Количественное определение карбоксигемоглобина в крови при отравлении угарным газом

Обновлено: 24.04.2024

Оксид углерода. Токсикологическое значение
Из ядовитых газообразных веществ особое токсикологическое значение имеет оксид углерода (II), который можно обнаружить и определить количественно без изолирования непосредственно в биологическом объекте.

Оксид углерода (II), угарный газ (СО) – газ без цвета и запаха. С воздухом образует взрывоопасные смеси. Угарный газ находится везде, где существуют условия для неполного сгорания веществ, содержащих углерод.

Токсическое действие. Окись углерода присоединяется к гемоглобину крови, образуя карбоксигемоглобин (НЬСО), в результате чего понижается содержание кислорода в крови и тканях (аноксемия и гипоксия). Низкие концентрации кислорода оказывает токсическое действие на клетки, нарушая дыхание тканей.

При остром отравлении угарным газом наступает головная боль, головокружение, тошнота, рвота, потеря сознания, коллапс, смерть. Симптомы отравления появляются при концентрации 0,2 мг на 1л воздуха и увеличиваются с повышением концентрации СО в воздухе и длительности воздействия.

Для хронического отравления СО характерно разнообразие многочисленных симптомов, наиболее типичными из которых являются психическая и физическая астения, головные боли и головокружения.

Оксид углерода. Поступление в организм и всасывание.

Оксид углерода (II) поступает в организм через дыхательные пути и определяется концентрацией во вдыхаемом воздухе угарного газа и кислорода, длительностью воздействия СО и интенсивностью лёгочной вентиляции. Окись углерода взаимодействует с двухвалентным железом гемоглобина крови, вытесняя из оксигемоглобина (НЬО2) кислород и образуя карбоксигемоглобин (НЬСО).

Грамм гемоглобина может связать 1,34 мл кислорода или окиси углерода. Сродство гемоглобина к окиси углерода в 220-290 раз больше, чем к кислороду, поэтому СО легко вытесняет кислород из оксигемоглобина, образуя более стойкое соединение. Карбоксигемоглобин диссоциирует в 3600 раз медленнее, чем оксигемоглобин, что приводит к накоплению карбоксигемоглобина в крови и усилению кислородной недостаточности.

Окись углерода также связывается с двухвалентным железом миоглобина, цитохрома, цитохромоксидазы, пероксидазы и каталазы. В незначительной степени СО окисляется в углекислоту.

Оксид углерода. Распределение в организме.
При остром отравлении высокими концентрациями СО большая часть яда, находящегося в крови, связана с эритроцитами. Повторные острые отравления приводят к повышению уровня СО в плазме, а при хроническом отравлении в плазме обнаруживается 25-30% общего количества окиси углерода, связанной кровью. В значительном количестве СО переходит из крови в ткани. При остром отравлении в скелетных мышцах и миокарде обнаруживается до 13,5% от общего количества адсорбированной СО, где она связана с миоглобином.

Оксид углерода. Выделение из организма.
Выделение СО происходит через дыхательные пути и продолжается несколько часов. Около 60-70% яда выделяется в течение первого часа, а за 4 часа составляет 96% от адсорбированной организмом дозы. Некоторое количество СО выводится через ЖКТ, ничтожные количества выделяются через кожу, а также с мочой в виде комплексного соединения с железом.

Объектами исследования являются кровь из трупа и воздух, содержащий СО.

При острых отравлениях концентрация карбоксигемоглобина в крови составляет около 40%, а при смертельных исходах до 60% и более.

Обнаружение карбоксигемоглобина в крови является доказательством отравления угарным газом. Для обнаружения и количественного определения СО используют химические, газохроматографические, фотоколориметрические, спектрофотометрические и спектроскопические методы анализа.

1. Спектроскопический метод. При исследовании крови спектроскопом в спектре можно увидеть тёмные полосы поглощения определённых длин волн для гемоглобина и его производных. В судебно-медицинской практике часто используют микроспектроскоп (спектроскоп, соединённый с окуляром).

Оксигемоглобин в видимой части спектра имеет две полосы поглощения при длинах волн 577-589 и 536-556 нм. Карбоксигемоглобин также имеет две полосы поглощения при 564-579 и 523-536 нм.

Кровь для исследования разбавляют водой до светло-розовой окраски (чётко видны спектральные полосы). К четырём объёмам водного раствора крови добавляют 1 мл свежеприготовленного раствора аммония сульфида или другого восстановителя. При этом оксигемоглобин восстанавливается до дезоксигемоглобина – исчезают полосы поглощения оксигемоглобина и появляется широкая полоса поглощения дезоксигемоглобина при длинах волн 543-596 нм. Карбоксигемоглобин при этом не восстанавливается и его полосы поглощения не исчезают. По этим полосам делают заключение об отравлении СО.

Спектроскопический метод можно использовать при содержании в крови от 10% до 30% карбоксигемоглобина.

2. Спектрофотометрическое определение. Кровь в количестве 0,1 мл растворяют в 10 мл аммиака, наливают в кювету и измеряют оптическую плотность (D) при длинах волн 578 и 564 нм. Содержание карбоксигемоглобина в крови рассчитывают по формуле:

%СОНb = (1,70- D578/D564):(1,70 -0,75) 100

При содержании карбоксигемоглобина до 30% точность метода составляет около 1,5% а при содержании его в крови до 50%, точность до 5%. Проведение анализа требует 3-5 мин.

3. Фотометрическое определение. Кровь в количестве 0,1 мл растворяют в 5 или 10 мл аммиака и 0,5 мл полученного раствора вносят в кювету. В кювету сравнения вносят раствор аммиака. Измеряют экстинкцию при длинах волны пропускаемого света 530 и 470 нм. По полученным средним значениям экстинкций вычисляют:

Процент карбоксигемоглобина определяют по формуле:

%СОНb = (97,5Q – 100) : (0,0955Q + 0,342)

Процент карбоксигемоглобина можно определить также по калибровочному графику (зависимость между величиной Q и содержанием карбоксигемоглобина в крови). Ошибка определения не более 4%, время выполнения анализа около 10 мин.

4. Химические методы обнаружения СО в крови. Суть этих методов состоит в том, что при добавлении соответствующих реактивов окраска нормальной крови изменяется, а кровь, содержащая карбоксигемоглобин окраску не изменяет или изменяет незначительно. Поэтому всегда проводят два опыта.

  1. Проба Гоппе-Зейлера. К определённому объёму крови добавляют равный объём 30% раствора NaOH. Нормальная кровь буреет, а кровь, содержащая СОНb, не изменяется (ярко красная).
  2. Проба Сальковского-Катаяма. К 10 мл дистиллированной воды добавляют 5 капель крови и 5 капель аммония сульфида, осторожно взбалтывают и прибавляют 30% раствор кислоты уксусной до слабокислой реакции среды. Нормальная кровь – серо-зелёная, исследуемая – малиново-красная.
  3. Проба Хорошкевича-Маркса. К 2 мл крови добавляют 4 мл 8% раствора хинина гидрохлорида доводят до кипения. После охлаждения прибавляют 2-3 капли сульфида аммония. Нормальная кровь – грязно-красно-бурая, исследуемая -красная.
  4. Проба Бюркера. К 5-10 мл разбавленной крови добавляют 5 капель 1 % раствора калия гексацианоферрата (III). Нормальная кровь – желтоватого цвета, исследуемая – красная.
  5. Проба Сидорова. К 2 мл разбавленной крови добавляют 3-5 капель 30% раствора К3[Fе(СN)]6 и 3-5 капель 0,01% раствора K2Cr2О7. Нормальная кровь – коричневато-зелёная, исследуемая – карминово-красная.
  6. Проба Ветцеля. К 10 мл разбавленного раствора крови добавляют 5 мл 20% раствора калия гексацианоферрата и 1 мл ледяной кислоты уксусной. Нормальная кровь образует серовато-коричневый осадок, а исследуемая – вишнёво-красный осадок.
  7. Проба Кункеля-Ветцеля. К 5 мл разбавленной крови добавляют 15 мл 3% водного раствора таннина. Нормальная кровь образует серовато-коричневый осадок, а исследуемая светло карминово-красный осадок.
  8. Проба Либмана. К 5 мл неразбавленной крови добавляют 5 мл формалина. Нормальная кровь – коричнево- чёрная, исследуемая красного цвета.
  9. Проба Рубнера. К 5 мл неразбавленной крови добавляют 20 мл 5% раствора основного свинца ацетата. Нормальная кровь коричневатого цвета, исследуемая красного цвета.
  10. Проба Залесского. К 5 мл разбавленной крови добавляют 5 капель 10% раствора меди (II) сульфата. Нормальная кровь – зеленоватая, исследуемая – красная.

Заключение о наличии карбоксигемоглобина можно сделать на основании большинства этих реакций. Если в крови мало карбоксигемоглобина, то окраска может измениться, поэтому эти реакции непригодны для определения малых количеств СОНb.

Оксид углерода. Количественное определение.

1.Определение СО в воздухе. Метод основан на окислении СО в СO2 йодноватым ангидридом и его определении.

Избыток гидроксида бария оттитровывают кислотой соляной.

Метод основан на определении карбоксигемоглобина спектроскопически. Для этого готовят ряд растворов: раствор А – раствор исследуемой крови;

раствор Б – раствор крови, содержащей СОНb и дезоксигемоглобин. Его готовят из раствора А добавлением натрия дитионата.

раствор В – раствор крови, в котором все формы гемоглобина переведены в СОНb.

Расчёт содержания СОНb в исследуемой крови в процентах производят по следующей формуле:

Р = 100 – (DCOHb – DHbCOHb) 100 : (DCOHb, К )где

Р = 100 – (DCOHb – DHbCOHb) 100 : (DCOHb, К )где

DCOHb – оптическая плотность раствора В (при 538 нм)

DHbCOHb – оптическая плотность раствора Б (при 538 нм)

DHb – оптическая плотность раствора Б в изобестической точке (точка в которой оптические плотности растворов СОНb и дезоксигемоглобина равны) при 550 нм К- коэффициент, равный 0,372.

При концентрациях СОНb от 3% до 20% ошибка не более 3%, а при концентрациях свыше 20% не более 5%.

Поступивший в организм оксид углерода (II) связывается с дезокси- и оксигемоглобином, вследствие чего образуется карбоксигемоглобин (COHb). Метгемоглобин не связывается с оксидом углерода (II) в крови. Однако в лабораторных условиях при помощи дитионита натрия (Na 2 S 2 O 4 ·2H 2 O) или других восстановителей метгемоглобин можно перевести в дезоксигемоглобин.

Все перечисленные выше соединения гемоглобина (дезоксигемоглобин, оксигемоглобин и карбоксигемоглобин) можно обнаружить по их спектрам поглощения в видимой области в пределах длин волн от 450 до 620 нм. Спектры поглощения оксигемоглобина и карбоксигемоглобина незначительно отличаются друг от друга. В связи с этим спектральные характеристики указанных соединений трудно использовать для их количественного определения. Значительно отличаются друг от друга спектры поглощения дезоксигемоглобина и карбоксигемоглобина. Поэтому различие этих спектров используется для количественного определения карбоксигемоглобина в крови.

Для количественного спектрофотометрического определения оксида углерода (II) по карбоксигемоглобину приготовляют ряд растворов: раствор А — раствор исследуемой крови; раствор Б — раствор крови, содержащей смесь карбоксигемоглобина и дезоксигемоглобина; раствор В — раствор крови, в которой все формы гемоглобина (дезоксигемоглобин, оксигемоглобин и метгемоглобин) полностью переведены в карбоксигемоглобин.

Чтобы избежать частичного разложения карбоксигемоглобина работа с содержащими его растворами должна производиться вдали от естественных и искусственных источников света с минимальным доступом воздуха.

Приготовление раствора А. 1 мл исследуемой трупной крови, не содержащей сгустков, вносят в мерную колбу вместимостью 100 мл и прибавляют фосфатный буферный раствор (рН = 7,38). Жидкость взбалтывают и объем ее доводят фосфатным буферным раствором до 100 мл. Полученный при этом раствор крови должен быть прозрачным.

Приготовление раствора Б. Этот раствор готовят из раствора А непосредственно в кювете спектрофотометра перед измерением оптической плотности. С этой целью в кювету вносят раствор исследуемой крови (раствор А) в таком количестве, чтобы после закрытия кюветы крышкой между ней и жидкостью не было воздуха. К раствору А, внесенному в кювету, прибавляют 3—4 мг дитионита натрия (Na 2 S 2 O 4 ·H 2 O). Содержимое кюветы тщательно перемешивают тонкой стеклянной палочкой. При этом оксигемоглобин и метгемоглобин восстанавливаются до дезоксигемоглобина, а карбоксигемоглобин с дитионитом натрия не реагирует. После прибавления дитионита натрия раствор должен быть прозрачным.

Приготовление раствора В. Этот раствор получают в специальном приборе, представленном на рис. 9. Применяемый для этой цели прибор состоит из колбы 1, закрытой пробкой, снабженной капельной воронкой 2 и отводной стеклянной трубкой для выхода оксида углерода (II) из колбы, четырех склянок Дрек-селя (3, 4, 5, 6) и отводной трубки 7. Колбу и склянки Дрекселя соединяют между собой резиновыми трубками. При отсутствии склянок Дрекселя их можно заменить колбами вместимостью 50 мл, отверстия которых закрыты пробками, снабженными двумя стеклянными трубками.

В колбу 1 вносят 50 мл концентрированной серной кислоты, а в капельную воронку 2 — 10 мл муравьиной кислоты. В склянку 3 вносят 10 %-й раствор гидроксида натрия, в склянки 4 и 6 — дистиллированную воду, а в склянку 5 — раствор А исследуемой крови в фосфатной буферной смеси. В склянки 3, 4, 5 и 6 вносят столько жидкости, чтобы трубки погружались на 2 см в жидкость.

Из капельной воронки 2 в подогретую колбу / по каплям приливают муравьиную кислоту. Интенсивность выделения оксида углерода (II) регулируют скоростью приливания муравьиной кислоты. По мере расходования муравьиной кислоты выделение газа замедляется. В начале опыта для увеличения скорости выделения оксида углерода (II) колбу осторожно нагревают на небольшом пламени газовой горелки.

Учитывая высокую токсичность оксида углерода (II), при работе с ним необходимо соблюдать осторожность. Получение оксида углерода (II) и насыщение крови этим газом должно производиться в вытяжном шкафу с хорошей тягой.

Оксид углерода (II) из колбы 1 пропускают через склянки Дрекселя в течение 15 мин. За это время оксигемоглобин крови полностью превращается в карбоксигемоглобин. Однако при этом в растворе может оставаться некоторое количество метгемоглобина, который необходимо перевести в дезоксигемоглобин, а затем в карбоксигемоглобин. С указанной целью после пятиминутного пропускания оксида углерода (II) от прибора отсоединяют склянку 5, в которую вносят 5—7 мг дитионита натрия, и жидкость хорошо взбалтывают. (Осторожно! Не вдыхать оксид углерода (II)!). Затем склянку 5 присоединяют к прибору и в течение 5 мин пропускают оксид углерода (II). После насыщения оксидом углерода (II) раствор крови, содержащий карбоксигемоглобин, должен быть прозрачным.

При количественном определении оксида углерода (II) необходимо измерять оптическую плотность раствора крови, содержащего смесь карбоксигемоглобина и дезоксигемоглобина, а затем измерять оптическую плотность раствора крови, насыщенного оксидом углерода (II). Этот раствор не должен содержать дезоксигемоглобина, оксигемоглобина и метгемоглобина.

Дезоксигемоглобин имеет максимум светопоглощения при длине волны, равной 557 нм, а карбоксигемоглобин имеет 2 максимума светопоглощения при длинах волн 541 и 571 нм. При наложении спектральных кривых карбоксигемоглобина и дезоксигемоглобина на одном графике отмечается появление трех изобестических точек (а, б, в) при длинах волн 550, 565 и 580 нм. В этих точках пересечения спектральных кривых оптические плотности растворов карбоксигемоглобина и дезоксигемоглобина одинаковы (рис. 10).

Прежде чем приступить к определению карбоксигемоглобина спектрофотометрическим методом, на графике, на который нанесены спектры поглощения карбоксигемоглобина и дезоксигемоглобина, необходимо найти длину волны, при которой расстояние между обеими спектральными кривыми (карбоксигемоглобина и дезоксигемоглобина) будет наибольшим вблизи первого максимума поглощения карбоксигемоглобина (т. е. при длине волны, равной 541 нм). На основании экспериментальных данных эта наибольшая разница значений оптических плотностей растворов карбоксигемоглобина и дезоксигемоглобина имеет место при длине волны, равной 538 нм.

В кювету спектрофотометра с толщиной слоя жидкости 1 см вносят исследуемый раствор крови (раствор А), прибавляют 3— 4 мг дитионита натрия и поступают так, как указано при описании способа получения раствора Б. Оптическую плотность этого раствора измеряют при длинах волн, равных 538 и 550 нм. Затем измеряют оптическую плотность раствора крови, в которой весь гемоглобин переведен в карбоксигемоглобин (раствор В) при длине волны, равной 538 нм. При измерении оптической плотности обоих растворов крови раствором сравнения является вода.

Приготовление сульфида аммония (см. Приложение 1, реактив 73).

Приготовление фосфатного буферного раствора для определения карбоксигемоглобина (см. Приложение 1, реактив 74).

Расчет содержания карбоксигемоглобина в исследуемой крови в процентах Ρ производят по формуле

где D COHb — оптическая плотность раствора В крови, дополнительно насыщенного оксидом углерода (II) (при 538 нм); D HbCOHb — оптическая плотность раствора Б крови, обработанного дитионитом натрия, содержащего смесь дезокси- и карбоксигемоглобина (при 538 нм); D HbI — оптическая плотность раствора Б крови в изобестической точке (при 550 нм); К — коэффициент 0,372.

Величина ошибки определения карбоксигемоглобина в пределах концентраций от 3 до 20 % составляет ±3%, при концентрациях свыше 20 % погрешность примерно равняется ± 5 %.

Вариант метода спектрофотометрического определения карбоксигемоглобина в крови предложили Л. П. Букина и Л. И. Ушакова (Судебно-медицинская экспертиза, 1979, № 2). Предложенный ими вариант метода аналогичен описанному выше. Однако, согласно варианту метода, предложенного Л. П. Букиной и Л. И. Ушаковой, не требуется насыщения крови оксидом углерода (II) при каждом определении карбоксигемоглобина.

Судебно-медицинская оценка результатов количественного определения карбоксигемоглобина в крови по Г. А. Сыцянко (Научно-исследовательский институт судебной медицины МЗ СССР) приведена ниже.

Содержание карбоксигемоглобина в крови зависит прежде всего от концентрации оксида углерода (II) во вдыхаемом воздухе и времени его воздействия. Концентрация карбоксигемоглобина в крови тем выше, чем выше парциальное давление оксида углерода (II) в альвеолярном воздухе по сравнению с парциальным давлением кислорода.

За один и тот же промежуток времени при прочих равных условиях в организм поступает оксида углерода (II) тем больше, чем больше минутный объем дыхания. Симптомы, обусловленные разной коицетрацией карбоксигемоглобина в крови, тяжесть и исход отравления представлены ниже в табл. 9. Эти данные имеют ориентировочное значение.

Однако наблюдения и специальные исследования показывают, что соответствие между концентрацией карбоксигемоглобина и тяжестью отравления имеется не всегда. Это особенно отчетливо проявляется при групповых отравлениях.

Смертельная концентрация карбоксигемоглобина в крови составляет в среднем около 60 %, но может колебаться от 40 до 80 % и более. Это колебание обусловлено как влиянием внешних условий, так и особенностями организма.

Карбоксигемоглобин (HbCO) – это стабильный комплекс монооксида углерода, который образуется в эритроцитах при вдыхании монооксида углерода в результате метаболизма метиленхлорида в печени или в качестве побочного продукта в процессе деградации гемоглобина. Основным пусковым механизмом развития гипоксии при отравлении угарным газом (СО) является образование HbCO, который утрачивает способность переносить кислород. Образуется при действии на организм угарного газа (CO), а также при отравлении карбонилами металлов: никеля и железа. Постоянно находится в крови в небольшом количестве, но его концентрация может колебаться в зависимости от условий и образа жизни.

Синонимы русские

Побочные соединения гемоглобина.

Синонимы английские

Метод исследования

Единицы измерения

Какой биоматериал можно использовать для исследования?

Общая информация об исследовании

Самым распространенным гемсодержащим белком и, следовательно, источником наиболее эндогенного CO является гемоглобин. В конце своей 120-дневной жизни эритроциты изолируются из кровообращения ретикулоэндотелиальной системой. В реакции, катализируемой ферментом, ограничивающим скорость оксигеназы гема, гем превращается в эквимолярные количества биливердина, железа и CO. Биливердин впоследствии превращается в желтый пигмент билирубин, который выводится печенью с желчью, а железо перерабатывается.

Карбоксигемоглобин (HbCO) – это стабильный комплекс монооксида углерода, который образуется в эритроцитах при вдыхании монооксида углерода в результате метаболизма метиленхлорида в печени или в качестве побочного продукта в процессе деградации гемоглобина (вариант нормы в определенных количествах). Из всех гемсодержащих белков Hb не только наиболее распространен, но и проявляет самое высокое сродство к окиси углерода, так что большая часть CO в крови связана с Hb. Обратимое связывание происходит с одним и тем же атомом железа на участке гема, где связывается кислород, продуктом этого связывания и является карбоксигемоглобин (COHb).

Эндогенно вырабатываемый монооксид углерода не просто потенциально токсичный отход метаболизма, он участвует во многих физиологических функциях, включая регуляцию дыхания, нейрональную передачу, регуляцию кровяного давления и сокращение матки во время беременности.

Обычно он составляет менее 1-2 % от общего гемоглобина, являясь продуктом реакции между монооксидом углерода и гемоглобином. Образуется, как указано выше, эндогенно, но также может быть распространенным загрязнителем окружающей среды; оба источника вносят свой вклад в количество COHb в крови. В оздух содержит СО, частично являющийся результатом естественных процессов, но в основном в результате неполного сгорания углеводородов. Наиболее значительным неестественным источником CO в окружающей среде служат выхлопные газы автомобилей. Совокупное воздействие эндогенного и экологического CO приводит к тому, что COHb составляет менее 3 % для большинства некурящих городских жителей и может составлять всего 1-2% для тех, кто живет в сельских районах, где воздух менее загрязнен CO.

Сигаретный дым содержит высокую концентрацию CO, и курильщики подвергаются воздействию примерно 400-500 ppm (parts per million - частей на миллион) CO во время курения и, следовательно, имеют гораздо более высокий COHb.

CO вытесняет кислород из гемоглобина, и, таким образом, COHb эффективно снижает способность переносить кислород дозозависимым образом. Кроме того, связывание СОHb в первом из четырех гем-сайтов оказывает влияние на его четвертичную структуру, что приводит к снижению сродства к кислороду в остальных трех сайтах. Этот эффект проявляется в сдвиге кривой диссоциации гемоглобина влево и приводит к снижению выделения кислорода из гемоглобина в тканях. Комбинированный эффект снижения способности переносить кислород и снижения высвобождения кислорода в ткани приводит к тому, что ткани испытывают кислородное голодание (гипоксия).

Такие органы, как мозг и сердце, чье нормальное потребление кислорода по сравнению с другими органами относительно высокое, особенно чувствительны к относительной аноксии, вызванной повышенным COHb.

Наиболее распространенные симптомы – головная боль, головокружение и спутанность сознания – отражают выраженную чувствительность мозга к относительной аноксии. Тошнота и рвота также распространены. Пострадавшие могут испытывать одышку, особенно при физической нагрузке, и иметь клинические признаки (тахикардия), указывающие на компенсацию дефицита кислорода. В более тяжелых случаях наблюдаются явные признаки и симптомы поражения сердца, включая учащенное сердцебиение, гипотензию, ишемическую боль в груди (стенокардию) и даже инфаркт миокарда. Судороги и кома возникают при тяжелой токсичности.

Для чего используется исследование?

  • Подозрения на отравление угарным газом (головная боль, головокружение, боли в груди, шум в ушах, удушье, кашель, тошнота, рвота, повышение АД, галлюцинации, двигательный паралич, потеря сознания). При этом получение небольших доз токсичных воздействий может не сопровождаться симптомами, что затрудняет выявление хронической интоксикации.
  • Мониторинг лечения отравления угарным газом.
  • Оценка влияния хронической экспозиции СО на здоровье (на рабочих местах или дома при наличии источников СО (печи, уголь).
  • Симптоматика центрального цианоза на фоне отсутствия респираторных нарушений и насосной функции сердца.

Что означают результаты?

Референсные значения: 0,5 - 1,5 %.

Отравление – при уровне > 20 %.

Летальный исход – 70 % от общего объема Hb.

Состояния, при которых возможно повышение уровня:

  • курение – уровень HbCO у курильщиков может достигать 10 %;
  • острое или хроническое отравление СО, основные источники СО – домашние отопительные системы, печи, применение угля в брикетах, подземные гаражи, туннели, городские автодороги;
  • пассивное курение (места для курящих в офисах, ресторанах и т.д.);
  • вдыхание паров дихлорметана (растворитель, широко использующийся в агентах, аэрозольных пропеллентах и др.).

При концентрации 0,05 % СО во вдыхаемом воздухе 50 % гемоглобина переходит в HbCO, а при образовании 70 % HbCO наступает летальный исход.

Карбоксигемоглобин (HbCO) – это стабильный комплекс монооксида углерода, который образуется в эритроцитах при вдыхании монооксида углерода в результате метаболизма метиленхлорида в печени или в качестве побочного продукта в процессе деградации гемоглобина. Это форма гемоглобина, которая образуется из нормального гемоглобина в результате реакции с окисью углерода. Так может происходить при воздействии на организм угарного газа, а также при отравлении карбонилами металлов: никеля и железа (Ni(CO)4), (Fe(CO)5). Постоянно находится в крови в небольшом количестве, но его концентрация может колебаться в зависимости от внешних условий и факторов.

Метгемоглобин (MetHb) – продукт окисления железа в молекуле гемоглобина. Если железо гема не переходит обратно в ферроформу, то образуется MetHb, что в свою очередь приводит к нарушению транспорта кислорода. При высоком содержании MetHb присутствуют как полностью окисленные молекулы Hb, так и частично окисленные с измененными функциональными параметрами. Они вызывают нарушение процессов оксигенации органов и тканей с развитием гипоксии и цианоза. Появление неврологической симптоматики связано с нарушением десатурации и элонгации жирных кислот в нейронах. По сути это патологическая форма гемоглобина, которая не способна связывать кислород, из-за чего может возникать гипоксия тканей.

Синонимы русские

Побочные соединения гемоглобина.

Синонимы английские

MetHb, Methemoglobin; HbCO.

Метод исследования

Единицы измерения

Какой биоматериал можно использовать для исследования?

Общая информация об исследовании

Карбоксигемоглобин (HbCO) – это стабильный комплекс монооксида углерода, который образуется в эритроцитах при вдыхании монооксида углерода в результате метаболизма метиленхлорида в печени или в качестве побочного продукта в процессе деградации гемоглобина.

В нормальных физиологических состояниях гемоглобин метаболизируется оксигеназой гема в монооксид углерода, двухвалентное железо и биливердин (зелёный жёлчный пигмент). Оксигеназа гема, обнаруженная в печени и селезенке, – основной эндогенный источник монооксида углерода, который отвечает за небольшое количество ( Монооксид углерода связывается с гемоглобином со сродством в 200-250 раз большим, чем кислород, что приводит к гипоксии тканей. Монооксид углерода также вызывает сдвиг кривой диссоциации оксигемоглобина влево, тем самым уменьшая выделение кислорода из гемоглобина в ткани-мишени, что еще больше усугубляет гипоксию тканей. Приблизительно 85 % поглощенного монооксида углерода связывается с гемоглобином и остается во внутрисосудистом отсеке в виде HbCO. Остальная часть угарного газа поглощается тканями и в первую очередь связывается с миоглобином. В меньшей степени монооксид углерода может также связываться с другими молекулами, такими как цитохромы и НАДФН-редуктаза. Связывание монооксида углерода с этими молекулами может нарушить нормальные физиологические процессы, включая митохондриальную дисфункцию. Мозг и сердце – наиболее часто поражаемые органы при отравлении угарным газом.

Метгемоглобин (MetHb) – продукт окисления железа в молекуле гемоглобина. Обладает пероксидазными свойствами, т.е. способен расщеплять перекись водорода и прочно связывать синильную кислоту и другие токсичные вещества, тем самым снижая степень отравления организма. Нормальная оксигенация гемоглобина предполагает высвобождение электрона из атома железа для связи с кислородом. Железо при этом приобретает ферроформу (Fe3+), а кислород преобразуется в супероксид (О2). При деоксигенации электрон возвращается к атому железа (железо переходит в ферроформу – Fe2+) и высвобождается молекула кислорода (О2). Основная ферментная система, участвующая в этом процессе, – Cb5R (или NADH феррицианидредуктаза, NADH-дегидрогеназа, диафораза I, NADH-метгемоглобинредуктаза, NADH-дегидрогеназа) / эритроцитарный цитохром b5. При блокаде этой системы вследствие генетических дефектов стимулируются минорные пути прямого восстановления MetHb-эндогенными восстановителями (аскорбиновая кислота, восстановленный глютатион, флавин, цистеин, метаболиты триптофана) или другими системами. Если железо гема не переходит обратно в ферроформу, то образуется MetHb, что в свою очередь приводит к нарушению транспорта кислорода. При высоком содержании MetHb присутствуют как полностью окисленные молекулы Hb, так и частично окисленные – так называемые валентные гибриды с измененными функциональными параметрами. Они вызывают нарушение процессов оксигенации органов и тканей с развитием гипоксии и цианоза. Появление неврологической симптоматики связано с нарушением десатурации и элонгации жирных кислот в нейронах, что подтверждено снижением содержания ненасыщенных жирных кислот в аутоптате мозга больных.

Для чего используется исследование?

  • Диагностика врожденных (дефицит цитохром-b5-редуктазы) или приобретенных метгемоглобинемий (вследствие радиоактивных облучений, воздействия токсичных веществ или лекарственных препаратов, являющихся метгемоглобинобразователями (способствующих окислению Fe2+ в Fe3+). Признаки таких состояний: слабость, головокружение, трудности с дыханием, синюшность или характерно грязно-серый цвет кожи, судороги, потери сознания.
  • Подозрения на отравление угарным газом (головная боль, головокружение, боли в груди, шум в ушах, удушье, кашель, тошнота, рвота, повышение АД, галлюцинации, двигательный паралич, потеря сознания).

При этом получение небольших доз токсичных воздействий может не сопровождаться симптомами, что затрудняет выявление хронической интоксикации.

  • Мониторинг лечения отравления угарным газом.
  • Оценка влияния хронической экспозиции СО на здоровье (на рабочих местах или дома при наличии источников СО (печи, уголь).
  • Симптоматика центрального цианоза на фоне отсутствия респираторных нарушений и насосной функции сердца.

Что означают результаты?

Концентрация карбоксигемоглобина: 0,5 - 1,5 %.

Концентрация метгемоглобина: 0 - 1,5 %.

Метгемоглобин

Отравление – при уровне > 15 % от общего объема Hb.

Летальный исход – > 70% от общего объема Hb.

Состояния, при которых возможно повышение уровня:

  • воздействие токсичных веществ или лекарственных препаратов, способствующих окислению Fe2+ в Fe3+;
  • отравление органическими и неорганическими нитритами и нитратами (могут попадать в питьевую воду при применении органических удобрений), бертолетовой солью;
  • передозировка сульфата меди;
  • передозировка органических соединений (хлорит натрия, карбонат аммония, 2,4-динитрофенол);
  • передозировка гербицидов и инсектицидов;
  • передозировка промышленных/бытовых агентов (аниловые красители, нитробензол, нафталин, аминофенол и нитроэтан – средство для удаления лака);
  • передозировка диагностических средств – метиленовым синим (высокая дозы или применение пациентами с дефицитом глюкозо-б-фосфатдегидрогеназы), индигокармином;
  • передозировка местных анестетиков (бензокаин, лидокаин, прилокаин), предрасполагающими факторами служат повреждения слизистой оболочки, что ведет к повышенной абсорбции, противорвотных (метоклопрамид), антибиотиков (сульфаниламиды, нитрофураны, парааминосалициловая кислота), противомалярийных препаратов (хлорохин и др.), противоопухолевых (циклофосфамид, ифосфамид, флутамид), анальгетиков и антипиретиков (ацетаминофен, ацетанилид, фенацетин, целекоксиб); снотворных (зопиклон); антисептиков (резорцин).

Карбоксигемоглобин

Отравление – при уровне > 20 %.

Летальный исход – 70 % от общего объема Hb.

Состояния, при которых возможно повышение уровня:

  • курение – уровень HbCO у курильщиков может достигать 10 %;
  • острое или хроническое отравление СО, основные источники СО – домашние отопительные системы, печи, применение угля в брикетах, подземные гаражи, туннели, городские автодороги;
  • пассивное курение (места для курящих в офисах, ресторанах и т.д.);
  • вдыхание паров дихлорметана (растворитель, широко использующийся в агентах, аэрозольных пропеллентах и др.).

При концентрации 0,05 % СО во вдыхаемом воздухе 50 % гемоглобина переходит в HbCO, а при образовании 70 % HbCO наступает летальный исход.

В статье описаны механизмы образования карбокси- и метгемоглобина в организме в норме, основные причины повышения их концентрации в крови при патологических состояниях (отравлениях), патогенез, особенности клинической картины и диагностики развивающейся интоксикации. Приведена сравнительная характеристика традиционных и современных лабораторных методов определения концентрации указанных дериватов гемоглобина в крови: показаны их принципы, особенности, преимущества и недостатки.

Ключевые слова: карбоксигемоглобин, метгемоглобин, интоксикация, лабораторные методы.

K.V. PHATKULLIN 1 , A.Zh. GILMANOV 1 , D.V. KOSTYUKOV 2

1 Bashkir State Medical University, 3 Lenina St., Ufa, Russian Federation 450000

2 Research and Production Enterprise TEKHNOMEDICA, P.O. Box 1, Moscow, Russian Federation 127081

Clinical importance and modern methodological aspects of determining the level of carboxy-and methaemoglobin in blood

The article describes mechanisms of formation of carboxy-and methaemoglobin in the body, main reasons of the increased concentration in blood under pathological conditions (intoxication), pathogenesis, peculiarities of clinical presentation and diagnosis of a developing intoxication. Comparative characteristics of traditional and modern laboratory methods for determining the concentration of said derivatives of hemoglobin in the blood is given: principles, features, advantages and disadvantages are described.

Key words: carboxyhaemoglobin, methemoglobin, intoxication, laboratory methods.

Дыхание — один из основных физиологических процессов, обеспечивающих жизнедеятельность организма человека. Важнейшей составной частью дыхания в организме служит транспорт кислорода в крови, поэтому мониторинг параметров, определяющих этот процесс, является необходимой клинической процедурой, методологические аспекты которой активно совершенствуются до сих пор.

Транспорт кислорода в крови осуществляется главным ее белком — гемоглобином; определение его концентрации в крови давно стало неотъемлемой частью общеклинического обследования в лечебных учреждениях. Референсным методом определения концентрации гемоглобина является гемиглобинцианидный (по Драбкину), основанный на переводе всех форм гемоглобина в цианметгемоглобин (HiCN). Но из-за использования опасных соединений (цианид калия, ацетонциангидрин) в последние годы он все больше замещается гемихромным методом, обладающим всеми достоинствами гемоглобинцианидного (коэффициент корреляции 0,99) и не требующим применения вредных веществ [1]. Таким образом, определение концентрации общего гемоглобина в крови — это рутинное исследование, не представляющее затруднений.

Карбоксигемоглобин образуется при связывании угарного газа (СО) с атомом Fe 2+ в составе гемоглобина. Он неспособен присоединять кислород и участвовать в его транспорте, поскольку соответствующая валентность железа оказывается занятой.

Угарный газ может иметь как эндогенное, так и экзогенное происхождение. В организме он образуется при распаде гемоглобина в клетках РЭС за счет окисления метинильной группы, находящейся между пиррольными кольцами гема. В ходе катаболизма гема эритроцитов (включая разрушение части клеток во время эритропоэза в костном мозге) образуется около 79% эндогенного угарного газа; остальная его часть (до 21%) формируется в результате расщепления миоглобина, цитохромов, металлосодержащих ферментов (каталаза, пероксидаза, триптофанпирролаза, гуанилатциклаза, NO-синтаза и др.), перекисного окисления липидов, а также действия ксенобиотиков и некоторых бактерий 4. Эндогенная продукция СО возрастает при гемолизе [6]. Основными экзогенными источниками угарного газа являются выхлопные газы машин, печи и камины, а также краски и растворители, содержащие метиленхлорид (его пары абсорбируются легкими, попадают в кровоток и при окислении в печени могут образовать СО), а также курение табака.

Физиологический уровень эндогенного карбоксигемоглобина в крови составляет, по данным разных авторов, от 1 до 3,4%. У жителей городов с сильно загрязненным воздушным бассейном показатель COHb в крови намного выше — в среднем 8,8%, у жителей Москвы — до 12% [7].

После прекращения воздействия (вдыхания CO) до 70% угарного газа выделяется из организма в течение первого часа, до 96% — за 4-8 часов. Выведение монооксида углерода осуществляется в основном через дыхательные пути, незначительная часть выходит через кожу и ЖКТ, а также с мочой в виде комплексного соединения с железом.

Токсическое действие монооксида углерода на организм обусловлено суммарным эффектом гипоксической гипоксии (в результате понижения парциального давления кислорода во вдыхаемом воздухе); гемической гипоксии (в результате образования COНb); циркуляторной гипоксии (вследствие гемодинамических нарушений) и тканевой гипоксии (из-за инактивации ферментов тканевого дыхания).

Особенно чувствительны к гипоксии при воздействии угарного газа ткани с интенсивным энергообменом — нервная и миокардиальная, а также эмбриональные ткани. Образование COMb отрицательно влияет на функциональное состояние миокарда и скелетной мускулатуры; так, для острых отравлений угарным газом были характерны очень высокие концентрации КФК-MB в крови пациентов [11].

В последние годы немалая роль в механизме токсического действия угарного газа отводится обусловленному гипоксией развитию оксидативного стресса с образованием свободнорадикальных форм кислорода. В условиях гипоксии ускоряется распад гликогена, нарушается утилизация глюкозы и возрастает уровень лактата, страдают другие виды метаболизма. Наиболее тяжело переносят отравление угарным газом лица с анемиями, гематологическими расстройствами и хроническими сердечно-легочными заболеваниями, особенно в пожилом возрасте.

Клинические проявления острого отравления у человека — от головокружения, головной боли, тошноты и рвоты при отравлении легкой степени до судорог, потери сознания, комы и смерти в тяжелых случаях — зависят от концентрации угарного газа во вдыхаемом воздухе и от времени воздействия. При тяжелой физической работе легочная вентиляция резко увеличивается (до 30 л/мин по сравнению с 6-9 л/мин в покое), соответственно, возрастает и поглощение СО. Легким считается отравление, при котором содержание карбоксигемоглобина в крови не превышает 20%; среднетяжелым — до 50%; тяжелым — до 60-70%. При содержании карбоксигемоглобина больше 70% наступает быстрая смерть.

Клиника хронического отравления СО развивается при длительном действии малых (меньше 0,1 мг/л) концентраций СО, не снижающих содержания HbО2 в крови. Со стороны сердечно-сосудистой системы наблюдаются более тяжелые нарушения, чем при остром отравлении, причем они могут выявляться спустя 1-1,5 года после прекращения контакта с СО. Гипоксия, ассоциированная с хронической интоксикацией СО, может сопровождаться развитием психоневрологических расстройств и нарушениями функции других систем организма [6].

Метгемоглобин, или гемиглобин (Hi), является продуктом окисления Fe 2+ в составе гема до Fe 3+ , при этом железо теряет способность связывать и транспортировать кислород. В организме человека постоянно появляются возможности для эндогенного окисления железа гема c образованием Hi; основной причиной окисления является сам кислород.

Накопления метгемоглобина в организме обычно не происходит, поскольку способность эритроцитов восстанавливать окисленный гем во много раз превышает скорость его спонтанного окисления. Восстановление Hi в Hb осуществляется с помощью специальных систем, главным компонентом которых является цитохром b5-редуктаза (НАД×Н-метгемоглобинредуктаза) — на ее долю приходится около 70% восстановленного гемоглобина, а также аскорбиновая кислота (12-16%) и глутатион (9-12%). Еще один путь восстановления Hi связан с ферментом НАДФ×Н-метгемоглобинредуктазой, которая активируется экзогенными акцепторами электронов, например, рибофлавином и метиленовым синим. На долю НАДФ×Н-метгемоглобинредуктазы приходится 5-6% восстановленного гемоглобина [14].

При абсолютной или относительной недостаточности восстанавливающих систем в эритроцитах развиваются метгемоглобинемии — обусловленные различными факторами заболевания, при которых содержание Hi в крови превышает физиологическую норму (1-2% от общего количества Hb). Выделяют первичные (наследственные) метгемоглобинемии, связанные с недостатком ферментов восстановления Hi либо с присутствием аномальных гемоглобинов, а также вторичные (приобретенные, токсические) метгемоглобинемии экзогенного и эндогенного происхождения. Увеличение уровня Hi в крови при этих состояниях приводит к нарушению оксигенации крови и тканей с развитием гипоксии и, как правило, цианоза.

Степень выраженности клинических проявлений зависит от количества Hi, скорости развития метгемоглобинемии и компенсаторных возможностей организма. Повышение Hi до 10% чаще всего не дает клинически выраженных проявлений. При уровне Hi в пределах 10-20% появляется цианоз слизистых и кожных покровов, возникают общая слабость, недомогание, ослабление памяти, раздражительность, головные боли. При содержании Hi 30-50% к вышеперечисленным симптомам присоединяются боли в сердце различного характера, одышка, головокружение, резко выраженный цианоз. Возможно появление неврологической симптоматики, связанной с нарушением процессов десатурации и элонгации ненасыщенных жирных кислот в нейронах.

К токсическим метгемоглобинемиям эндогенного происхождения относится так называемый энтерогенный цианоз — редкая патология, связанная с поражением кишечника и высасыванием избыточно образующихся в нем веществ — метгемоглобинобразователей. Встречается он преимущественно у детей и имеет многофакторное происхождение: возможно, играет роль излишняя колонизация кишечника бактериями, вырабатывающими нитраты и другие вещества-окислители, а также ускоренное аутоокисление гемоглобина в условиях ацидоза и гиперхлоремии [15].

Токсические метгемоглобинемии экзогенного происхождения развиваются при воздействии химических и некоторых лекарственных средств. Основными метгемоглобинобразователями являются нитросоединения (нитриты и нитраты, в том числе нитроглицерин, нитрофенолы, нитроанилин и др.); аминосоединения (анилин и его производные в составе красителей, чернил, красок, аминофенолы, p-аминобензойная кислота и др.); окислители (хлораты, перманганаты, галогениды, хиноны и др.); некоторые красители (метиленовая синь); лекарственные вещества (основной субнитрат висмута, фурадонин, новокаин, сульфаниламиды, ПАСК, аспирин, фенотиазин и др.) [2]. Попав в организм, эти соединения непосредственно окисляют Fe 2+ в составе гемоглобина либо метаболизируются с образованием продуктов, которые обладают этим свойством.

В основе токсического влияния метгемоглобинобразователей лежат резкое снижение кислородной емкости крови (артериальная гипоксемия), уменьшение артериовенозной разницы по кислороду вследствие ухудшения диссоциации оксигемоглобина, гипокапния и респираторный алкалоз.

Проявления метгемоглобинемии зависят от содержания Hi в крови: при уровне до 15% клинические признаки отсутствуют; уровень Hi до 15-20% ведет к цианозу, возбуждению, головной боли; до 45% — возникают беспокойство, тахикардия, одышка, слабость, состояние оглушенности; до 55-70% — угнетение сознания, ступор, судороги, кома, брадикардия, аритмии; свыше 70% — сердечная недостаточность и смерть. Выраженность симптомов определяется дозой и скоростью поступления токсиканта в эритроциты, скоростью элиминации, окислительно-восстановительным потенциалом клеток. В тяжелых случаях отравления, при концентрации Hi до 60-70%, развивается резко выраженная серо-синяя (вплоть до сине-черной) окраска губ, носа, ушных раковин, ногтей и видимых слизистых оболочек. Кровь имеет характерный шоколадный оттенок; характерным является образованиев эритроцитах телец Гейнца — продуктов денатурациигемоглобина.

При токсической метгемоглобинемии оксигенотерапия не приводит к устранению цианоза. Более того, назначение кислорода может сопровождаться повышением уровня метгемоглобина в крови.

Таблица.
Основные дериваты гемоглобина (по Кушаковскому М.С., 1968)

Читайте также: