Наследственное вещество находится в цитоплазме клетки у кишечной палочки

Обновлено: 24.04.2024

Клетка прокариот бактерий и архей

Основные положения:
• В прокариотической клетке плазматическая мембрана окружает один компартмент
• Во всем компартменте присутствует одинаковая водная среда
• В клетке генетический материал занимает компактную область
• Бактерии и археи относятся к прокариотам, однако различаются по своим структурным особенностям

Прокариоты подразделяются на два царства. Раньше считали, что все прокариоты представлены бактериями, но сейчас часть их мы причисляем к археям. Как бактерии, так и археи существуют в форме только одноклеточных организмов (хотя некоторые бактерии в популяции проявляют способность к агрегации).

Область, ограниченная плазматической мембраной, называется цитоплазмой. У прокариот мембрана окружена клеточной стенкой, жесткая структура которой обеспечивает защиту клетки от физических воздействий внешней среды.

На рисунке ниже показано, что в компартменте бактериальной клетки генетический материал расположен компактно, однако не отделен мембраной от содержимого цитоплазмы. К простейшим формам бактерий относится микоплазма, которая, однако, не способна к самостоятельному существованию, поскольку не может производить многие из жизненно необходимых продуктов.

Клетка прокариот бактерий

У бактерий существует один компартмент, хотя внутренние области могут отличаться друг от друга.

Поэтому микоплазма существует внутри других организмов, в которых эти продукты образуются. В геноме микоплазмы содержится всего лишь около 500 генов, которые кодируют лишь минимальное количество продуктов, необходимых для построения клетки. Геном свободноживущих бактерий содержит более 1500 генов и кодирует синтез ферментов метаболизма, необходимых для превращения небольших молекул, а также обеспечивает функционирование более сложного аппарата регуляции экспрессии генов.

Бактерии подразделяются на две группы, дивергенция между которыми произошла, вероятно, около двух миллиардов лет назад. Эти группы называются грамположительные и грамотрицательные, в зависимости от того, приобретают ли клетки окраску при прокрашивании по Граму. К числу наиболее полно охарактеризованных грамотрицательных бактерий относится Escherichia coli, а из грамположительных бактерий наиболее изучена Bacillus subtilis. Окраска развивается при взаимодействии красителя с клеточной стенкой.

У грамположительных бактерий клеточная стенка окружает плазматическую мембрану, и краситель непосредственно взаимодействует с компонентами стенки. У грамотрицательных бактерий существует вторая мембрана, окружающая клеточную стенку. Наличие этой мембраны и различия в составе клеточной стенки препятствуют развитию окраски. Область, находящаяся между наружной и внутренней мембранами, называется периплазматическим пространством. В этом пространстве находятся специфические белки и другие компоненты. Если за критерий компартмента принимать область, ограниченную мембранами, то можно считать, что грамотрицательные бактерии имеют два компартмента.

Однако периплазматическое пространство следует рассматривать как компартмент лишь в аспекте взаимодействия между клеткой и окружающей средой. Это никак не сказывается на основополагающем факте, что синтетическая активность бактериальной клетки сосредоточена в том же компартменте, где находится генетический материал.

Филогенез клеток

Данные филогенетического анализа с использованием современных молекулярных методов позволяют считать,
что организмы можно подразделить на три царства.

Некоторые бактерии могут развиваться, давая начало определенному типу специализированных клеток, что напоминает процесс развития у высших организмов.

Известно много различных видов бактерий, которые возникли на ранних этапах эволюции. Установить их филогенетические взаимоотношения достаточно сложно, поскольку, в отличие от эукариот, ископаемых остатков не сохранилось. Однако современные молекулярные методы, основанные на секвенировании рибосо-мальных РНК, и недавно разработанные приемы полного секвенирования генома привели к революционным выводам относительно происхождения прокариот. Как отдельное царство прокариот были идентифицированы археи.

По виду и строению археи напоминают бактерии: они характеризуются небольшими размерами и представляют собой одноклеточные организмы. Обычно они существуют в экстремальных условиях (например, при высоких температурах), и раньше их ошибочно принимали за бактерии, которые приспособились к таким условиям существования. Как и клетки бактерий, археи представляют собой клетки с одним компартментом и не имеют внутренних мембран.

У них могут проявляться такие же морфологические признаки, как у бактерий, например наличие жесткой стенки или капсулы, окружающей плазматическую мембрану, а также жгутиков, направленных в окружающую среду. Основные отличия наблюдаются на молекулярном уровне, и компоненты клетки археев отличаются от таковых у бактерий. Аппарат, осуществляющий экспрессию генов у археев, больше напоминает аналогичный аппарат клеток эукариот, чем клеток бактерий. Клеточная стенка у них построена из субъединиц, отличающихся от субъединиц клеточной стенки бактерий или растений. Существуют отличия в составе мембранных липидов. По генетической сложности археи больше напоминают свободно-живущих бактерий.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Клетка прокариот бактерий и архей

Основные положения:
• В прокариотической клетке плазматическая мембрана окружает один компартмент
• Во всем компартменте присутствует одинаковая водная среда
• В клетке генетический материал занимает компактную область
• Бактерии и археи относятся к прокариотам, однако различаются по своим структурным особенностям

Прокариоты подразделяются на два царства. Раньше считали, что все прокариоты представлены бактериями, но сейчас часть их мы причисляем к археям. Как бактерии, так и археи существуют в форме только одноклеточных организмов (хотя некоторые бактерии в популяции проявляют способность к агрегации).

Область, ограниченная плазматической мембраной, называется цитоплазмой. У прокариот мембрана окружена клеточной стенкой, жесткая структура которой обеспечивает защиту клетки от физических воздействий внешней среды.

На рисунке ниже показано, что в компартменте бактериальной клетки генетический материал расположен компактно, однако не отделен мембраной от содержимого цитоплазмы. К простейшим формам бактерий относится микоплазма, которая, однако, не способна к самостоятельному существованию, поскольку не может производить многие из жизненно необходимых продуктов.

Клетка прокариот бактерий

У бактерий существует один компартмент, хотя внутренние области могут отличаться друг от друга.

Поэтому микоплазма существует внутри других организмов, в которых эти продукты образуются. В геноме микоплазмы содержится всего лишь около 500 генов, которые кодируют лишь минимальное количество продуктов, необходимых для построения клетки. Геном свободноживущих бактерий содержит более 1500 генов и кодирует синтез ферментов метаболизма, необходимых для превращения небольших молекул, а также обеспечивает функционирование более сложного аппарата регуляции экспрессии генов.

Бактерии подразделяются на две группы, дивергенция между которыми произошла, вероятно, около двух миллиардов лет назад. Эти группы называются грамположительные и грамотрицательные, в зависимости от того, приобретают ли клетки окраску при прокрашивании по Граму. К числу наиболее полно охарактеризованных грамотрицательных бактерий относится Escherichia coli, а из грамположительных бактерий наиболее изучена Bacillus subtilis. Окраска развивается при взаимодействии красителя с клеточной стенкой.

У грамположительных бактерий клеточная стенка окружает плазматическую мембрану, и краситель непосредственно взаимодействует с компонентами стенки. У грамотрицательных бактерий существует вторая мембрана, окружающая клеточную стенку. Наличие этой мембраны и различия в составе клеточной стенки препятствуют развитию окраски. Область, находящаяся между наружной и внутренней мембранами, называется периплазматическим пространством. В этом пространстве находятся специфические белки и другие компоненты. Если за критерий компартмента принимать область, ограниченную мембранами, то можно считать, что грамотрицательные бактерии имеют два компартмента.

Однако периплазматическое пространство следует рассматривать как компартмент лишь в аспекте взаимодействия между клеткой и окружающей средой. Это никак не сказывается на основополагающем факте, что синтетическая активность бактериальной клетки сосредоточена в том же компартменте, где находится генетический материал.

Филогенез клеток

Данные филогенетического анализа с использованием современных молекулярных методов позволяют считать,
что организмы можно подразделить на три царства.

Некоторые бактерии могут развиваться, давая начало определенному типу специализированных клеток, что напоминает процесс развития у высших организмов.

Известно много различных видов бактерий, которые возникли на ранних этапах эволюции. Установить их филогенетические взаимоотношения достаточно сложно, поскольку, в отличие от эукариот, ископаемых остатков не сохранилось. Однако современные молекулярные методы, основанные на секвенировании рибосо-мальных РНК, и недавно разработанные приемы полного секвенирования генома привели к революционным выводам относительно происхождения прокариот. Как отдельное царство прокариот были идентифицированы археи.

По виду и строению археи напоминают бактерии: они характеризуются небольшими размерами и представляют собой одноклеточные организмы. Обычно они существуют в экстремальных условиях (например, при высоких температурах), и раньше их ошибочно принимали за бактерии, которые приспособились к таким условиям существования. Как и клетки бактерий, археи представляют собой клетки с одним компартментом и не имеют внутренних мембран.

У них могут проявляться такие же морфологические признаки, как у бактерий, например наличие жесткой стенки или капсулы, окружающей плазматическую мембрану, а также жгутиков, направленных в окружающую среду. Основные отличия наблюдаются на молекулярном уровне, и компоненты клетки археев отличаются от таковых у бактерий. Аппарат, осуществляющий экспрессию генов у археев, больше напоминает аналогичный аппарат клеток эукариот, чем клеток бактерий. Клеточная стенка у них построена из субъединиц, отличающихся от субъединиц клеточной стенки бактерий или растений. Существуют отличия в составе мембранных липидов. По генетической сложности археи больше напоминают свободно-живущих бактерий.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

• Нуклеоид бактерий выглядит как диффузная масса ДНК, однако для него характерна высокая упорядоченность и неслучайное расположение генов

• У бактерий нет нуклеосом, однако организации ДНК способствуют различные белки, связанные с нуклеоидом

• Подобно тому как это имеет место для ядра и цитоплазмы эукариотической клетки, у бактерий транскрипция происходит по всей массе нуклеоида, трансляция — на его периферической зоне

• Важную роль в организации нуклеоида играет РНК полимераза

Фундаментальное отличие клеток прокариот от клеток эукариот заключается в отсутствии у них ядерной оболочки. Присутствие ядерной мембраны у эукариот обеспечивает существование компартментов, которые разделяют процессы транскрипции и трансляции. У прокариот эти процессы не разделены мембраной, и мРНК может транслироваться во время транскрипции. Одновременное протекание этих процессов имеет важные последствия для регуляции активности некоторых генов.

Как показано на рисунке ниже, хромосомальная ДНК бактерий имеет вид аморфной массы, нуклеоида, занимающего большую часть объема в центре цитоплазмы. Нуклеоид состоит из хромосомальной ДНК и связанных с ней белков. Бактерии не содержат нуклеосом, которые участвуют в упаковке ДНК хромосом эукариотов и архей. Однако бактериальная ДНК компактна и упакована с участием многочисленных белков, ассоциированных с нуклеоидом, которые перчислены на рисунке ниже.

Нуклеоид бактерий

Электронная микрофотография, демонстрирующая,
что нуклеоид представляет собой диффузную массу, находящуюся внутри клетки бактерии.

К числу наиболее важных из этих белков относятся топоизомеразы. Они контролируют суперспирализацию ДНК, которая играет важную роль в ее компактизации, и обеспечивают протекание таких процессов, как репликация и транскрипция, для которых требуется раскручивание молекулы ДНК. Белки семейства SMC, поддерживающие структурную организацию хромосом, также участвуют в организации нуклеоида. Об этом свидетельствует фенотип соответствующих мутантов, однако конкретный механизм их участия остается неясным.

В клетках эукариот белки, близкие к SMC, участвуют в скреплении хромосом между собой и их конденсации в митозе и мейозе. Эти белки различной природы, связанные с нуклеоидом, участвуют в поддержании необходимого уровня его суперспирализации и компактизации. Однако предстоит еще выяснить, каким образом достигается и поддерживается такое состояние гомеостаза нуклеоида.

Хотя нуклеоид обладает аморфной структурой, отдельные гены располагаются в нем упорядоченно. Положение генов в нуклеоиде отражает их относительное расположение на карте хромосомы. По счастью, первое подтверждение этого было получено при исследовании свойств мутантов бактерий В. subtilis, дефектных по гену spoIIIE. Мутант этого организма не способен правильно сегрегировать хромосому при асимметрическом делении, которое сопровождает ранние стадии образования споры. Вместо этого септа деления замыкается вокруг одной копии хромосомы. У этого мутанта определенные гены почти всегда попадают в небольшой компартмент, поблизости от полюса, в то время как другие из него всегда исключаются.

Это наблюдение позволяет предполагать, что до деления хромосома всегда находится в определенном месте и в определенной ориентации.

Прямые данные были получены в исследованиях с использованием гибридизации in situ и флуоресцентной метки (FISH). Этот метод позволяет непосредственно отслеживать положение в клетке определенных генов. Однако при его использовании, перед гибридизацией зонда с ДНК, необходима фиксация препаратов и проведение других жестких воздействий. Еще один подход заключается в использовании конъюгата зеленого флуоресцирующего белка с белком LacI, связывающимся с ДНК. Этот конъюгат может присоединяться к сайтам связывания, находящимся в разных местах клетки. На основании всех этих экспериментов было показано, что гены не диффундируют по бактериальной клетке свободно, а локализованы в определенных, строго ограниченных местах.

Вообще говоря, область хромосомы, содержащая oriC, находится на одном конце нуклеоида, а область, содержащая terC, — на противоположном. Гены, которые на генетической карте расположены между двумя этими точками, распределены по нуклеоиду более или менее пропорционально.

У бактерий в аппарате транскрипции используется одна каталитическая основная РНК-полимераза, состоящая из двух а-, одной b- и одной b-субъединиц. Специфичность промотора определяется на начальном уровне различными сигма (а) факторами, которые также необходимы для инициации транскрипции, однако после этого отщепляются от кора. Регуляция транскрипции осуществляется большим набором дополнительных регуляторов, которые обычно связываются с ДНК вблизи от промотора, с тем чтобы активировать или подавлять инициацию транскрипции. Другие факторы регуляции действуют на уровне терминации (прекращения) транскрипции или изменения стабильности мРНК.

Большая часть молекул основной РНК-полимеразы находится в нуклеоиде в центре клетки. Поэтому, вероятно, здесь в основном происходит транскрипция. Напротив, рибосомы и различные белки, принимающие участие в трансляции, сосредоточены по периферии клетки. Таким образом, даже при отсутствии ядерной оболочки, в бактериальной клетке транскрипция и трансляция пространственно разобщены, подобно тому как это имеет место в клетке эукариот. Однако существуют различные данные в пользу того, что иногда у бактерий транскрипция и трансляция тесно сопряжены друг с другом.

Эти данные не противоречат имеющимся результатам, которые свидетельствуют о том, что РНК-полимеразы и рибосомы локализованы в разных местах клетки. Возможно, что оба процесса происходят на границе центральной, или сердцевинной, и периферийной областях клетки. Пока мы мало знаем об организации центральной, или сердцевинной, и периферийной областей нуклеоида, так же как и о деталях общей организации этой структуры.

Белки, участвующие в организации нуклеоида Escherichia coli.
У большинства других бактерий вместо белков MukB, MukE и MukF присутствуют белки SMC (белки, поддерживающие структуру хромосом),
а также связанные с ними факторы, родственные когезину и конденсинам эукариот.
Сегрегация хромосом после образования полярной септы при наступлении споруляции.
В холе споруляции В. subtilis клетки делятся асимметрично, образуя материнскую клетку и небольшую преспору.
Каждая клетка получает одну копию хромосомы. Сегрегация хромосом с образованием преспоры представляет собой двухэтапный процесс.
Вначале полярная разделительная септа замыкается вокруг хромосомы,
а затем белок SpoIIIE активно транспортирует оставшиеся 2/3 хромосомы в преспоровый компартмент.
У мутантов по гену spoIIIE только 1/3 хромосомы сегрегирует в преспору.
Анализ ДНК, захваченной в небольшой компартмент клеток мутанта по гену spoIIIE, показывает, что всегда захватывается специфический участок ДНК.
Это указывает на то, что до деления хромосома должна быть строго ориентирована и упорядочена.
На фотографиях, полученных во флуоресцентном микроскопе, представлены клетки спорулирующих spoIIIE-мутантов и клетки дикого типа, окрашенные на ДНК.
Несмотря на отсутствие ядерной оболочки, аппараты транскрипции и трансляции локализуются в отдельных частях бактериальной клетки.
Представлены делящиеся клетки В. subtilis.
Они экспрессируют конъюгаты белка рибосомальной субъединицы RpsB с зеленым флуоресцирующим белком (GFP)
и субъединицы РНК-полимеразы RpoC с GFP-UV, обладающие зеленой и красной флуоресценцией соответственно.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Общее строение клетки: ядро, цитоплазматическая мембрана, цитоплазма

Клетка — основная функциональная единица организма. Ядро клетки служит хранилищем огромного объёма генетической информации и одновременно центром её активной экспрессии. Существует большое количество различных типов клеток (клетки эпителия, печени, нервных волокон и др.), особенности метаболизма которых обусловлены находящимися в их цитоплазме органеллами, а также множеством растворимых ферментов, характерных для каждого вида клеток.

Цитоплазматическая мембрана, или плазмолемма, — барьер для растворимых в воде молекул, который отделяет внутреннее содержимое клетки от внешней среды. Она состоит из двух параллельных рядов фосфолипидов, которые образуют гидрофобную липидную прослойку между двумя гидрофильными слоями из фосфатных групп.

Плазмолемма пронизана различными белками, гидрофобные части которых находятся внутри билипидного слоя, а гидрофильные — на внешней и внутренней поверхности мембра ны. Микроворсинки — удлинения на верхней (апикальной) части плазмолеммы, которые увеличивают поверхность мембраны и облегчают обмен молекулами.

Ядро клетки. Генетическая информация заключена в хромосомах, которые находятся в ядерном матриксе. Матрикс — сетчатый внутриядерный каркас, состоящий из белкового материала и тесно примыкающий к ядерной оболочке.
Ядрышком называют морфологически выраженную структуру внутри ядра, в которой происходит синтез рибосомальной РНК (рРНК). В ядре клеток человека обычно присутствует одно ядрышко, в котором во время интерфазы возникают ядрышковые организаторы акроцентрических хромосом.

Ядро окружено двойной мембраной, называемой ядерной оболочкой, которая пронизана ядерными порами.

строение клетки

Цитоплазма клетки. Цитоплазма состоит из гелеобразного цитозоля, содержащего запасы гликогена, липидные вкрапления и свободные рибосомы, который пронизан рядами взаимосоединённых волокон и трубочек, образующих цитоскелет. Основные структурные компоненты цитоскелета — микротрубочки, микрофиламенты и промежуточные филаменты.

Микротрубочки — прямые полые цилиндры, стенки которых состоят из чередующихся молекул а- и b-тубулина. Они исходят из клеточного центра (центросомы), который имеет пару центриолей— цилиндрических структур, образованных девятью триплетами микротрубочек. Подобное строение свойственно также базальным тельцам реснитчатого эпителия.
Сеть микротрубочек играет важную роль в поддержании структуры и размера клетки, а также при расхождении хромосом во время деления и движения ресничек и сперматозоидов.

Микрофиламенты представляют собой двуспиральные полимеры белка актина и находятся в основном по периметру клетки. Они участвуют в движении клетки и изменении её формы.
Промежуточные филаменты имеют трубчатую структуру и соединяют десмосомы. В зависимости от вида клетки в их состав входит один или несколько из пяти определённых белков.

Митохондрии — самые крупные и наиболее распространённые в цитоплазме органеллы, основной функцией которых служит обеспечение организма энергией посредством синтеза АТФ. Митохондрии — самовоспроизводящиеся полуавтономные органеллы, содержащие рибосомы и до десяти и более копий кольцевых нитей митохондриальной ДНК.

Данная ДНК кодирует митохондриальные гены. В митохондриях присутствуют ферменты, необходимые для функционирования цикла трикарбоновых кислот, а также большое количество ферментов, участвующих в окислении жирных кислот.

Пероксисомы частично отвечают за детоксикацию различных веществ (в том числе этанола), однако их основная задача — окисление жирных кислот.

Эндоплазматическая сеть (ЭПС) — основной центр синтеза белков и липидов, который также служит начальным этапом секреторного пути белков. ЭПС представляет собой обширный лабиринт из связанных с мембраной каналов, который соединяется непосредственно с ядерной оболочкой.

Вблизи ядра на поверхности ЭПС есть рибосомы (гранулярная ЭПС), в то время как на участках, расположенных дальше, рибосомы отсутствуют (агранулярная или гладкая ЭПС). ЭПС играет важную роль в нейтрализации токсинов. Белки, синтезируемые в ней, затем попадают в комплекс Гольджи — ряд расположенных друг над другом сплюснутых везикул. После этого белки депонируются или попадают в секреторные везикулы для осуществления экзоцитоза, т.е. выведения из клетки в ответ на внешнее воздействие.

Эндоцитоз. Эндоцитозом называют процесс поглощения и переработки клеткой компонентов окружающей среды. При опосредованном рецепторами пиноцитозе происходит захват мелких частиц путём образования везикулы с жидкостью на поверхности цитоплазматической мембраны и её последующего поглощения клеткой. При этом образуются окаймлённые впячивания. Более крупные частицы связываются с мембраной и поглощаются в составе фагоцитарных вакуолей (фаголизосом); растворы поглощаются при помощи жидкостного пиноцитоза.

Содержимое пиноцитарных и фагоцитарных везикул, которые часто называют эндосомами, обычно обрабатывают лизосомы, содержащие разрушающие ферменты — лизоцимы.

Межклеточные соединения. В случае плотного соединения образуется непроницаемая перемычка между внешней (апикальной) и базолатеральной поверхностями эпителиальных клеток. При липких соединениях клетки связаны с помощью опоясывающих (длинные волокна) и точечных (расположены непосредственно в месте скрепления) десмосом. Гемидесмосомы (полудесмо-сомы) соединяют эпителиальные клетки через базальные мембраны (производные экстрацеллюлярного матрикса).

Причина болезни Шарко—Мари—Тута, сцепленной с Х-хромосомой, — дефект белка, участвующего в щелевом соединении клеток.
Большинство лекарственных препаратов вступают во взаимодействие с рецепторами цитоплазматической мембраны. Различные противоопухолевые препараты, такие, как винкристин или винбластин, повреждают систему микротрубочек, в то время как колхицин, применяемый для исследования хромосом, угнетает клетки во время метафа-зы митоза. Клофибрат снижает продукцию дополнительных пероксисом, его используют для снижения уровня липопротеинов в сыворотке крови.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Кишечная палочка — разновидность грамотрицательных палочковидных бактерий, которые присутствуют в нормальной микрофлоре ЖКТ человека. Тем не менее, некоторые её виды вызывают заболевания, преимущественно желудочно-кишечные. Отдельные штаммы способны поражать органы мочеполовой системы, вызывать пневмонию, перитонит, мастит и сепсис.


Общие сведения о Escherichia coli

Кишечная палочка — это нормальный обитатель кишечника человека и важная часть естественной кишечной микрофлоры. Она появляется у человека с первых дней после рождения.

Характерная особенность этой бактерии — устойчивость к действию внешних факторов. Она может в течение долгого времени сохраняться в воде и земле, размножается в продуктах питания (особенно в молоке), переносит высушивание. На палочку губительно воздействуют прямые солнечные лучи (воздействие — несколько минут), раствор карболовой кислоты (1%) и температура +60 градусов (воздействие в течение 15 минут).

Escherichia coli — условно-патогенный штамм. Основным резервуаром его обитания является кишечник.

В большинстве случаев эта палочка не наносит вреда организму, но, под действием определенных факторов, непатогенная микрофлора замещается патогенной.

Норма кишечной палочки в организме составляет 107–108 КОЕ/г на 1 г фекалий. Недостаток этой бактерии приводит к дисбиозу, который проявляется в метеоризме, нарушениях стула, болях в животе.

Иногда в организм проникают патогенные микроорганизмы — кишечные и внекишечные. Они могут вызывать расстройство желудка, инфекции мочевыводящих путей, менингит.


Как происходит заражение?

Патогенные штаммы Escherichia coli передаются преимущественно орально-фекальным путем, реже — контактно-бытовым.

  • В первом случае палочка попадает в почву и воду вместе с каловыми массами. Здесь она сохраняется в течение долгого времени, так как устойчива ко внешним факторам. Инфицирование человека происходит при заглатывании зараженной воды (не только при питье, но и при купании в водоемах), контакте с загрязненной почвой или растениями.
  • Контактно-бытовой путь заражения менее распространен. Чаще всего передача палочки таким способом происходит в коллективах (больницы, школы, детские сады). Это связано с недостаточной гигиеной.

Симптомы заражения

Патогенные кишечные палочки бывают разными. В зависимости от их типа проявляются характерные симптомы заражения.

  • Энтеропатогенная кишечная палочка. Основное проявление заражения — диарея. В каловых массах не наблюдаются включения крови, но присутствует слизь. Иногда поднимается температура. Чаще всего такой тип палочки выявляют у детей.
  • Энтеротоксигенная. Эта бактерия прикрепляется к стенкам кишечника и выделяет токсины. Помимо диареи, заражение проявляется в симптомах интоксикации (головная боль, тошнота, общая слабость, повышение температуры).
  • Энтерогеморрагическая. Это наиболее опасный вид кишечной палочки: он вызывает геморрагический колит, который осложняется гемолитико-уремическим синдромом (сочетание анемии с почечной недостаточностью). К симптомам заражения относят схваткообразные боли в животе, диарею с кровью, рвоту, лихорадку.

Кишечная палочка поражает не только кишечник, но и мочеполовую систему как женщин, так и мужчин. У женщин эта бактерия провоцирует развитие пиелонефрита, цистита, кольпита, вульвовагинита. У мужчин патогенные кишечные палочки вызывают острый уретрит. Из уретры они могут проникать в предстательную железу и яички, вызывая простатит, орхит и эпидидимит.


Лечение

Для устранения симптомов кишечной палочки назначают такие группы препаратов:

  1. Антибактериальные средства. Это традиционные препараты при выявлении Escherichia coli в моче, кале, а также во влагалище у женщин. Конкретный вид антибиотика определяют в зависимости от степени тяжести поражения.
  2. Спазмолитики и обезболивающие. Они назначаются при выраженном болевом синдроме.
  3. Пробиотики. Препараты этой группы восстанавливают баланс нормальной микрофлоры кишечника.

При кишечных инфекциях также показано соблюдение диеты. Целью являются:

  • щадящее воздействие на желудочно-кишечный тракт (как механическое, так и химическое);
  • уменьшение воспалительного процесса;
  • снижение выраженности брожения и гнилостных процессов в организме;
  • восстановление работоспособности кишечника.

Основные правила лечебной диеты:

  • легкоусвояемость блюд, отсутствие в рационе продуктов, раздражающих слизистую оболочку желудка и нагружающих поджелудочную железу;
  • допустимые способы приготовления еды — варка (обычная и на пару);
  • допустимая температура еды — от 33 до 36 градусов.

В рацион можно включать:

  1. некрепкий чай, свежевыжатые соки из фруктов и ягод, немного разбавленные водой;
  2. молочные и кисломолочные продукты с низким содержанием жира;
  3. нежирные супы;
  4. нежирные сорта мяса и рыбы (отваренные либо приготовленные на пару);
  5. тушеные и вареные овощи;
  6. крупяные гарниры на воде.

При выявлении кишечной палочки Escherichia coli нельзя употреблять:

  • жирные сорта рыбы и мяса;
  • колбасы, копчености;
  • консервы;
  • бобовые;
  • грибы;
  • соленья и маринады;
  • свежие хлебобулочные изделия;
  • кондитерские изделия, шоколад;
  • газированные напитки и алкоголь.

Все перечисленные продукты раздражают слизистую оболочку желудка и тяжело перевариваются.

Лечение при симптомах заражения кишечной палочкой обязательно, так как при его отсутствии процесс осложняется обезвоживанием, интоксикацией, перитонитом, сепсисом. Эти состояния угрожают не только здоровью, но и жизни.


Профилактика

Для того, чтобы снизить риск заражения инфекцией, нужно соблюдать такие правила:

Читайте также: