf H. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens. Clin.Diagn.Lab.Immunol.,1994,N 1,P.150–154.

4. Cripps A.W., Dunkley M.L., Clancy R.L. Mucosal and systemic immunization with killed Pseudomonas aerugenosa protect against acute respiratory infection in rats. Infect.Immunol.,1994, N 62, P.1427–1436.

5. Grubek Loebenstein B., Lechner H., Trieb K. Long–term in vitro growth of human T cell clones. Can postmitotic senescent cell populations be defined? Int.Arch. Allergy Immunol.,1994,N 104, P.232–239

6. Meroni P.L. et al.: In vivo and in vitro effects of a new immunomodulating agent (biostim) on human lymphocytes ; International J. of Immunopharmac. Abstr. of the third Inrtn. Confer. On Immunopharmacol..Pergamon Press, 1985, Vol.7,N 3,P.368.

7. Roth M., Keul R., Papakonstantinou E/ et al. Characterization of intracellular signalling transduction and transcription factors involved in Broncho–Vaxom ( OM–85 BV ) – induced expression of interleukin–6 and interleukin–8 in human pulmonary fibroblasts. Eur.Respir. Rev.,1996, V.6, N 38,P.171–175

8. Маркова Т.П., Чувиров Д.Г.,Гаращенко Т.И. Механизм действия и эффективность бронхомунала в группе длительно и часто болеющих детей.//Иммунология.1999.–N 6.–С.56–59.

9. Zagar S., Lofler–Badzek D. Broncho–Vaxom in children with rhinosinusitis. A double–blind clinical trial.//ORL.–1988.–v.50.–P.397–404.

10. Маркова Т.П., Чувиров Д.Г. Применение топических иммуномодуляторов в группе длительно и часто болеющих детей//В кн.: Иммунокоррекция в педиатрии под ред. М.В.Костинова.–М.,–2001–С.91–99

11. Богомильский М.Р., Маркова Т.П., Гаращенко Т.И., Чувиров Д.Г. и др. Клинико–иммунологическое обоснование применения топического бактериального иммунокорректора ИРС–19 для профилактики заболеваний верхних дыхательных путей у детей.// Детский доктор.–2000.–N 5.– С.4–7.

12. Griscelli C. Et al.: Ypouvoir immunomodulateur de glycoproteinos isolees de Klebsiella pneumoniaeF; Excerpta Medica ICS 1982, 563, P.261–265

13.Griscelli C. et al : Yimmunomodulation by glycoprotein fractions isolated from Klebsiella pneumoniaeF; 5th International Congress of Immunology. Kyoto, 1983, 21–27 agosto.

14. Verget J. et al.: Effects du Biostim sur les elements de defense cellulaire broncho–pulmonaires. Resultats preliminaires d’une etude par lavage broncho–alveolaire. Sem.Hop.Paris, 59(36),P.2571–2574

15. Marin C.: Yglycoprotein extraites de Klebsiella pneumoniae: un reactivateur immunitaire globalF; Theorie et pratique ther.,1982,24,P.75–89.

16. Егорова Н.Б., Ефремова, Курбатова Е.А., Кузьмина Л.А. Итоги экспериментального и клинического изучения поликомпонентной вакцины из антигенов условно патогенных микроорганизмов //Журн.микробиол.–1997.– N 6.–С.96–101

17. Пинегин Б.В., Борисова А.М., Хорошилова Н.В. и др. Иммунотерапевтические возможности применения ликопида у больных с вторичными иммунодефицитными состояниями.//Методические рекомендации.–М.,1996.

Д остаточно давно стало понятно, что иммунная система является компонентом гомеостатического треугольника, в который кроме нее входят нервная и эндокринная системы. А иммунитет защищает постоянство клеточного состава организма человека, выявляя и удаляя любые генетически чужеродные клетки и вещества, поступающие извне и образующиеся внутри организма. Против всех этих антигенов развивается иммунный ответ с образованием разных эффекторных клеток и молекул.

Если не нарушены взаимные регуляторные отношения между иммунной, нервной и эндокринной системами и все участники иммунного ответа качественно выполняют свои функции, человек будет адекватно реагировать на любые антигены, в том числе на микроорганизмы. При этом организм без видимой клинической симптоматики ответит на контакты с нормальными и условно–патогенными микроорганизмами, а также на облигатные патогены в случае предварительной искусственной или естественной иммунизации. Если же таковой не было, развивается инфекционное заболевание, протекающее более или менее быстро в зависимости почти исключительно от эффективности проводимого лечения, в первую очередь этиотропного.

По данным ВОЗ, в настоящее время первой особенностью состояния здоровья населения в мире является снижение иммунореактивности: по разным источникам до 50–70% людей имеют нарушения иммунитета. И второй особенностью, вытекающей из первой, считают повышение частоты заболеваний, вызываемых условно–патогенной микробиотой, а также рост числа аллергических, аутоиммунных и онкологических болезней.

Нами установлено, что у женщин с вульвовагинитами, где этиологическими агентами являются хламидии, вирусы герпеса, грибы, мико– и уреаплазмы почти в 80% случаев имеются отклонения в эндокринной системе: нарушения менструального цикла, заболевания щитовидной железы. В то же время известно, что именно гормоны женской половой сферы и щитовидной железы являются активаторами иммунной системы и ответственны за состояние слизистой оболочки женских половых путей. Следует подчеркнуть, что эпителиоциты в настоящее время рассматриваются не только как барьерные, но и как иммунокомпетентные клетки. Известно, что в отсутствие повреждающих и стимулирующих воздействий эпителиоциты выполняют барьерную и секреторную функции и как будто ничем не напоминают иммунокомпетентные клетки. Но тем не менее уже в состоянии покоя они несут на своей поверхности рецепторы для цитокинов: ИФН- g , ИЛ 4,17 и др., что является предпосылкой для вовлечения их в иммунные процессы. В условиях повреждения эпителиального барьера или воздействия микробов или их продуктов происходит активация эпителиальных клеток. Фактически активация есть постоянно из–за присутствия на слизистых различных представителей мира микробов. При этом эпителиоциты приобретают свойства иммунокомпетентных клеток: начинают сами выделять цитокины, например, ИЛ 1, 6, ФНО, ИФН- a , по спектру, похожему на цитокины макрофагов и потому определяющие характер воспаления и участие эпителиоцитов в представлении антигенов лимфоидным клеткам. Также эпителиоциты выделяют гемопоэтины: ростовые факторы для нейтрофильных гранулоцитов, моноцитов, ИЛ 7, действующие и на сами эпителиальные клетки, а не только на гемопоэз. Описана также выработка эпителиальными клетками ИЛ 12, 15, 16, 17, 18, секреция ими хемокинов, отвественных за привлечение в слизистые циркулирующих Т–лимфоцитов и др. клеток

Стало очевидным, что попытки решить проблему лечения этих инфекционных заболеваний с помощью антибиотиков и противовирусных препаратов, других этиотропных средств далеко не всегда приводят к полному успеху, если не принимать во внимание состояние иммунного реагирования. Следует даже вывод о том, что если есть иммунитет полноценный, нет инфекций. Если при наличии клинических признаков воспаления обнаруживаются выше указанные микроорганизмы, значит нет полноценного, качественного иммунного реагирования в целом или местно, по крайней мере. И мы имеем дело с неблагоприятным для организма течением инфекционно–воспалительного процесса: оно приобретает черты хронического. Следовательно, насущной становится задача мобилизации резервов иммунной защиты, ее активизации.

Кроме того, в клинической медицине насущной стала проблема резистентности микроорганизмов к антибактериальным, противовирусным и антимикотическим препаратам. Считают, что до 90% банальных микроорганизмов устойчивы сегодня к этиотропной терапии. И при этом еще этиотропное лечение нередко вызывает побочные эффекты в виде дисбизов, гепатотоксического и иммуносупрессивного действия, реже эндокринотоксического и нефротоксического.

Чаще всего терапия является комплексной, включающей как антибактериальные, так и иммунотропные препараты. Среди иммунотропных или иммуномодулирующих следует различать препараты общего или системного действия и местного. В случаях изменения общего иммунного реагирования или вторичных иммунодефицитных состояний с нарушением функции Т–системы следует использовать Иммунофан. В качестве системного активатора киллерных клеток и механизмов, особенно если речь идет о преобладании внутриклеточной или вирусной инфекции, препаратом выбора может стать Иммуномакс. Он вводится достаточно коротким курсом из 6 инъекций (1,2,3,8,9,10 дни) и при этом оставляет длительное последействие, восстанавливая адекватность иммунного реагирования в течение еще 6 месяцев. При наличии интоксикации, необходимости антиоксидантной терапии, для стабилизации мембран клеток и иммуномодулирующего эффекта может быть использован в качестве системного препарата полиоксидоний. Интерферонсодержащие препараты, но не интерфероногены, как системные средства, оказывают лечебный, и в том числе иммуномодулирующий эффект при вирусной, например, герпетической этиологии воспалительных процессов урогенитальной сферы.

Как средство прежде всего местного действия препаратом выбора может быть Гепон. Он повышает функциональную активность фибробластов и эпителиоцитов, что определяет высокую устойчивость к инфицированию и повышает способность эпителиальных покровов к регенерации. При этом Гепон легко всасывается через эпителий, эффективно воздействуя на местную защиту и против бактерий, и против вирусов, и против грибов. Кроме того, Гепон тормозит репликацию вируса в инфицированных клетках. Препарат эффективен и при острых воспалительных процессах, поскольку может значительно сократить размеры и степень воспаления, сроки выздоровления и с гарантией предотвратит переход острого воспаления в хроническое. Местно Гепон может быть использован в виде орошений или мази.

Показана эффективность местной монотерапии гепоном при кандидозе слизистых оболочек, как известно хроническом рецидивирующем заболевании, трудно поддающемся вполне современной качественной этиотропной терапии. У женщин орошали слизистую влагалища и вульвы, у мужчин использовали примочки или инстиляции 0,04% раствором Гепона. Сразу после курса терапии исчезали признаки воспаления, споры и мицелий гриба со слизистой почти у всех наблюдаемых пациентов с сохранением эффекта и через месяц после лечения.


Для цитирования: Зверева Н.Н. Иммунопрофилактика инфекционных болезней: показания, вакцины, схемы введения. РМЖ. 2014;3:247.

Иммунизация против дифтерии
Основным методом защиты от дифтерии является вакцинопрофилактика, которая направлена на создание невосприимчивости населения к этой инфекции. У привитых против дифтерии людей вырабатывается антитоксический иммунитет, который защищает от токсических форм дифтерии и летальных исходов [8].
Для иммунизации против дифтерии используют вакцины: АКДС; адсорбированный дифтерийно-столбнячный анатоксин (АДС-анатоксин); анатоксин дифтерийно-столбнячный очищенный адсорбированный c уменьшенным содержанием антигенов жидкий (АДС-М-анатоксин); адсорбированный дифтерийный анатоксин с уменьшенным содержанием антигена (АД-М-анатоксин). Лицензированные в России дифтерийные анатоксины адсорбированы на алюминия гидроксиде, содержат консервант мертиолят [4].
Вакцинации против дифтерии подлежат дети с 3–месячного возраста, а также подростки и взрослые, ранее не привитые против этой инфекции. Препарат вводят в/м в верхний наружный квадрант ягодицы или передненаружную область бедра в дозе 0,5 мл. Первую вакцинацию проводят в возрасте 3 мес., вторую – в 4,5 мес., третью – в 6 мес. Первую ревакцинацию проводят через 12 мес. после законченной вакцинации [3].
Вакцинации АКДС-вакциной подлежат дети с 3-месячного возраста до 3-х лет 11 мес. 29 дней. Вакцинацию проводят 3-кратно с интервалом 45 дней [3].
АДС-анатоксин вводят детям от 3-х мес. до 6 лет, имеющим противопоказания к введению АКДС или переболевшим коклюшем. Курс вакцинации состоит из 2-х прививок с интервалом 45 дней. Первую ревакцинацию АДС-анатоксином проводят однократно через 9–12 мес. после законченной вакцинации [3]. Если ребенок, перенесший коклюш, уже получил одну прививку АКДС, то ему вводят одну дозу АДС-анатоксина с ревакцинацией через 9–12 мес. В случае если переболевший коклюшем ребенок получил уже 2 вакцинации АКДС, ему проводят ревакцинацию АДС-анатоксином через 9–12 мес. [4].
АДС-М-анатоксин используют для ревакцинации детей 7 и 14 лет и взрослых без ограничения возраста каждые 10 лет, а также для вакцинации против дифтерии и столбняка детей с 6-летнего возраста, ранее не привитых против дифтерии. Первую ревакцинацию проводят с интервалом в 6–9 мес. после законченной вакцинации однократно. Последующие ревакцинации проводят в соответствии с национальным календарем [3].
АДС-М-анатоксин также используют в качестве замены АКДС-вакцины (АДС-анатоксина) у детей с сильными общими реакциями (температура до 40°С и выше) или поствакцинальными осложнениями на указанные препараты. Если реакция развилась на первую вакцинацию АКДС (АДС-анатоксином), то АДС-М-анатоксин вводят однократно не ранее чем через 3 мес. Если реакция развилась на вторую вакцинацию, то курс вакцинации против дифтерии и столбняка считают законченным. В обоих случаях первую ревакцинацию АДС-М-анатоксином проводят через 9–12 мес. Если реакция развилась на третью вакцинацию АКДС (АДС-анатоксином), то первую ревакцинацию АДС-М-анатоксином проводят через 12–18 мес. [9].
АД-М-анатоксин применяют для плановых возрастных ревакцинаций лиц, получивших столбнячный анатоксин в связи с экстренной профилактикой столбняка [4].
При введении АКДС вакцины, анатоксинов АДС, АДС-М, АД-М сокращение интервалов не допускается. При вынужденном увеличении интервала очередную прививку проводят в максимально близкие сроки, определяемые состоянием здоровья ребенка. Пропуск одной прививки не влечет за собой повторение всего цикла вакцинации. Прививки можно проводить одновременно с другими прививками календаря, при этом прививки проводят разными шприцами в разные участки тела [3].
Иммунизация лиц, переболевших дифтерией, имеет свои особенности. Заболевание дифтерией любой формы у непривитых детей и подростков расценивается как первая вакцинация, у получивших до заболевания одну прививку – как вторая вакцинация. Дальнейшие прививки проводятся согласно действующему календарю профилактических прививок. Детям и подросткам в возрасте до 16 лет, привитым против дифтерии (получившим законченную вакцинацию, одну или несколько ревакцинаций) и переболевшим легкой формой дифтерии без осложнений, дополнительная прививка после заболевания не проводится. Очередная возрастная ревакцинация им выполняется через интервалы времени, указанные в действующем календаре прививок. Дети и подростки, привитые 2 или более раз и перенесшие тяжелые формы дифтерии, должны быть привиты препаратом в зависимости от возраста и состояния здоровья однократно в дозе 0,5 мл, но не ранее чем через 6 мес. после перенесенного заболевания. Последующие ревакцинации им следует проводить согласно действующему национальному календарю профилактических прививок. Взрослым, переболевшим дифтерией в легкой форме, дополнительная прививка против диф­терии не проводится. Ревакцинацию им следует провести через 10 лет. Взрослые, перенесшие тяжелые формы дифтерии (токсические), должны быть привиты двукратно против дифтерии, но не ранее чем через 6 мес. после перенесенного заболевания. Последующие ревакцинации проводятся каждые 10 лет [3].

Иммунизация против столбняка
В Российской Федерации на протяжении последних лет не регистрируется столбняк новорожденных, и ежегодно регистрируется спорадическая заболеваемость столбняком среди других возрастных групп населения. Предупреждение заболеваний столбняком достигается путем вакцинации не менее 95% населения. Иммунизация проводится трехкратной вакцинацией детей к 12 мес. жизни и последующими возрастными ревакцинациями к 24 мес. жизни, в 7 и 14 лет [3, 4].
Прививки проводят комбинированной вакциной АКДС и анатоксинами АДС, АДС-М. Для экстренной профилактики столбняка используют как моновалентный столбнячный анатоксин (АС), так и иммуноглобулины.

Иммунизация против полиомиелита
Для профилактики полиомиелита в России используется 2 вида вакцин: отечественную живую оральную полиовакцину (ОПВ) и импортные инактивированные полиовакцины (ИПВ). Согласно рекомендациям ВОЗ и национальному календарю профилактических прививок, первые 2 вакцинации против полиомиелита в 3 и 4,5 мес. проводят вакциной ИПВ, третья вакцинация в 6 мес., а также ревакцинации в 18, 20 мес. и в 14 лет проводятся вакциной ОПВ [2]. Допустимо проведение всего курса вакцинаций и ревакцинаций против полиомиелита инактивированными вакцинами. Использование как ОПВ, так и ИПВ приводит к формированию системного иммунитета у 96–100% привитых после 3-х инъекций вакцин, при этом ИПВ имеет преимущества перед ОПВ в показателях иммуногенности к полиовирусам 1 и 3 типов, ОПВ более активно формирует местный иммунитет [4].
Использование ИПВ при первых двух введениях необходимо для профилактики развития вакциноассоциированного паралитического полиомиелита (ВАПП) [4, 10]. Также с целью профилактики ВАПП детей, не имеющих сведений об иммунизации против полиомиелита, не привитых против полиомиелита или получивших менее 3 доз полиомиелитной вакцины, разобщают с детьми, привитыми вакциной ОПВ, на срок 60 дней с момента получения детьми последней прививки живой полиовакцины. В детских закрытых коллективах (домах ребенка и др.) в целях профилактики возникновения контактных случаев ВАПП, обусловленных циркуляцией вакцинных штаммов полиовирусов, для вакцинации и ревакцинации детей применяется только вакцина ИПВ. При иммунизации вакциной ОПВ одного из детей в семье медицинский работник должен уточнить у родителей (опекунов), имеются ли в семье не привитые против полиомиелита дети, и при наличии таковых рекомендовать вакцинировать не привитого ребенка (при отсутствии противопоказаний) или разобщить детей сроком на 60 дней [10]. Однако у иммунодефицитных лиц вакцинный вирус может выделяться значительно дольше. Так, ВОЗ с 1961 по 2005 г. зарегистрировала 28 таких лиц, из них 6 выделяли вакцинный вирус более 5 лет, в 2006–2007 гг. в 6 странах выявили еще 20 таких случаев [4]. Поэтому детям, рожденным ВИЧ-инфицированными матерями, иммунизация против полиомиелита проводится только инактивированной вакциной независимо от их ВИЧ-статуса [2].
Существует также проблема вакцинных вирусов, которые возвращают свои вирулентные свойства при пассаже через кишечник человека. Такие вирусы-ревертанты циркулируют в популяциях с недостаточно высоким охватом вакцинацией и вызывают заболевание. Поэтому даже после ликвидации на земном шаре дикого вируса полиомиелита может сохраняться опасность возникновения паралитического заболевания, вызванного вирусами-ревертантами. Избежать этого можно путем полного перехода на ИПВ [4].
Прививки против полиомиелита могут быть совмещены с другими календарными прививками [3, 12].
Укорочение интервалов между первыми тремя прививками против полиомиелита не допускается. Возможно сокращение интервала между третьей и четвертой прививками до 3-х мес., в том случае если интервалы между первыми тремя прививками были значительно удлинены [4, 12].

Иммунизация против кори, краснухи, паротита
Методом специфической профилактики и защиты населения от кори, краснухи и эпидемического паротита является вакцинопрофилактика.
Вакцинации против кори, краснухи и эпидемического паротита подлежат дети в возрасте с 12 мес., не болевшие указанными инфекциями. Постановка туберкулиновой пробы, которая также проводится в возрасте 12 мес., возможна либо до вакцинации, либо через 6 нед. после нее. Это связано с тем, что вакцинальный процесс может вызвать временное снижение чувствительности кожи к туберкулину, что послужит причиной ложного отрицательного результата.
Ревакцинацию против указанных инфекций проводят однократно в возрасте 6 лет перед поступлением ребенка в школу, чтобы защитить детей, не давших сероконверсии после первой вакцинации. Ревакцинацию перед школой следует делать даже тем детям, у которых вакцинация была проведена позже декретированного срока (в возрасте 2–5 лет), при этом интервал между первой и второй прививкой должен составлять не менее 6 мес. [4].
Вакцинации против краснухи подлежат девочки в возрасте 13 лет, ранее не привитые или получившие одну прививку.
Вакцинацию и ревакцинацию против кори, краснухи, эпидемического паротита проводят моновакцинами и комбинированными вакцинами (корь, краснуха, паротит). Препараты вводят однократно подкожно в дозе 0,5 мл под лопатку или в область плеча. Допускается одномоментное введение вакцин разными шприцами в различные участки тела [3]. Для профилактики кори, краснухи и паротита применяются только живые аттенуированные (ослабленные) вакцины.
Отечественные коревой и паротитный вакцинные штаммы культивируются на фибробластах эмбрионов японских перепелов, зарубежные – куриных эмбрионов [4, 11]. Данную информацию важно учитывать при сборе аллергоанамнеза перед вакцинацией.

Иммунизация против гемофильной инфекции типа b (ХИБ)
Вакцинация является единственным эффективным методом профилактики ХИБ-инфекции, особенно учитывая возрастание резистентности возбудителя к антибиотикам. ВОЗ рекомендует включение конъюгированных ХИБ-вакцин во все программы иммунизации младенцев. К 2008 г. 136 государств – членов ВОЗ внесли вакцинацию против данной инфекции в свои календари иммунопрофилактики [14]. В 2011 г. вакцинация против ХИБ-инфекции была включена в национальный календарь прививок России. Проводится вакцинация против ХИБ-инфекции в соответствии с инструкциями по применению вакцин детям, относящимся к группам риска, а именно: с иммунодефицитными состояниями или анатомическими дефектами, приводящими к резко повышенной опасности заболевания ХИБ-инфекцией; с онкогематологическими заболеваниями и/или длительно получающим иммуносупрессивную терапию; ВИЧ-инфицированным или рожденным от ВИЧ-инфицированных матерей; находящимся в закрытых детских дошкольных учреждениях (дома ребенка, детские дома, специализированные интернаты (для детей с психоневрологическими заболеваниями и др.), противотуберкулезные санаторно-оздоровительные учреждения).
Курс вакцинации против гемофильной инфекции для детей в возрасте от 3 до 6 мес. состоит из 3-х инъекций с интервалом 1,5 мес.
Для детей, не получивших первую вакцинацию в 3 мес., иммунизация проводится по следующей схеме: дети в возрасте от 6 до 12 мес. получают 2 инъекции с интервалом в 1–1,5 мес.; дети от 1 года до 5 лет – однократную инъекцию. Защитный титр антител сохраняется не менее 4-х лет [4]. Отечественных вакцин против ХИБ-инфекции пока не разработано. Зарубежные вакцины против ХИБ-инфекции могут быть представлены монопрепаратами, а также входить в состав комбинированных вакцин вместе с АаКДС, ИПВ, вакциной против гепатита В.


У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

Читайте также: