Как решать с корями

Обновлено: 15.04.2024

Найдите значение выражения \(6\sqrt \cdot \sqrt \cdot 16\sqrt\) .

Преобразуем \(\sqrt = \sqrt \cdot \sqrt\) .

Найдем произведение множителей без корня, а множители с корнем сгруппируем:

\(6\cdot \sqrt \cdot \sqrt \cdot \sqrt \cdot 16\sqrt=96 \sqrt^2 \cdot \sqrt^2 = 96 \cdot 5 \cdot 2 = 960\) .

Найдите значение выражения \(4\sqrt \cdot \sqrt \cdot 4\sqrt\) .

Преобразуем \(\sqrt = \sqrt \cdot \sqrt\) .

Найдем произведение множителей без корня, а множители с корнем сгруппируем:

\(4\sqrt \cdot \sqrt \cdot 4 \sqrt \cdot \sqrt =16 \cdot \sqrt^2 \cdot \sqrt^2 = 16 \cdot 3 \cdot 2 = 96\) .

Найдите значение выражения \(\frac \cdot \sqrt>>\) .

Перепишем исходное выражение, занеся все числа под один корень:

Разложим выражение под корнем на множители так, чтобы среди них были полные квадраты:

Найдите значение выражения \(\frac \cdot \sqrt>>\) .

Перепишем исходное выражение, занеся все числа под один корень:

Разложим выражение под корнем на множители так, чтобы среди них были полные квадраты:

\(\sqrt = \sqrt = 2 \cdot 3 \cdot \sqrt = 6\sqrt\) .

Какое из данных чисел является значением выражения \(\frac<(2\sqrt<7>)^2>\) ?

Преобразуем числитель: \((2\sqrt)^2 = 2^2 \cdot <\sqrt>^2 = 4 \cdot 7 = 28\) .

Какое из данных чисел является значением выражения \(\frac<(3\sqrt<5>)^2>\) ?

Преобразуем числитель: \((3\sqrt)^2 = 3^2 \cdot <\sqrt>^2 = 9 \cdot 5 = 45\) .

Какое из данных чисел является значением выражения \(\dfrac<(2\sqrt<13>)^2>\) ?

1) \(3 \qquad \qquad\) 2) \(\dfrac3\qquad \qquad\) 3) \(\dfrac34\qquad \qquad\) 4) \(\dfrac32\)

Преобразуем знаменатель: \((2\sqrt)^2=2^2\cdot (\sqrt)^2=4\cdot 13\) .
Тогда \[\dfrac=\dfrac=\dfrac34\] Следовательно, ответ 3.

с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов

при поддержке Научно-исследовательского института Проблем развития научно-образовательного потенциала молодежи

А сейчас мы рассмотрим свойства корней.

Квадратный корень, кубический корень и корень в N-ой степени.

Порешаем задачки, чтобы к концу этого занятия все, что касается корней (в любой степени) было тебе абсолютно понятно!

И, самое главное, чтобы ты смог решить любую задачу c корнями на экзамене!Поехали!

Свойства корней — коротко о главном

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа \( a\) называется такое неотрицательное число, квадрат которого равен \( a\)

Свойства корней:

Для любого натурального \( n\), целого \( k\) и любых неотрицательных чисел \( a\) и \( b\) выполнены равенства:

Арифметический квадратный корень

Когда ты разберешься в этой теме, тебе станет намного легче решать иррациональные уравнения и неравенства.

Для этого рассмотрим примеры, с которыми ты уже сталкивался на уроках (ну, или тебе с этим только предстоит столкнуться).

К примеру, перед нами уравнение \( ^>=4\). Какое решение у данного уравнения? Какие числа можно возвести в квадрат и получить при этом \( 4\)?

Вспомнив таблицу умножения, ты легко дашь ответ: \( 2\) и \( -2\) ( ведь при перемножении двух отрицательных чисел получается число положительное)!

Для упрощения, математики ввели специальное понятие квадратного корня и присвоили ему специальный символ \( \sqrt\).

Дадим определение арифметическому квадратному корню.

Квадратным корнем (арифметическим квадратным корнем) из неотрицательного числа \( a\) называется такое неотрицательное число, квадрат которого равен \( a\)
\( \left( \sqrt=x,\ ^>=a;\ \ x,a\ge 0 \right)\)

А почему же число \( a\) должно быть обязательно неотрицательным?

Например, чему равен \( \sqrt\). Так-так, попробуем подобрать. Может, три?

Проверим: \( ^>=9\), а не \( -9\). Может, \( \left( -3 \right)\)? Опять же, проверяем: \( <<\left( -3 \right)>^>=9\). Ну что же, не подбирается? Это и следовало ожидать – потому что нет таких чисел, которые при возведении в квадрат дают отрицательное число!

Это надо запомнить: число или выражение под знаком корня должно быть неотрицательным!

Такое замечание вполне уместно. Здесь необходимо просто разграничить понятия квадратных уравнений и арифметического квадратного корня из числа.

Квадратное уравнение или квадратный корень?

К примеру, \( ^>=4\) не равносильно выражению \( x=\sqrt\).

Из \( ^>=4\) следует, что \( \left| x \right|=\sqrt\), то есть \( x=\pm \sqrt=\pm 2\) или \( _>=2;\ _>=-2\).

А из \( x=\sqrt\) следует, что \( x=2\).

Конечно, это очень путает, но это необходимо запомнить, что знаки являются результатом решения уравнения, так как при решении уравнения мы должны записать все иксы, которые при подстановке в исходное уравнение дадут верный результат.

В наше квадратное уравнение подходит как \( 2\), так и \( -2\).

Однако, если просто извлекать квадратный корень из чего-либо, то всегда получаем один неотрицательный результат.

А теперь попробуй решить такое уравнение \( ^>=3\).

Уже все не так просто и гладко, правда? Попробуй перебрать числа, может, что-то и выгорит?

Начнем с самого начала – с нуля: \( ^>=0\) – не подходит.

Двигаемся дальше \( \text=1;\ ^>=1\) – меньше трех, тоже отметаем.

А что если \( x=2\); \( ^>=4\) – тоже не подходит, т.к. это больше трех.

С отрицательными числами получится такая же история.

И что же теперь делать? Неужели перебор нам ничего не дал?

Совсем нет, теперь мы точно знаем, что ответом будет некоторое число между \( 1\) и \( 2\), а также между \( -2\) и \( -1\).

Кроме того, очевидно, что решения не будут целыми числами. Более того, они не являются рациональными. И что дальше?

Давай построим график функции \( y=^>\) и отметим на нем решения. (Прочти по ссылке как использовать график функции для решения уравнений)


Давай попробуем обмануть систему и получить ответ с помощью калькулятора! Извлечем корень из \( 3\), делов-то! Ой-ой-ой, выходит, что \( \sqrt=1,732050807568…\).

Такое число никогда не кончается.

Как же такое запомнить, ведь на экзамене калькулятора не будет!? Все очень просто, это и не надо запоминать, необходимо помнить (или уметь быстро прикинуть) приблизительное значение. \( \sqrt\) и \( -\sqrt\) уже сами по себе ответы.

Такие числа называются иррациональными, именно для упрощения записи таких чисел и было введено понятие квадратного корня.

Рассмотрим еще один пример для закрепления.

Разберем такую задачку: тебе необходимо пересечь по диагонали квадратное поле со стороной \( \displaystyle 1\) км, сколько км тебе предстоит пройти?


Самое очевидное здесь рассмотреть отдельно треугольник и воспользоваться теоремой Пифагора: \( ^>=<^>+<^>\). Таким образом, \( ^>=1+1=2\).

Так чему же здесь равно искомое расстояние?

Очевидно, что расстояние не может быть отрицательным, получаем, что \( c=\sqrt\). Корень из двух приблизительно равен \( 1,41\), но, как мы заметили раньше, \( \sqrt\) -уже является полноценным ответом.

Чтобы решение примеров с корнями не вызывало проблем, необходимо их видеть и узнавать. Для этого необходимо знать, по меньшей мере, квадраты чисел от \( 1\) до \( 20\), а также уметь их распознать.

К примеру, необходимо знать, что \( 15\) в квадрате равно \( 225\), а также, наоборот, что \( 225\) – это \( 15\) в квадрате.

Вот тебе полная таблица квадратов чисел. Сверху строка — основание степени, слева в столбик показатель степени, на пересечение искомое значение степени. Запомнить нужно только то, что выделено зеленым.


В 8 классе на алгебре начинается самое интересное — вот, например, квадратные уравнения. Так что приготовься запоминать алгоритм их решения!

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

делим обе части исходного уравнения на старший коэффициент 8

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

  • перенесем c в правую часть: ax 2 = - c,
  • разделим обе части на a: x 2 = - c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а > 0, то корни уравнения x 2 = - c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = - c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = - c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

Как решить уравнение ax 2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

0,5x = 0,125,
х = 0,125/0,5

Ответ: х = 0 и х = 0,25.

Как разложить квадратное уравнение

С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

Формула разложения квадратного трехчлена

Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

формула корней квадратного уравнения

где D = b 2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

  • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
  • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
  • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

  1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
  2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
  3. Найдем корень

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x 2 = 0.

    Произведем равносильные преобразования. Умножим обе части на −1

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x 2 — х = 0.

    Преобразуем уравнение так, чтобы появились множители

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x 2 — 10 = 39.

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

    Найдем дискриминант по формуле

D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

Ответ: корней нет.

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 - 4ac = 4n 2 — 4ac = 4(n 2 - ac) и подставим в формулу корней:


Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

формула корней квадратного уравнения со вторым коэффициентом 2·n

где D1 = n 2 - ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

Формула Виета

Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

    Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.


Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12x 2 - 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

условие квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 - 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

напоминание формулы корней квадратного уравнения

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 - 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

Факт 1.
\(\bullet\) Возьмем некоторое неотрицательное число \(a\) (то есть \(a\geqslant 0\) ). Тогда (арифметическим) квадратным корнем из числа \(a\) называется такое неотрицательное число \(b\) , при возведении которого в квадрат мы получим число \(a\) : \[\sqrt a=b\quad \text\quad a=b^2\] Из определения следует, что \(a\geqslant 0, b\geqslant 0\) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть \(100^2=10000\geqslant 0\) и \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Чему равен \(\sqrt\) ? Мы знаем, что \(5^2=25\) и \((-5)^2=25\) . Так как по определению мы должны найти неотрицательное число, то \(-5\) не подходит, следовательно, \(\sqrt=5\) (так как \(25=5^2\) ).
Нахождение значения \(\sqrt a\) называется извлечением квадратного корня из числа \(a\) , а число \(a\) называется подкоренным выражением.
\(\bullet\) Исходя из определения, выражения \(\sqrt\) , \(\sqrt\) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от \(1\) до \(20\) : \[\begin <|ll|>\hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2=400\\ \hline \end\]

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число \(\sqrt2\) мы не можем. Представим, что \(\sqrt2\) – это некоторое число \(a\) . Соответственно, выражение \(\sqrt2+3\sqrt2\) есть не что иное, как \(a+3a\) (одно число \(a\) плюс еще три таких же числа \(a\) ). А мы знаем, что это равно четырем таким числам \(a\) , то есть \(4\sqrt2\) .

Факт 4.
\(\bullet\) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака \(\sqrt <> \ \) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа \(16\) можно, потому что \(16=4^2\) , поэтому \(\sqrt=4\) . А вот извлечь корень из числа \(3\) , то есть найти \(\sqrt3\) , нельзя, потому что нет такого числа, которое в квадрате даст \(3\) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\) ), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\) ) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb\) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.


Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\) , равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. Например, \(|3|\) и \(|-3|\) равны 3, так как расстояния от точек \(3\) и \(-3\) до \(0\) одинаковы и равны \(3\) .
\(\bullet\) Если \(a\) – неотрицательное число, то \(|a|=a\) .
Пример: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Если \(a\) – отрицательное число, то \(|a|=-a\) .
Пример: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число \(0\) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная \(x\) (или какая-то другая неизвестная), например, \(|x|\) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: \(|x|\) . \(\bullet\) Имеют место следующие формулы: \[<\large<\sqrt=|a|>>\] \[<\large<(\sqrt)^2=a>>, \text < при условии >a\geqslant 0\] Очень часто допускается такая ошибка: говорят, что \(\sqrt\) и \((\sqrt a)^2\) – одно и то же. Это верно только в том случае, когда \(a\) – положительное число или ноль. А вот если \(a\) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо \(a\) число \(-1\) . Тогда \(\sqrt=\sqrt=1\) , а вот выражение \((\sqrt )^2\) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что \(\sqrt\) не равен \((\sqrt a)^2\) ! Пример: 1) \(\sqrt<\left(-\sqrt2\right)^2>=|-\sqrt2|=\sqrt2\) , т.к. \(-\sqrt2

\(\phantom\) 2) \((\sqrt)^2=2\) . \(\bullet\) Так как \(\sqrt=|a|\) , то \[\sqrt>=|a^n|\] (выражение \(2n\) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) \(\sqrt=|4^3|=4^3=64\)
2) \(\sqrt=|-25|=25\) (заметим, что если модуль не поставить, то получится, что корень из числа равен \(-25\) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) \(\sqrt>=|x^8|=x^8\) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
\(\bullet\) Для квадратных корней верно: если \(\sqrt a Пример:
1) сравним \(\sqrt\) и \(6\sqrt2\) . Для начала преобразуем второе выражение в \(\sqrt\cdot \sqrt2=\sqrt=\sqrt\) . Таким образом, так как \(50<72\) , то и \(\sqrt<\sqrt\) . Следовательно, \(\sqrt 2) Между какими целыми числами находится \(\sqrt\) ?
Так как \(\sqrt=7\) , \(\sqrt=8\) , а \(49<50<64\) , то \(7<\sqrt<8\) , то есть число \(\sqrt\) находится между числами \(7\) и \(8\) .
3) Сравним \(\sqrt 2-1\) и \(0,5\) . Предположим, что \(\sqrt2-1>0,5\) : \[\begin &\sqrt 2-1>0,5 \ \big| +1\quad \text<(прибавим единицу к обеим частям)>\\[1ex] &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text<(возведем обе части в квадрат)>\\[1ex] &2>1,5^2\\ &2>2,25 \end\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1 Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3 \(\bullet\) Следует запомнить, что \[\begin &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем \(\sqrt\) . Мы знаем, что \(100^2=10\,000\) , \(200^2=40\,000\) и т.д. Заметим, что \(28224\) находится между \(10\,000\) и \(40\,000\) . Следовательно, \(\sqrt\) находится между \(100\) и \(200\) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между \(120\) и \(130\) ). Также из таблицы квадратов знаем, что \(11^2=121\) , \(12^2=144\) и т.д., тогда \(110^2=12100\) , \(120^2=14400\) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900\) . Таким образом, мы видим, что \(28224\) находится между \(160^2\) и \(170^2\) . Следовательно, число \(\sqrt\) находится между \(160\) и \(170\) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце \(4\) ? Это \(2^2\) и \(8^2\) . Следовательно, \(\sqrt\) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем \(162^2\) и \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Следовательно, \(\sqrt=168\) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, - на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

Найдите значение выражения \(\frac \cdot \sqrt>>\) .

Перепишем исходное выражение, занеся все числа под один корень:

Разложим выражение под корнем на множители так, чтобы среди них были полные квадраты:

\(\sqrt = \sqrt = 2 \cdot 3 \cdot \sqrt = 6\sqrt\) .

Найдите значение выражения \(6\sqrt \cdot \sqrt \cdot 16\sqrt\) .

Преобразуем \(\sqrt = \sqrt \cdot \sqrt\) .

Найдем произведение множителей без корня, а множители с корнем сгруппируем:

\(6\cdot \sqrt \cdot \sqrt \cdot \sqrt \cdot 16\sqrt=96 \sqrt^2 \cdot \sqrt^2 = 96 \cdot 5 \cdot 2 = 960\) .

Найдите значение выражения \(4\sqrt \cdot \sqrt \cdot 4\sqrt\) .

Преобразуем \(\sqrt = \sqrt \cdot \sqrt\) .

Найдем произведение множителей без корня, а множители с корнем сгруппируем:

\(4\sqrt \cdot \sqrt \cdot 4 \sqrt \cdot \sqrt =16 \cdot \sqrt^2 \cdot \sqrt^2 = 16 \cdot 3 \cdot 2 = 96\) .

Найдите значение выражения \(\frac \cdot \sqrt>>\) .

Перепишем исходное выражение, занеся все числа под один корень:

Разложим выражение под корнем на множители так, чтобы среди них были полные квадраты:

Какое из чисел \(\sqrt\) , \(\sqrt\) , \(\sqrt\) является рациональным?

Число является рациональным, если его можно записать без корня.

\(\sqrt = \sqrt \cdot \sqrt = 9 \sqrt\) — иррациональное число.

\(\sqrt = \sqrt \cdot \sqrt = 90\) — рациональное число.

\(\sqrt = \sqrt \cdot \sqrt \cdot \sqrt = 90\sqrt\) — иррациональное число.

Какое из данных чисел является значением выражения \(\frac<(2\sqrt<7>)^2>\) ?

Преобразуем числитель: \((2\sqrt)^2 = 2^2 \cdot <\sqrt>^2 = 4 \cdot 7 = 28\) .

Какое из данных чисел является значением выражения \(\frac<(3\sqrt<5>)^2>\) ?

Преобразуем числитель: \((3\sqrt)^2 = 3^2 \cdot <\sqrt>^2 = 9 \cdot 5 = 45\) .

с использованием гранта Президента Российской Федерации на развитие гражданского общества, предоставленного Фондом президентских грантов

при поддержке Научно-исследовательского института Проблем развития научно-образовательного потенциала молодежи

Читайте также: