Ингибиторы матричных биосинтезов дифтерийный токсин

Обновлено: 17.04.2024

Лечение дифтерии. Принципы лечения дифтерии. Профилактика дифтерии. Иммунопрофилактика дифтерии. Дифтерийный анатоксин.

Поскольку патогенез поражений обусловлен действием токсина дифтерии, то основу специфической терапии составляет противодифтерийная лошадиная сыворотка (дифтерийный антитоксин), содержащая не менее 2000 международных антитоксических единиц активности (ME) в 1 мл. Антитоксин вводят внутримышечно или внутривенно в дозах, соответствующих тяжести заболевания (от 20 000 до 100 000 ЕД). Открытие Э. Берингом и Ш. Китазато антитоксических свойств сыворотки иммунных животных явилось одним из важных этапов развития микробиологии, а практическая медицина получила возможность противостоять этой высоколетальной инфекции. Параллельно назначают эффективные антимикробные препараты (аминогликозиды, цефалоспорины), а также проводят симптоматическую терапию. Выписку больных проводят только после двукратного отрицательного результата бактериологического обследования.

Лечение дифтерии. Принципы лечения дифтерии. Профилактика дифтерии. Иммунопрофилактика дифтерии. Дифтерийный анатоксин

Профилактика дифтерии. Иммунопрофилактика дифтерии. Дифтерийный анатоксин

Первоначально развитие заболевания предупреждали введением инактивированного антисывороткой дифтерийного токсина. В настоящее время основу профилактики дифтерии составляют плановая или постэкспозиционная вакцинация.

Для иммунопрофилактики дифтерии применяют дифтерийный анатоксин, разработанный Рамоном.

Дифтерийный анатоксин — токсин, лишенный ядовитых свойств обработкой 0,4% раствором формалина и выдержкой в термостате при температуре 40 °С в течение 30 сут, но сохранивший иммуногенность. Очищенный и концентрированный препарат входит в состав комбинированных вакцин — АКДС, АДС, АДС-М.
• Наличие и содержание AT к дифтерийному токсину определяют в РПГА и РИГА.
• Постинфекциошшй иммунитет нестойкий, поэтому реконвалесценты подлежат вакцинации в общем порядке.
• При выявлении заболевания в детских коллективах контактировавших с заболевшими детьми лиц следует обследовать бактериологически и изолировать от коллектива на 7 сут.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Существует большая группа веществ, ингибирующих синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых заболеваний, а другие являются для человека сильнейшими токсинами. К последним можно отнести токсин бледной поганки α-аманитин, который является ингибитором эукариотических РНК-полимераз.

Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на:

модификации матриц (ДНК или РНК);

белоксинтезирующего аппарата (рибосом);

Центральное место среди них принадлежит антибиотикам – разнообразным по химическому строению органическим соединениям, синтезируемым микроорганизмами. Краткие сведения об антибиотиках, ингибирующих матричные синтезы, приведены в таблице 7.2.

Антибиотики – ингибируюшие матричные биосинтезы

Антибиотики

Механизм действия

Ингибиторы репликации

Ингибиторы репликации и транскрипции

Встраиваются между парами оснований ДНК, блокируют синтез ДНК и РНК у про- и эукариот

Ингибируют ДНК-топоизомеразу, ответственную за суперспирализацию ДНК

Ингибиторы транскрипции

Связываются с бактериальной РНК-полимеразой

Ингибиторы трансляции

Ингибируют элонгацию: связываются с 30S субъединицей рибосомы и блокируют присоединение аа-тРНК в А-центр

Присоединяется к 50S субъединице рибосомы и ингибирует пептидилтрансферазную активность

Присоединяется к 50S субъединице рибосомы и ингибирует транслокацию

Ингибирует инициацию трансляции.Связывается с 50S субъединицей рибосомы, вызывает ошибки в прочтении информации, закодированной в мРНК

Использование днк-технологий в медицине

Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их диагностике и лечению.

Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и “скопирована” (наработана) в количествах, достаточных для исследования. Для генно-терапевтических работ необходимо выделение нормальных генов и введение их в дефектные клетки таким образом, чтобы они экспрессировались, позволяя восстановить здоровье пациента.

Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, разрушение белков протеазами, экстрагирование ДНК с последующим её осаждением. В ходе выделения получают очень большие молекулы, их дополнительно фрагментируют с помощью рестриктаз. Образующиеся фрагменты разделяют методом электрофореза. Количество и длина получающихся фрагментов, и соответственно, расположение полос на электрофореграмме уникально и специфично для каждого человека.

Идентификация характерных последовательностей проводится методом блот-гибридизации по Саузерну. Фрагменты ДНК подвергают денатурации и осуществляют перенос (блоттинг) на плотный носитель (фильтр или мембрану). Фиксированную на фильтре ДНК гибридизуют с небольшими фрагментами ДНК или РНК, содержащими радиоактивную (флюоресцентную или др.) метку. Такие фрагменты называют ДНК- или РНК-зондами. Если в исследуемом образце есть последовательности, комплементарные последовательностям зонда, то гибридизацию можно определить визуально или с помощью специальных приборов. Метод применяется для диагностики инфекционных заболеваний, наследственных дефектов, установления экспрессии тех или иных генов.

Секвенирование (определение первичной структуры) ДНК проводится химическим или энзиматическим методом. Метод Маскама и Гилберта (химический) основан на химической деградации ДНК. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью радиоактивной или флюоресцентной метки. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят их идентификацию. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание – его положение. Так набор полос определяет нуклеотидную последовательность ДНК.

Метод Сэнгера (ферментативный) основан на моделировании ДНК-полимеразной реакции, где исследуемая молекула ДНК используется в качестве матрицы. В реакционную смесь добавляют дидезоксинуклеотиды (ОН-группа в 3'-положении пентозы отсутствует). ДНК-полимераза включает эти предшественники в ДНК. Однако, включившись в ДНК, модифицированный нуклеотид не может образовать фосфодиэфирную связь со следующим дезоксирибонуклеотидом. В результате элонгация данной цепи останавливается в том месте, где в ДНК включился дидезоксирибонуклеотид. Реакция проводится одновременно в четырех отдельных пробирках, каждая из которых содержит один из четырех дидезоксинуклеотидов и все 4 дезоксинуклеотидтрифосфата (к ним, как правило присоединяют радиоактивную или флюоресцентную метку). В каждой из пробирок образуется набор меченых фрагментов разной длины. Длина их зависит от того, в каком месте в цепь включен дефектный нуклеотид. Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле с точностью до одного нуклеотида, проводят идентификацию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК.

Получение рекомбинантных ДНК и их амплификация. При получении рекомбинантных ДНК выделяют эти молекулы из двух разных источников. Каждую из них в отдельности фрагментируют, используя одну и ту же рестриктазу. После процедуры нагревания и медленного охлаждения смеси полученных фрагментов, наряду с исходными молекулами ДНК образуются и рекомбинантные, состоящие из участков ДНК, первоначально принадлежавших разным образцам. Используя технику рекомбинантных ДНК, удаётся исследовать варианты генов, ответственных за развитие многих заболеваний. Этим способом могут быть идентифицированы различные мутации.

Для получения значительных количеств рекомбинантного генетического материала проводят клонирование ДНК, предполагающее встраивание нужного фрагмента ДНК в векторную молекулу, Вектор обеспечивает проникновение этой рекомбинантной ДНК в бактериальные клетки. При размножении трансформированных бактерий происходит увеличение числа копий введенного фрагмента ДНК, а также синтез не свойственных бактериальной клетке, но весьма ценных для человека белковых продуктов. Таким способом получают вакцины, инсулин, гормон роста, факторы свертывания крови и др.

Работа с нуклеотидными последовательностями требует наличия достаточного количества материала для исследования. Поэтому фрагменты ДНК предварительно амплифицируют (увеличивают количество). Метод полимеразной цепной реакции (ПЦР), предложенный в 1983 г. Карри Муллисом, позволяет подвергать специфической амплификации в условиях in vitro любые образцы ДНК.

Полимеразная цепная реакция протекает в три стадии:

1. Денатурация.

Инкубационную смесь, в которой содержится образец нужной ДНК, нагревают до температуры 90°С. При этом в течение 15 секунд происходит разрушение слабых водородных связей между нитями ДНК, и из одной двухцепочечной молекулы образуется две одноцепочечные.

Отличие вирусов от других организмов заключается в двух особенностях: I ) вирус­ ная частица (вирион) содержит только один вид нуклеиновых кислот — или ДНК, или РНК; 2) вирионы отличаются необычной для живых существ простотой орга­ низации — они не имеют собственного метаболизма, не содержат клеточных орга­ нелл, в том числе рибосом, и очень часто состоят только из нуклеиновой кислоты, заключенной в белковую оболочку. В связи с этим вирусы способны размножаться исключительно за счет использования метаболического аппарата другой клетки, т. е. они являются внутриклеточными паразитами.

Цикл размножения вируса начинается с его прикрепления к поверхности клетки. Вирион содержит специальные белки, узнающие определенные вещества мембраны клетки-хозяина; эти вещества называют рецепторами вируса. Напри­ мер, бактериофаг Т4 прикрепляется только к клеткам Е. coli, полиовирус — к оп­ ределенным клеткам человека, а также обезьян, вирус гриппа — к клеткам слизи­ стой оболочки дыхательных путей. После прикрепления вирион проникает через мембрану внутрь клетки; иногда в клетку попадает только нуклеиновая кислота вириона. Затем с использованием аппарата клетки-хозяина начинается реплика­ ция вирусного генома и синтез вирусных белков; из них путем самосборки образу­ ются новые вирионы, которые освобождаются из клетки, либо разрушая ее (ли­ зис клеток), либо проходя через мембрану без разрушения клетки.

Многие вирусы в качестве генетического материала содержат ДНК, но есть группа вирусов, геном которых представлен рибонуклеиновой кислотой. Размеры генома вирусов невелики. Например, в ДНК бактериофага Т4 обнаружено

Глава 4. Биосинтез нуклеиновых кислот и белков (матричные биосинтезы)

135 генов; из них 36 генов кодируют синтез разных белков, входящих в оболочку фага, а остальные — гены белков, обеспечивающих переключение аппарата клет­ ки-хозяина на синтез компонентов вируса, а также гены белков, выполняющих вспомогательную роль при самосборке вирионов. Геном маленького бактериофага jX174, также паразитирующего на Е. coli, содержит всего 9 генов. Размеры нуклеи­ новых кислот некоторых вирусов указаны в табл. 4.3.

Существует большая группа веществ, ингибирующих синтез ДНК, РНК или белков. Некоторые из них нашли применение в медицине для лечения инфекционных болезней и опухолевых заболеваний, а другие являются для человека сильнейшими токсинами. К последним можно отнести токсин бледной поганки α-аманитин, который является ингибитором эукариотических РНК-полимераз.

Действие ингибиторов матричных биосинтезов как лекарственных препаратов основано на:

модификации матриц (ДНК или РНК);

белоксинтезирующего аппарата (рибосом);

Центральное место среди них принадлежит антибиотикам – разнообразным по химическому строению органическим соединениям, синтезируемым микроорганизмами. Краткие сведения об антибиотиках, ингибирующих матричные синтезы, приведены в таблице 7.2.

Антибиотики – ингибируюшие матричные биосинтезы

Антибиотики

Механизм действия

Ингибиторы репликации

Ингибиторы репликации и транскрипции

Встраиваются между парами оснований ДНК, блокируют синтез ДНК и РНК у про- и эукариот

Ингибируют ДНК-топоизомеразу, ответственную за суперспирализацию ДНК

Ингибиторы транскрипции

Связываются с бактериальной РНК-полимеразой

Ингибиторы трансляции

Ингибируют элонгацию: связываются с 30S субъединицей рибосомы и блокируют присоединение аа-тРНК в А-центр

Присоединяется к 50S субъединице рибосомы и ингибирует пептидилтрансферазную активность

Присоединяется к 50S субъединице рибосомы и ингибирует транслокацию

Ингибирует инициацию трансляции.Связывается с 50S субъединицей рибосомы, вызывает ошибки в прочтении информации, закодированной в мРНК

Использование днк-технологий в медицине

Достижения в области молекулярной биологии существенно повлияли на современную медицину: они не только углубили знания о причинах многих болезней, но и способствовали разработке новых подходов в их диагностике и лечению.

Для выявления дефектов в структуре ДНК она должна быть выделена из биологического материала и “скопирована” (наработана) в количествах, достаточных для исследования. Для генно-терапевтических работ необходимо выделение нормальных генов и введение их в дефектные клетки таким образом, чтобы они экспрессировались, позволяя восстановить здоровье пациента.

Выделение ДНК включает быстрый лизис клеток, удаление фрагментов клеточных органелл и мембран с помощью центрифугирования, разрушение белков протеазами, экстрагирование ДНК с последующим её осаждением. В ходе выделения получают очень большие молекулы, их дополнительно фрагментируют с помощью рестриктаз. Образующиеся фрагменты разделяют методом электрофореза. Количество и длина получающихся фрагментов, и соответственно, расположение полос на электрофореграмме уникально и специфично для каждого человека.

Идентификация характерных последовательностей проводится методом блот-гибридизации по Саузерну. Фрагменты ДНК подвергают денатурации и осуществляют перенос (блоттинг) на плотный носитель (фильтр или мембрану). Фиксированную на фильтре ДНК гибридизуют с небольшими фрагментами ДНК или РНК, содержащими радиоактивную (флюоресцентную или др.) метку. Такие фрагменты называют ДНК- или РНК-зондами. Если в исследуемом образце есть последовательности, комплементарные последовательностям зонда, то гибридизацию можно определить визуально или с помощью специальных приборов. Метод применяется для диагностики инфекционных заболеваний, наследственных дефектов, установления экспрессии тех или иных генов.

Секвенирование (определение первичной структуры) ДНК проводится химическим или энзиматическим методом. Метод Маскама и Гилберта (химический) основан на химической деградации ДНК. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью радиоактивной или флюоресцентной метки. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят их идентификацию. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание – его положение. Так набор полос определяет нуклеотидную последовательность ДНК.

Метод Сэнгера (ферментативный) основан на моделировании ДНК-полимеразной реакции, где исследуемая молекула ДНК используется в качестве матрицы. В реакционную смесь добавляют дидезоксинуклеотиды (ОН-группа в 3'-положении пентозы отсутствует). ДНК-полимераза включает эти предшественники в ДНК. Однако, включившись в ДНК, модифицированный нуклеотид не может образовать фосфодиэфирную связь со следующим дезоксирибонуклеотидом. В результате элонгация данной цепи останавливается в том месте, где в ДНК включился дидезоксирибонуклеотид. Реакция проводится одновременно в четырех отдельных пробирках, каждая из которых содержит один из четырех дидезоксинуклеотидов и все 4 дезоксинуклеотидтрифосфата (к ним, как правило присоединяют радиоактивную или флюоресцентную метку). В каждой из пробирок образуется набор меченых фрагментов разной длины. Длина их зависит от того, в каком месте в цепь включен дефектный нуклеотид. Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле с точностью до одного нуклеотида, проводят идентификацию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК.

Получение рекомбинантных ДНК и их амплификация. При получении рекомбинантных ДНК выделяют эти молекулы из двух разных источников. Каждую из них в отдельности фрагментируют, используя одну и ту же рестриктазу. После процедуры нагревания и медленного охлаждения смеси полученных фрагментов, наряду с исходными молекулами ДНК образуются и рекомбинантные, состоящие из участков ДНК, первоначально принадлежавших разным образцам. Используя технику рекомбинантных ДНК, удаётся исследовать варианты генов, ответственных за развитие многих заболеваний. Этим способом могут быть идентифицированы различные мутации.

Для получения значительных количеств рекомбинантного генетического материала проводят клонирование ДНК, предполагающее встраивание нужного фрагмента ДНК в векторную молекулу, Вектор обеспечивает проникновение этой рекомбинантной ДНК в бактериальные клетки. При размножении трансформированных бактерий происходит увеличение числа копий введенного фрагмента ДНК, а также синтез не свойственных бактериальной клетке, но весьма ценных для человека белковых продуктов. Таким способом получают вакцины, инсулин, гормон роста, факторы свертывания крови и др.

Работа с нуклеотидными последовательностями требует наличия достаточного количества материала для исследования. Поэтому фрагменты ДНК предварительно амплифицируют (увеличивают количество). Метод полимеразной цепной реакции (ПЦР), предложенный в 1983 г. Карри Муллисом, позволяет подвергать специфической амплификации в условиях in vitro любые образцы ДНК.

Полимеразная цепная реакция протекает в три стадии:

1. Денатурация.

Инкубационную смесь, в которой содержится образец нужной ДНК, нагревают до температуры 90°С. При этом в течение 15 секунд происходит разрушение слабых водородных связей между нитями ДНК, и из одной двухцепочечной молекулы образуется две одноцепочечные.

Читайте также: