Научная работа о сибирской язве

Обновлено: 28.03.2024

Современная ситуация по сибирской язве характеризуется как нестабильная. Нестабильность связана с периодически возникающими эпизоотическими вспышками, осложняющимися заболеваемостью людей, так как люди заражаются преимущественно в результате контакта с больными животными, их трупами или продуктами животноводства. Выявлены новые механизмы распространения инфекции при аэрозольном заражении вследствие преднамеренного использования спор B. Anthracis в целях биотрерроризма и в результате использования африканских барабанов, контаминированных спорами сибиреязвенного микроба, парэнтеральном употреблении контаминированного героина, приведшем к выделению новой клинической формы сибирской язвы – инъекционной. Представления об эволюции возбудителя сибирской язвы пополнились знаниями о существовании патогенных штаммов бацилл, занимающих промежуточное положение между B. Anthracis и B. Cereus. В области экологии сибиреязвенного микроба наметились новые аспекты проблемы обитания во внешней среде, связанные со взаимодействием с бактериофагами, почвенной микрофлорой и ризосферой. Исследования, связанные с экологическими особенностями ниш обитания и генотипами сибиреязвенного микроба, объясняющими географическое распределение областей с высоким риском заболеваемости, могут позволить оптимизировать программы иммунизации животных, являющейся самой эффективной мерой профилактики сибирской язвы.

Ключевые слова

Об авторах

Список литературы

1. Еременко Е.И., Рязанова А.Г., Цыганкова О.И., Цыганкова Е.А., Буравцева Н.П., Куличенко А.Н. Генотипическое разнообразие штаммов Bacillus anthracis, выделенных в регионе Кавказа. Мол. генет., микробиол. и вирусол. 2012; 2:26-9.

2. Куличенко А.Н., редактор. Сибирская язва на Северном Кавказе. Майкоп: Качество; 2016. 198 с.

3. Рязанова А.Г., Еременко Е.И., Буравцева Н.П., Цыганкова О.И., Цыганкова Е.А., Аксенова Л.Ю., Головинская Т.М., Куличенко А.Н. Эпидемиологическая ситуация по сибирской язве в Российской Федерации: анализ заболеваемости в 2010 г., прогноз на 2011 г. Пробл. особо опасных инф. 2011; 1(107):42-5.

4. Селянинов Ю.О., Егорова И.Ю, Колбасов Д.Б. Сибирская язва на Ямале: причины возникновения и проблемы диагностики. Ветеринария. 2016; 10:3-7.

5. Черкасский Б.Л., редактор. Кадастр стационарно неблагополучных по сибирской язве пунктов Российской Федерации. М.: ИнтерСЭН; 2005. 829 с.

7. Barro A.S., Fegan M., Moloney B., Porter K., Muller J., Warner S., Blackburn J.K. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution ofBacillus anthracis. PLoS Negl. Trop. Dis. 2016; 10(6): e0004689. DOI: 10.1371/journal.pntd.0004689.

8. Berger T., Kassrrer M., Aran A.A. Injectional anthrax -new presentation of an old disease. Euro Surveill. 2014; 19(32): pii=20877. DOI: 10.2807/1560-7917.ES2014.19.32.20877.

9. Blackburn J.K., McNyset K.M., Curtis A., Hugh-Jones M.E. Modeling the Geographic Distribution of Bacillus anthracis, the Causative Agent of Anthrax Disease, for the Contiguous United States using Predictive Ecologic Niche Modeling. Am. J. Trop. Med. Hyg. 2007; 77(6):1103-10.

10. Brachman P.S., Kaufman A.F., Dalldorf F.G. Industrial inhalation Anthrax. Bacteriol. Rev. 1966; 30(3):646-59.

11. Brezillon C., Haustant M., Dupke S., Corre J.P., Lander A., Franz T., Monot M., Couture-Tosi E., Jouvion G., Leendertz F.H., Grunow R., Mock M.E., Klee S.R., Goossens P.L. Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis. PLoS Negl. Trop. Dis. 2015; 9(4):e0003455. DOI: 10.1371/ journal.pntd.0003455.

12. Caugrant D.A., Fossum K., Hoel T., Heiby E.A., Iversen B.G., Jensenius M., Ringertz S.H. Systemic anthrax in an injecting drug user: Oslo, Norway April 2000. Euro Surveill. 2000; 4(19): pii=1605.

13. Chakraborty A., Khan S.U., Hasnat M.A., Parveen S., Islam M.S., Mikolon A., Chakraborty R.K., Ahmed B.N., Ara K., Haider N., Zaki S.R., Hoffmaster A.R., Rahman M., Luby S.P., Hossain M.J. Anthrax Outbreaks in Bangladesh, 2009-2010. Am. J. Trop. Med. Hyg. 2012; 86(4):703-10. DOI: 10.4269/ajtmh.2012.11-0234.

14. Cherif A., Borin S., Rizzi A.A., Ouzari H., Boudabous A., Daffonchio D. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA. Appl. Environ. Microbiol. 2003; 69(1):33-10.

16. Fisher N., Hanna P. Characterization of Bacillus anthracis germinant receptors in vitro. J. Bacteriol. 2005; 187(23):8055-62. DOI: 10.1128/JB.187.23.8055-8062.2005.

18. Holzmann T., Frangoulidis D., Simon M., Noll P., Schmoldt S., Hanczaruk M., Grass G., Pregler M., Sing A., Hormansdorfer S., Bernard H., Grunow R., Zimmermann R., Schneider-Brachert W., Gessner A., Reischl U. Fatal anthrax infection in a heroin user from southern Germany, June 2012. Euro Surveill. 2012; 17(26):pii=20204.

19. Inhalation anthrax associated with dried animal hides-Pennsylvania and New York City, 2006. MMWR Morb Mortal Wkly Rep. 2006; 55(10):280-2.

21. Joyner T.A., Lukhnova L., Pazilov Y., Temiralyeva G., Hugh-Jones M.E., Aikimbayev A., Blackburn J.K. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PLoS ONE. 2010; 5(3):e9596. DOI: 10.1371/journal.pone.0009596.

22. Keim P., Grunow R., Vipond R., Grass G., Hoffmaster A., Birdsell D.N., Klee S.R., Pullan S., Antwerpen M., Bayer B.N., Latham J., Wiggins K., Hepp C., Pearson T., Brooks T., Sahl J., Wagner D.M. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years. EBioMedicine. 2015; 2(11):1613-8. DOI: 10.1016/j.ebiom.2015.10.004.

23. Keim P., Van Ert M.N., Pearson T., Vogler A.J., Huynh L.Y., Wagner D.M. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect. Genet. Evol. 2004; 4(3):205-13. DOI: 10.1016/j.meegid.2004.02.005.

25. Leendertz F.H., Yumlu S., Pauli G., Boesch C., Couacy-Hymann E., Vigilant L., Junglen S., Schenk S., Ellerbrok H. A new Bacillus anthracis found in wild chimpanzees and a gorilla from West and Central Africa. PLoSPathog. 2006; 2(1):e8. DOI: 10.1371/jour-nal.ppat.0020008.

26. Leendertz F.H., Ellerbrok H., Boesch C., Couacy-Hymann E., Matz-Rensing K. Hakenbeck R., Bergmann C., Abaza P., Junglen S., Moebius Y., Vigilant L., Formenty P., Pauli G. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430(6998):451-2. DOI: 10.1038/nature02722.

27. Meselson M., Guillemin J., Hugh-Jones M., Langmuir A., Popova I., Shelokov A., Yampolskaya O. The Sverdlovsk anthrax outbreak of 1979. Science. 1994; 266(5188):1202-8. DOI: 10.1126/science.7973702.

28. Mullins J., Lukhnova L., Aikimbayev A., Pazilov Y., Van Ert M., Blackburn J.K. Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan. BMC Ecol. 2011; 11:32. DOI: 10.1186/1472-6785-11-32.

31. Okinaka R., Pearson T., Keim P. Anthrax, but not Bacillus anthracis? PLoS Pathog. 2006; 2(11):e122. DOI: 10.1371/journal.ppat.0020122.

32. Radun D., Bernard H., Altmann M., Schoneberg I., Bochat V., van Treeck U., Rippe R., Grunow R., Elschner M., Biederbick W., Krause G. Preliminary case report of fatal anthrax in an injecting drug user in North-Rhine-Westphalia, Germany, December 2009. Euro Surveill. 2010; 15(2):pii=19464.

33. Ramsay C.N., Stirling A., Smith J., Hawkins G., Brooks T., Hood J., Penrice G., Browning L.M., Ahmed S. An outbreak of infection with Bacillus anthracis in injecting drug users in Scotland. Euro Surveill. 2010; 15(2):pii=19465.

35. Schuch R., Fischetti V. A. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS ONE. 2009; 4(8):e6532. DOI: 10.1371/journal.pone.0006532.

36. Schwieger F., Tebbe C.C. A new approach to utilise PCR-single strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 1998; 64(12):4870-76.

37. Shury T.K., Frandsen D., O'Brodovich L. Anthrax in free-ranging bison in the Prince Albert National Park area of Saskatchewan in 2008. Can. Vet. J. 2009; 50Ш152-1.

38. Turnbull P.C. Hutson R.A., Ward M.J., Jones M.N., Quinn C.P., Finnie N.J., Duggleby C.J., Kramer J.M., Melling J. Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 1992; 72(1):21-8.

40. Van Ness G.B. Ecology of anthrax. Science. 1971; 172(3990):1303-7.

41. Zwick M.E., Joseph S.J., Didelot X., Chen P.E., Bishop-Lilly K.A Stewart A.C., Willner K., Nolan N., Lentz S., Thomason M.K., Sozh amannan S., Mateczun A.J., Du L., Read T.D. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 2012; 22(8):1512-24. DOI: 10.1101/gr.134437.111.

Современная ситуация по сибирской язве характеризуется как нестабильная. Нестабильность связана с периодически возникающими эпизоотическими вспышками, осложняющимися заболеваемостью людей, так как люди заражаются преимущественно в результате контакта с больными животными, их трупами или продуктами животноводства. Выявлены новые механизмы распространения инфекции при аэрозольном заражении вследствие преднамеренного использования спор B. Anthracis в целях биотрерроризма и в результате использования африканских барабанов, контаминированных спорами сибиреязвенного микроба, парэнтеральном употреблении контаминированного героина, приведшем к выделению новой клинической формы сибирской язвы – инъекционной. Представления об эволюции возбудителя сибирской язвы пополнились знаниями о существовании патогенных штаммов бацилл, занимающих промежуточное положение между B. Anthracis и B. Cereus. В области экологии сибиреязвенного микроба наметились новые аспекты проблемы обитания во внешней среде, связанные со взаимодействием с бактериофагами, почвенной микрофлорой и ризосферой. Исследования, связанные с экологическими особенностями ниш обитания и генотипами сибиреязвенного микроба, объясняющими географическое распределение областей с высоким риском заболеваемости, могут позволить оптимизировать программы иммунизации животных, являющейся самой эффективной мерой профилактики сибирской язвы.

Ключевые слова

Об авторах

Список литературы

1. Еременко Е.И., Рязанова А.Г., Цыганкова О.И., Цыганкова Е.А., Буравцева Н.П., Куличенко А.Н. Генотипическое разнообразие штаммов Bacillus anthracis, выделенных в регионе Кавказа. Мол. генет., микробиол. и вирусол. 2012; 2:26-9.

2. Куличенко А.Н., редактор. Сибирская язва на Северном Кавказе. Майкоп: Качество; 2016. 198 с.

3. Рязанова А.Г., Еременко Е.И., Буравцева Н.П., Цыганкова О.И., Цыганкова Е.А., Аксенова Л.Ю., Головинская Т.М., Куличенко А.Н. Эпидемиологическая ситуация по сибирской язве в Российской Федерации: анализ заболеваемости в 2010 г., прогноз на 2011 г. Пробл. особо опасных инф. 2011; 1(107):42-5.

4. Селянинов Ю.О., Егорова И.Ю, Колбасов Д.Б. Сибирская язва на Ямале: причины возникновения и проблемы диагностики. Ветеринария. 2016; 10:3-7.

5. Черкасский Б.Л., редактор. Кадастр стационарно неблагополучных по сибирской язве пунктов Российской Федерации. М.: ИнтерСЭН; 2005. 829 с.

7. Barro A.S., Fegan M., Moloney B., Porter K., Muller J., Warner S., Blackburn J.K. Redefining the Australian Anthrax Belt: Modeling the Ecological Niche and Predicting the Geographic Distribution ofBacillus anthracis. PLoS Negl. Trop. Dis. 2016; 10(6): e0004689. DOI: 10.1371/journal.pntd.0004689.

8. Berger T., Kassrrer M., Aran A.A. Injectional anthrax -new presentation of an old disease. Euro Surveill. 2014; 19(32): pii=20877. DOI: 10.2807/1560-7917.ES2014.19.32.20877.

9. Blackburn J.K., McNyset K.M., Curtis A., Hugh-Jones M.E. Modeling the Geographic Distribution of Bacillus anthracis, the Causative Agent of Anthrax Disease, for the Contiguous United States using Predictive Ecologic Niche Modeling. Am. J. Trop. Med. Hyg. 2007; 77(6):1103-10.

10. Brachman P.S., Kaufman A.F., Dalldorf F.G. Industrial inhalation Anthrax. Bacteriol. Rev. 1966; 30(3):646-59.

11. Brezillon C., Haustant M., Dupke S., Corre J.P., Lander A., Franz T., Monot M., Couture-Tosi E., Jouvion G., Leendertz F.H., Grunow R., Mock M.E., Klee S.R., Goossens P.L. Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis. PLoS Negl. Trop. Dis. 2015; 9(4):e0003455. DOI: 10.1371/ journal.pntd.0003455.

12. Caugrant D.A., Fossum K., Hoel T., Heiby E.A., Iversen B.G., Jensenius M., Ringertz S.H. Systemic anthrax in an injecting drug user: Oslo, Norway April 2000. Euro Surveill. 2000; 4(19): pii=1605.

13. Chakraborty A., Khan S.U., Hasnat M.A., Parveen S., Islam M.S., Mikolon A., Chakraborty R.K., Ahmed B.N., Ara K., Haider N., Zaki S.R., Hoffmaster A.R., Rahman M., Luby S.P., Hossain M.J. Anthrax Outbreaks in Bangladesh, 2009-2010. Am. J. Trop. Med. Hyg. 2012; 86(4):703-10. DOI: 10.4269/ajtmh.2012.11-0234.

14. Cherif A., Borin S., Rizzi A.A., Ouzari H., Boudabous A., Daffonchio D. Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA. Appl. Environ. Microbiol. 2003; 69(1):33-10.

16. Fisher N., Hanna P. Characterization of Bacillus anthracis germinant receptors in vitro. J. Bacteriol. 2005; 187(23):8055-62. DOI: 10.1128/JB.187.23.8055-8062.2005.

18. Holzmann T., Frangoulidis D., Simon M., Noll P., Schmoldt S., Hanczaruk M., Grass G., Pregler M., Sing A., Hormansdorfer S., Bernard H., Grunow R., Zimmermann R., Schneider-Brachert W., Gessner A., Reischl U. Fatal anthrax infection in a heroin user from southern Germany, June 2012. Euro Surveill. 2012; 17(26):pii=20204.

19. Inhalation anthrax associated with dried animal hides-Pennsylvania and New York City, 2006. MMWR Morb Mortal Wkly Rep. 2006; 55(10):280-2.

21. Joyner T.A., Lukhnova L., Pazilov Y., Temiralyeva G., Hugh-Jones M.E., Aikimbayev A., Blackburn J.K. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PLoS ONE. 2010; 5(3):e9596. DOI: 10.1371/journal.pone.0009596.

22. Keim P., Grunow R., Vipond R., Grass G., Hoffmaster A., Birdsell D.N., Klee S.R., Pullan S., Antwerpen M., Bayer B.N., Latham J., Wiggins K., Hepp C., Pearson T., Brooks T., Sahl J., Wagner D.M. Whole Genome Analysis of Injectional Anthrax Identifies Two Disease Clusters Spanning More Than 13 Years. EBioMedicine. 2015; 2(11):1613-8. DOI: 10.1016/j.ebiom.2015.10.004.

23. Keim P., Van Ert M.N., Pearson T., Vogler A.J., Huynh L.Y., Wagner D.M. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect. Genet. Evol. 2004; 4(3):205-13. DOI: 10.1016/j.meegid.2004.02.005.

25. Leendertz F.H., Yumlu S., Pauli G., Boesch C., Couacy-Hymann E., Vigilant L., Junglen S., Schenk S., Ellerbrok H. A new Bacillus anthracis found in wild chimpanzees and a gorilla from West and Central Africa. PLoSPathog. 2006; 2(1):e8. DOI: 10.1371/jour-nal.ppat.0020008.

26. Leendertz F.H., Ellerbrok H., Boesch C., Couacy-Hymann E., Matz-Rensing K. Hakenbeck R., Bergmann C., Abaza P., Junglen S., Moebius Y., Vigilant L., Formenty P., Pauli G. Anthrax kills wild chimpanzees in a tropical rainforest. Nature. 2004; 430(6998):451-2. DOI: 10.1038/nature02722.

27. Meselson M., Guillemin J., Hugh-Jones M., Langmuir A., Popova I., Shelokov A., Yampolskaya O. The Sverdlovsk anthrax outbreak of 1979. Science. 1994; 266(5188):1202-8. DOI: 10.1126/science.7973702.

28. Mullins J., Lukhnova L., Aikimbayev A., Pazilov Y., Van Ert M., Blackburn J.K. Ecological niche modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan. BMC Ecol. 2011; 11:32. DOI: 10.1186/1472-6785-11-32.

31. Okinaka R., Pearson T., Keim P. Anthrax, but not Bacillus anthracis? PLoS Pathog. 2006; 2(11):e122. DOI: 10.1371/journal.ppat.0020122.

32. Radun D., Bernard H., Altmann M., Schoneberg I., Bochat V., van Treeck U., Rippe R., Grunow R., Elschner M., Biederbick W., Krause G. Preliminary case report of fatal anthrax in an injecting drug user in North-Rhine-Westphalia, Germany, December 2009. Euro Surveill. 2010; 15(2):pii=19464.

33. Ramsay C.N., Stirling A., Smith J., Hawkins G., Brooks T., Hood J., Penrice G., Browning L.M., Ahmed S. An outbreak of infection with Bacillus anthracis in injecting drug users in Scotland. Euro Surveill. 2010; 15(2):pii=19465.

35. Schuch R., Fischetti V. A. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS ONE. 2009; 4(8):e6532. DOI: 10.1371/journal.pone.0006532.

36. Schwieger F., Tebbe C.C. A new approach to utilise PCR-single strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl. Environ. Microbiol. 1998; 64(12):4870-76.

37. Shury T.K., Frandsen D., O'Brodovich L. Anthrax in free-ranging bison in the Prince Albert National Park area of Saskatchewan in 2008. Can. Vet. J. 2009; 50Ш152-1.

38. Turnbull P.C. Hutson R.A., Ward M.J., Jones M.N., Quinn C.P., Finnie N.J., Duggleby C.J., Kramer J.M., Melling J. Bacillus anthracis but not always anthrax. J. Appl. Bacteriol. 1992; 72(1):21-8.

40. Van Ness G.B. Ecology of anthrax. Science. 1971; 172(3990):1303-7.

41. Zwick M.E., Joseph S.J., Didelot X., Chen P.E., Bishop-Lilly K.A Stewart A.C., Willner K., Nolan N., Lentz S., Thomason M.K., Sozh amannan S., Mateczun A.J., Du L., Read T.D. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. 2012; 22(8):1512-24. DOI: 10.1101/gr.134437.111.


Обзор

Споры сибирской язвы под микроскопом

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Так, в 1915 году в ходе Первой мировой войны Германия и Франция перегоняли зараженный сибирской язвой скот — лошадей и коров — на сторону противника [1].

А в 1940-х годах на британской экспериментальной станции Портон-Даун доктор Пол Филдс определил, что наиболее эффективный способ применения сибирской язвы как биологического боевого агента — распыление частиц при взрыве бомбы. В 1942 году он провел серию экспериментов с бактериологическим оружием на пустынном шотландском острове Грюинард (рис. 1), куда доставили отару овец, после чего туда же сбросили бомбы, начиненные спорами сибирской язвы. Все овцы погибли в течение нескольких дней, а земля острова на протяжении долгих десятилетий оставалась зараженной и непригодной для жизни [2].

Остров Грюинард

Рисунок 1. Остров Грюинард

Военный городок Свердловск-19, 1979 год. Внезапная вспышка сибирской язвы унесла жизни 64 людей — и это только по официальным данным. По неофициальным (со слов врачей и пациентов) — не меньше сотни. Подавляющее большинство инфицированных были мужчинами средних лет. Годы спустя президент Борис Ельцин признал, что причиной эпидемии стали секретные разработки, а именно — случайная утечка бактерий из военной лаборатории [3].

Итак, что же в сибиреязвенных спорах так привлекает биотеррористов, и что делает возбудителя сибирской язвы потенциальным биологическим оружием?

С точки зрения бактериологии

Bacillus anthracis

Рисунок 2. Bacillus anthracis. В инфицированной крови или тканях бациллы часто присутствуют в виде коротких цепочек, окруженных полипептидной капсулой.

Грамположительные бактерии — те, что при окраске микроорганизмов по методу Грама приобретают темно-синий цвет и не обесцвечиваются при обработке спиртом. Такая окраска позволяет разделить бактерии по биохимическим свойствам: у грамположительных бактерий спирт вызывает сужение пор в пептидогликане (это полимер в стенках бактериальных клеток), за счет чего краска задерживается в клеточной стенке. Грамотрицательные бактерии, напротив, после воздействия спиртом утрачивают краситель из-за меньшего содержания пептидогликанов [4].

Что касается спор, эти особые формы бактериальных клеток служат для репродукции и/или переживания неблагоприятных условий, то есть хорошо сохраняются во внешней среде (важное свойство для биологического оружия). Они устойчивы к высоким температурам, радиации, высушиванию, действию растворителей и прочих губительных факторов. Более того, споры B. аnthracis могут переносить даже десятиминутное кипячение и сохраняются в почве десятки лет (что демонстрирует случай с островом Грюинард) [2]. В организме животного, которое имело несчастье пастись на такой земле, споры прорастают и вызывают сибирскую язву.

Что насчет патогенеза?

Патогенность B. аnthracis связана со способностью продуцировать токсины — отечный и летальный — и образовывать бактериальную капсулу.

Патогенные свойства B. anthracis кодируются двумя плазмидами: pXO1 отвечает за биосинтез токсинов, а pXO2 кодирует компоненты капсулы. Обе плазмиды необходимы для полной вирулентности (способности к инфицированию), и потеря любой из них приводит к ослаблению штамма.

Небольшая справка

Бактериальные плазмиды — это кольцевые молекулы ДНК, обособленные от хромосом (рис. 3). Они содержат дополнительные гены, необходимые только в специфических условиях для выживания клетки.

Генетический аппарат бактерий

Рисунок 3. Генетический аппарат бактерий. Цифрой 1 обозначена бактериальная ДНК, 2 — обособленные от нее плазмиды.

схема автора статьи

Существует несколько основных групп плазмид.

Col-плазмиды отвечают за синтез белков, действующих против других бактерий (такие вещества называются бактериоцинами). Эти белки вызывают гибель бактерий того же вида (или родственных ему), но не действуют на сами клетки, выделяющие данные вещества.

F-плазмиды (факторы фертильности) ответственны за половой процесс у бактерий. Его обусловливает наличие F-пилей — нитей белковой природы — и их способность к конъюгации, то есть переносу части генетического материала от одной бактериальной клетки к другой при их непосредственном контакте.

R-плазмиды (факторы резистентности) отвечают за устойчивость к действию антибиотиков и сульфаниламидных препаратов (бактериостатиков) — лекарств с противомикробным действием [5–7].

D-плазмиды определяют синтез ферментов, обеспечивающих расщепление углеводородов нефти и других трудноусваиваемых соединений [8].

Однако вернемся к сибирской язве. Плазмида pXO1 кодирует три компонента сибиреязвенных токсинов (рис. 4). Фактор отека (EF) вызывает местную воспалительную реакцию — собственно, отек; протективный антиген (PA) обладает иммуногенным действием, то есть способностью вызывать иммунный ответ организма. И третий фактор — летальный (LF) — нарушает внутриклеточный синтез макромолекул, что приводит к некрозу и разрушению клеток, в первую очередь — макрофагов. Каждый из этих факторов по отдельности не обладает патогенным действием, но сочетание протективного и летального факторов образует летальный токсин, а протективного и отечного — отечный токсин [2], [9–11].

Плазмиды B. anthracis

Рисунок 4. Плазмиды B. anthracis и продукты их синтеза. Регулятор AtxA, кодируемый плазмидой pXO1, контролирует синтез компонентов токсинов сибирской язвы со своей же плазмиды и компонентов капсулы с pXO2. Компоненты EF (фактор отека), LF (летальный фактор) и PA (протективный антиген) собираются в токсины ETx (отечный токсин) и LTx (летальный токсин), вызывая в целевых клетках-хозяевах отек и смерть соответственно. Компоненты капсулы ABCDE взаимодействуют на мембране бактериальной клетки с образованием поли-гамма-D-глутаматной капсулы, которая защищает клетки B. anthracis от уничтожения фагоцитами во время инфекции. PAI — остров патогенности в составе плазмиды.

Виды сибирской язвы

Сибирская язва существует в четырех формах: кожная, желудочно-кишечная, легочная и инъекционная [2], [12], [13].

Кожная форма является самой распространенной и наименее опасной. Она возникает при проникновении бактерий через поврежденную кожу — порез или царапину — при контакте с больным животным или продуктами животного происхождения. В течение двух-трех дней после заражения на коже развивается папула (вид кожной сыпи), которая затем окружается кольцом из везикул (воспалительных элементов сыпи) и, наконец, высыхает. Обычно к 5–6 дню из нее образуется похожий на уголь черный карбункул: он безболезнен и окружен отеком (рис. 5). Без лечения до 20% людей с кожной сибирской язвой погибает от сепсиса, однако при правильном лечении выживают почти все пациенты.

Кожная форма сибирской язвы

Рисунок 5. Кожная форма сибирской язвы

Желудочно-кишечная сибирская язва проявляется при употреблении в пищу сырого или недоваренного мяса зараженного животного. Инфекция так же развивается в течение недели. Характерный карбункул чаще всего встречается на стенке терминальной подвздошной или слепой кишки, однако могут быть поражены и ротоглотка, желудок, двенадцатиперстная кишка и верхняя подвздошная кишка. Желудочно-кишечная сибирская язва имеет две клинические формы: брюшную и пищеводную. При брюшной форме начальные симптомы — тошнота, рвота и лихорадка. По мере прогрессирования заболевания возникают сильные боли в животе, кровоизлияние и диарея с кровью, за которыми следуют сепсис и смерть. Все это — результат тяжелого и широко распространяющегося некроза начального отдела кишечника. При пищеводной форме сибирской язвы симптомы включают боль в горле, нарушение глотания, лихорадку, увеличение лимфоузлов в области шеи и отечность. Из-за таких неспецифических проявлений трудно поставить верный диагноз, что приводит к высокой смертности: умирает более половины пациентов. Однако при правильном лечении выживаемость может достигать 60%.

Самая смертоносная форма сибирской язвы — легочная: она возникает при вдыхании спор В. anthracis. Болезнь начинается коварно — с похожих на грипп симптомов: легкой температуры, усталости, недомогания, боли в мышцах и непродуктивного кашля. Начальная стадия длится около 48 часов, после чего резко сменяется развитием острой фазы. Появляются сильная одышка, тахикардия, учащенное свистящее дыхание, влажные хрипы, лихорадка и посинение кожи (цианоз). В конечном итоге пульс становится очень быстрым и слабым, одышка и цианоз прогрессируют, затем быстро наступают кома и смерть. Без лечения выживает только 10–15% пациентов, однако при агрессивном лечении выживаемость может повышаться и до 55%.

Не так давно была обнаружена новая, инъекционная, форма сибирской язвы в среде героиновых наркоманов. Ее симптомы иногда напоминают кожную форму, однако инфекция в этом случае локализуется глубоко под кожей или в мышце — в зависимости от того, куда была сделана инъекция.

Ни одна из форм сибирской язвы не заразна. Это означает, что болезнь не передается от человека к человеку, как простуда или грипп, — инфицирование может происходить только одним из означенных выше способов [13].

Вскрытие покажет

Лечение и профилактика

Для лечения всех форм сибирской язвы ВОЗ рекомендует интенсивную поддерживающую терапию и антибиотикотерапию. В качестве антибиотика, как правило, выступает знаменитый пенициллин. В тяжелых случаях его комбинируют со фторхинолонами (ципрофлоксацином или левофлоксацином) или макролидами (клиндамицином или кларитромицином). Также могут использоваться и другие антибиотики широкого спектра. При заражении самой опасной, легочной, формой сибирской язвы в ход идет тяжелая артиллерия: гемодинамическая поддержка, искусственная вентиляция легких, назначение кортикостероидов. Очень важно начать своевременное лечение, чтобы уничтожить бактерии раньше, чем их токсины попадут в кровоток [15].

Также при лечении сибирской язвы используют человеческие моноклональные (происходящие от одной клетки-предшественницы) антитела: раксибакумаб и обилтоксаксимаб. Оба препарата связывают протективный антиген (PA), в результате чего нейтрализуются оба сибиреязвенных токсина. Это происходит из-за того, что PA играет ключевую роль в сборке токсинов и поражении клеток-мишеней. Препараты рекомендованы для лечения легочной формы сибирской язвы в сочетании с антибактериальной терапией [17], [18].

Лечение сибирской язвы проводится в течение 3–7 дней при неосложненной кожной форме и 10–14 дней — при системной инфекции, которая охватывает весь организм. Если заболевание — результат биотерроризма, длительность лечения, по рекомендациям ВОЗ, может возрастать до 60 дней. В таком случае назначают ципрофлоксацин или доксициклин с тремя дозами вакцины против сибирской язвы (или же без нее) [15].

Почему различаются курсы лечения инфекций, возникших естественным путем и вызванных искусственно? Дело в том, что искусственные инфекционные болезни обладают самостоятельными клиническими аспектами, этиологией и эпидемиологией. Для заражения злоумышленники могут использовать усовершенствованные штаммы микроорганизмов: с повышенной вирулентностью, устойчивостью к отдельным лекарствам и способностью преодолевать иммунитет, возникший в результате вакцинации. О том, что заболевание вызвано воздействием биологического оружия, могут говорить невозможные эпидемиология и клиническая форма болезни. Проще говоря, можно заподозрить биотерроризм, если в природе не существует условий для развития данного эпидемического процесса, либо подобной клинической картины не наблюдается при естественном заражении. Например, существует патология мелкодисперсного аэрозоля: поражение глубоких отделов легких, вызванное проникновением инфекционных агентов размером менее 5 мкм. Эту патологию может вызвать только целенаправленное распыление биологических частиц из аэрозоля с дисперсной фазой 1–5 мкм [19].

Против сибирской язвы существуют и вакцины (см. табл.).

Несмотря на уже существующие вакцины, разрабатывают и новые — с расчетом на то, что они окажутся более безопасными и эффективными [21]. Однако ни одной вакцины нет в свободном доступе, и ВОЗ рекомендует их только для групп риска — людей, чья деятельность связана с высоким риском инфицирования: ветеринарам, некоторым лабораторным работникам и военнослужащим. Например, с 2015 года вакцину получают сотрудники Министерства обороны США и члены их семей [15].

Идеальное биологическое оружие?

Если сравнить, скажем, B. anthracis и Y. pestis — возбудителя чумы — то окажется, что B. anthracis обладает некоторыми преимуществами — разумеется, в качестве биологического оружия. Так, мы уже говорили о том, что возбудитель сибирской язвы крайне устойчив во внешней среде и может храниться в почве десятилетиями. По сравнению с ним, Y. pestis обладает небольшой устойчивостью: при низкой температуре чумная палочка сохраняется в почве до 28 суток, при высокой — быстро погибает. В выделениях больных людей и животных Y. pestis может сохраняться довольно продолжительное время (что, опять же, зависит от температуры и наличия других бактерий), но обычно не больше месяца. В крови больных животных возбудитель чумы сохраняется до 260 суток, а в замороженных человеческих трупах — 4–5 месяцев [23]. В отличие от B. anthracis, Y. pestis не образует споры.

Clostridium botulinum, возбудитель ботулизма, во многом похож на B. anthracis: это тоже грамположительная спорообразующая бактерия, обитающая в почве. В чем-то C. botulinum даже более устойчив: он выдерживает кипячение до 6 часов, тогда как B. anthracis — только 10 минут. Ботулинический токсин — самый сильный из всех биологических ядов, однако для его продуцирования нужны строго анаэробные условия, а возбудитель сибирской язвы может существовать в любой среде [8].

Изучены факторы, влияющие на тяжесть течения заболевания: возраст больного, место локализации карбункула и наличие метаболического синдрома. Определены эффективные антибактериальные препараты для лечения сибирской язвы на основе изучения чувствительности возбудителя к ним. Обосновано сочетание антибиотиков с сибиреязвенным иммуноглобулином, а также с системной энзимной терапией при тяжелых формах. Показано, что территория южного региона Кыргызской Республики является неблагополучной по сибирской язве на основании высокой заболеваемости людей и животных, широкой распространенности почвенных очагов сибирской язвы.


1. Айкимбаев А.М., Лухнова Л.Ю., Бекенов Ж.Е. Краткие сведения о стационарно неблагополучных по сибирской язве населенных пунктах в Республике Казахстан (Справочник). – Алматы, 2009. – №1. – 101 с.

2. Антюганов С.Н., Рязанова А.Г., Еременко Е.И., Куличенко А.Н. Сибирская язва в Российской федерации и за рубежом //Эпидемиология и инфекционные болезни. – 2012. – №5. – С. 4-8.

4. Жунушов А.Т., Маткаримов С.А., Шайбеков О.К. Совершенствование системы организации и планирования профилактических мероприятий по сибирской язве сельскохозяйственных животных в условиях рыночных отношений (рекомендации). – Бишкек, 1996. – 18 с.

5. Липницкий А.В. Ингаляционный антракс (анализ вспышки, связанной с биотерроризмом, в США осенью 2001 г.) // Пульмонология. – 2002. – №3. – С. 6-11.

6. Системная энзимотерапия: Опыт и перспективы // Под ред. В.И. Кулакова, В.А. Насоновой, В.С. Савельева. – СПб: Интер-Медика, 2004. – 264 с.

7. Тойгонбаева В.С.,Кутманова А.З., Эпидемиологическая ситуация по сибирской язве в Кыргызской Республике // Инфектологии. – Астана, 2012. – Т.4,№3. – 99 с.

8. Утепбергенова Г.А. Клинико-эпидемиологические проявления, рациональные подходы к диагностике и лечению синдрома первичного кожного аффекта: Автореф. д-ра…. мед. наук:14.00.10. – Алматы, 2010. – 43 с.

9. Чазов И. Е.,Мычка В.Б. Метаболический синдром // Кардиоваскулярная терапия и профилактика. – 2003. – № 3. – С.32-38.

10. Черкасский Б.Л., Ладный В.И., Каменецкая Е.К. и др. Оценка потенциальной эпидемиологической значимости почвенных очагов сибирской язвы в зоне водохранилищ // Эпидемиология и инфекционные болезни.-1998. – №1. – С.13-17.

Сибирская язва до настоящего времени остается одним из наиболее распространенных заболеваний среди особо опасных инфекций [1, 2, 11]. По данным ВОЗ, ежегодно в мире регистрируется от 2000 до 20 000 случаев заболеваний сибирской язвой [12]. Особую актуальность эта инфекция приобрела после применения спор Bacillus anthracis с целью биотерроризма в США осенью 2001 года [5].

В связи с животноводческой ориентацией народного хозяйства республик Центральной Азии, сибирская язва получила широкое распространение на их территории, в том числе и в Кыргызстане [4,7,8].

Возбудитель сибирской язвы длительно сохраняется в почве за счёт наличия споровой формы существования; это обуславливает формирование стойких почвенных очагов, среди которых неучтённые представляют большую опасность, повышая риск заражения инфекцией людей и сельскохозяйственных животных [10].

В Кыргызской Республике стойкие почвенные очаги сибирской язвы сохраняются почти на всей территории страны, создавая постоянную угрозу возникновения эпидемических и эпизоотических вспышек [7]. Несмотря на проводимые противоэпидемические и профилактические мероприятия, ежегодно регистрируются случаи заболевания среди населения с колебаниями от 2 (0,04 на 100 тыс. человек) в 2000 году до 9 (0,15 на 100 тыс. человек) в 2012 году, в отдельные годы достигая до 41 (0,5 на 100 тыс. человек) в 2005 году, в основном на эндемичных территориях республики.

Несмотря на значительные достижения в изучении вопросов этиологии, эпидемиологии, клиники, иммунологии и профилактики сибирской язвы, некоторые теоретические и практические аспекты требуют уточнения, особенно на региональном уровне республики. Необходимо также отметить, что до настоящего времени существуют нерешенные проблемы в тактике ведения больных сибирской язвой. К ним относятся: низкая настороженность врачей, эволюция клинических симптомов, вызывающая сложности в проведении своевременной диагностики и лечения. В связи с этим, остаются актуальными вопросы разработки эффективной терапии больных сибирской язвой, связанные с появлением антибиотикорезистентных штаммов B. anthracis [8].

Отмеченные выше проблемы свидетельствуют не только о чрезвычайной актуальности изучения сибирской язвы в современных условиях, но и требуют поиска новых подходов к лечению. В этой связи стала очевидной необходимость разработки алгоритмов действий и внедрения в практику стандартных определений случаев заболеваний и их стандартное лечение, основанное на доказательной медицине, в интересах эпидемиологического надзора для организации эффективной борьбы и профилактики.

Цель исследования: разработка научно-обоснованных подходов к диагностике и лечению сибирской язвы на основе изучения клинико-лабораторных проявлений заболевания и эпидемиологических особенностей в южном регионе Кыргызской Республики.

Материалы и методы исследования

Показатели Т-лимфоцитов с субпопуляциями и В-лимфоцитов выявлены у 30 больных со среднетяжелыми и тяжелыми формами сибирской язвы с помощью моноклональных антител. Контрольную группу составили 30 здоровых лиц. Лечение больных проводили стандартными методами с использованием дезинтоксикационной терапии и этиотропной с включением противосибиреязвенного глобулина в различных сочетаниях. В случаях течения заболевания в степени средней тяжести и тяжелой к лечению подключали препараты системной энзимотерапии (Вобэнзим). Чувствительность к антибиотикам определяли методом диффузии в агаре с использованием дисков.

Для оценки эпидемиологической ситуации в стране были использованы данные официальной статистической регистрации заболеваемости сибирской язвой за 1960–2012 гг. (ДГСЭН МЗ КР, РЦК и ООИ). Оперативный эпидемиологический анализ в очагах сибирской язвы проводился на основе карт эпидемиологического расследования очагов. Всего обследовано 665 очагов. Анализ заболеваемости животных сибирской язвой проводился по материалам статистической отчетности Управления ветеринарии Министерства сельского хозяйства КР, Южной региональной ветеринарной лаборатории. Изучен материал, полученный от 960 сельскохозяйственных животных. Анализ динамики численности животных основывался на архивных материалах Южного филиала Департамента ветеринарной службы. Изучение почвенных очагов сибирской язвы основано на учетной и отчетной документации по южному региону за период с 1936 по 2012 гг. в РЦКиООИ. С использованием GPS-системы мониторирования определяли локализацию очагов (координаты), их концентрацию на определенных территориях, а также степень биологической и эпидемиологической опасности. Результаты исследований подвергались вариационно-статистической обработке в соответствии с общепринятыми методами, а также с использованием программ для медико-биологических исследований. Статистическую обработку результатов выполняли на IВМ Professional ХР, с использованием пакета программ Ехcel, что позволило получить специальные выходные таблицы и диаграммы. Оценка достоверности различия сравниваемых величин проводилась по критерию Стьюдента (t) и уровню вероятности безошибочного прогноза (Р).

Результаты исследования и их обсуждение

Под наблюдением находились 217 больных кожной формой сибирской язвы, из них карбункулезная разновидность диагностирована у 174 (80,2 %) больных, буллезная – у 21 (9,7 %), рожистоподобная – у 11 (5,1 %), эдематозная – у 8 (3,7 %) и эризипелоидная – у 3 (1,4 %). В течение первых 4-х дней болезни в стационар был госпитализирован 171 (78,8 %) больной, 46 (21,2 %) доставлены на 5-6-й день болезни.

Из амбулаторной сети (ГСВ, ЦСМ, СВА, ФАП) были направлены в стационар 179 (82,4 %) больных, причем подозрение на сибирскую язву было лишь у 69 (38,5 %) больных. У остальных 110 больных (61,5 %) первичными диагнозами оказались: инфицированная рана – у 23 (20,9 %), карбункул – у 17 (15, 5 %), рожа – у 22 (20 %), фурункул – у 20 (18,2 %), флегмона – у 11 (10 %), укусы насекомых – у 17 (15,45 %). Необходимо отметить, что первоначально в хирургическое отделение были госпитализированы 26 (23,6 %) больных.

До поступления в стационар амбулаторная помощь с хирургическим вмешательством оказана 31 (28,2 %) больному, лечение у народных целителей получили 25 (22,7 %) человек, а 38 (17,5 %) человек обратились самостоятельно в приемное отделение инфекционного стационара.

Установление истинной продолжительности инкубационного периода при сибирской язве представляет большие трудности, особенно в регионах с развитым животноводством, поэтому за начало инкубационного периода нами был принят момент контакта с инфекционным материалом. Продолжительность инкубационного периода в среднем составила 5,3±1,5 дня, но детальный анализ клинических проявлений выявил зависимость от степени тяжести инфекционного процесса.

Известно, что локализация карбункулов охватывает преимущественно открытые области тела, однако поражение происходит не в одинаковой степени. По нашим данным, локализация единичных карбункулов по отдельным областям тела была следующей: голова – 10 (4,6 %) случаев, туловище – 3 (1,4 %), верхние конечности – 201 (92,6 %), нижние конечности – 3 (1,4 %). Наиболее подверженными заражению оказались верхние конечности, что отражает бытовые особенности населения и основное направление сельского хозяйства. В области верхних конечностей карбункулы встречались в любой зоне, включая ладони.

В исследовании нами наблюдались редко встречающиеся клинические варианты кожной формы сибирской язвы. Эризипелоидная разновидность установлена в 1,4 % случаев кожных поражений при сибирской язве, характеризовалась коротким инкубационным периодом, появлением большого количества пузырей с прозрачной жидкостью. Вскрытие пузырей наблюдалось на 5-й день болезни и на их месте появлялись некротические язвы, отторжение струпа наступало на 21день болезни. Эдематозная разновидность сибирской язвы встречалась в 3,7 % случаях, характеризовалась тяжелым течением заболевания с коротким инкубационным периодом (около 1,5 дней), развитием отека без наличия в начале болезни видимого карбункула, сопровождаясь выраженными симптомами общей интоксикации. При осмотре пораженная кожа становилась блестящей, напряженной, через несколько часов (от 4-5 часов и до 23-24 часов) появлялись пузыри, и одновременно с отеком на 1-й день болезни формировалась зона некроза с последующим превращением в струп. Карбункулы локализовались в области головы и шеи, преимущественно носили множественный характер (у 5-ти больных). Подъем температуры отмечен до 39-40 °С, лимфаденит сохранялся до исчезновения отека, отторжение струпа наступало на 34,1±6,7 день от начала терапии.

Рожистоподобному варианту кожной формы сибирской язвы (5,1 % случаев) было присуще появление покраснения на коже, как при рожистом воспалении. В течение суток происходило появление тонкостенных волдырей разного размера, которые наполнялись прозрачной жидкостью, и через 3-4 дня волдыри вскрывались. Формирование глубокого некроза не наблюдалось, довольно быстро образовывался струп, заживление язв происходило без рубцевания. Необходимо отметить, что у 21(9,6 %) больного имело место развитие осложнения в виде вторичного сепсиса, за счет наслоения вторичной бактериальной флоры, сопровождавшееся повторным подъемом температуры, значительным ухудшением общего состояния, усилением головной боли, нарастанием тахикардии, появлением на коже вторичных пустул. В 0,9 % случаях у лиц старше 50 лет с тяжелой сопутствующей патологий со стороны сердца (ИБС, стенокардия, ГБ) на фоне вторичного сепсиса отмечено присоединение кровавой рвоты и поноса, в результате заболевание закончилось летальным исходом. При проведении исследования нами было изучено влияние различных факторов, обуславливающих тяжесть течения болезни. Полученные нами данные о зависимости тяжести течения заболевания от возраста больного согласуются с литературными данными (Бургасов П.Н. и др., 1970; Никифоров В.Н., 1973). Анализ возрастного состава показал, что у лиц до 30 лет преобладали легкие формы заболевания (18,9±3,18 %), с 31 года до 40 лет заболевание по тяжести течения распределялась примерно одинаково между легкими (32,8 %±3,8) и среднетяжелыми (31,8 %±7,02, р>0,05) формами, а у лиц старше 50 лет регистрировались преимущественно тяжелые формы (71,4±9,86 %, p<0,01). Локализация карбункула на отдельных участках тела оказывала влияние на тяжесть течения патологического процесса у больных кожной формой сибирской язвы – при расположении очага в челюстно-лицевой области клиническое проявление заболевания имело выраженный характер и при его преимущественной локализации на верхних и нижних конечностях – выраженность была минимальной (таблица). По нашим данным, легкая форма заболевания также была диагностирована при локализации единичных карбункулов в области пупка и спины.


Обзор

Споры сибирской язвы под микроскопом

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Так, в 1915 году в ходе Первой мировой войны Германия и Франция перегоняли зараженный сибирской язвой скот — лошадей и коров — на сторону противника [1].

А в 1940-х годах на британской экспериментальной станции Портон-Даун доктор Пол Филдс определил, что наиболее эффективный способ применения сибирской язвы как биологического боевого агента — распыление частиц при взрыве бомбы. В 1942 году он провел серию экспериментов с бактериологическим оружием на пустынном шотландском острове Грюинард (рис. 1), куда доставили отару овец, после чего туда же сбросили бомбы, начиненные спорами сибирской язвы. Все овцы погибли в течение нескольких дней, а земля острова на протяжении долгих десятилетий оставалась зараженной и непригодной для жизни [2].

Остров Грюинард

Рисунок 1. Остров Грюинард

Военный городок Свердловск-19, 1979 год. Внезапная вспышка сибирской язвы унесла жизни 64 людей — и это только по официальным данным. По неофициальным (со слов врачей и пациентов) — не меньше сотни. Подавляющее большинство инфицированных были мужчинами средних лет. Годы спустя президент Борис Ельцин признал, что причиной эпидемии стали секретные разработки, а именно — случайная утечка бактерий из военной лаборатории [3].

Итак, что же в сибиреязвенных спорах так привлекает биотеррористов, и что делает возбудителя сибирской язвы потенциальным биологическим оружием?

С точки зрения бактериологии

Bacillus anthracis

Рисунок 2. Bacillus anthracis. В инфицированной крови или тканях бациллы часто присутствуют в виде коротких цепочек, окруженных полипептидной капсулой.

Грамположительные бактерии — те, что при окраске микроорганизмов по методу Грама приобретают темно-синий цвет и не обесцвечиваются при обработке спиртом. Такая окраска позволяет разделить бактерии по биохимическим свойствам: у грамположительных бактерий спирт вызывает сужение пор в пептидогликане (это полимер в стенках бактериальных клеток), за счет чего краска задерживается в клеточной стенке. Грамотрицательные бактерии, напротив, после воздействия спиртом утрачивают краситель из-за меньшего содержания пептидогликанов [4].

Что касается спор, эти особые формы бактериальных клеток служат для репродукции и/или переживания неблагоприятных условий, то есть хорошо сохраняются во внешней среде (важное свойство для биологического оружия). Они устойчивы к высоким температурам, радиации, высушиванию, действию растворителей и прочих губительных факторов. Более того, споры B. аnthracis могут переносить даже десятиминутное кипячение и сохраняются в почве десятки лет (что демонстрирует случай с островом Грюинард) [2]. В организме животного, которое имело несчастье пастись на такой земле, споры прорастают и вызывают сибирскую язву.

Что насчет патогенеза?

Патогенность B. аnthracis связана со способностью продуцировать токсины — отечный и летальный — и образовывать бактериальную капсулу.

Патогенные свойства B. anthracis кодируются двумя плазмидами: pXO1 отвечает за биосинтез токсинов, а pXO2 кодирует компоненты капсулы. Обе плазмиды необходимы для полной вирулентности (способности к инфицированию), и потеря любой из них приводит к ослаблению штамма.

Небольшая справка

Бактериальные плазмиды — это кольцевые молекулы ДНК, обособленные от хромосом (рис. 3). Они содержат дополнительные гены, необходимые только в специфических условиях для выживания клетки.

Генетический аппарат бактерий

Рисунок 3. Генетический аппарат бактерий. Цифрой 1 обозначена бактериальная ДНК, 2 — обособленные от нее плазмиды.

схема автора статьи

Существует несколько основных групп плазмид.

Col-плазмиды отвечают за синтез белков, действующих против других бактерий (такие вещества называются бактериоцинами). Эти белки вызывают гибель бактерий того же вида (или родственных ему), но не действуют на сами клетки, выделяющие данные вещества.

F-плазмиды (факторы фертильности) ответственны за половой процесс у бактерий. Его обусловливает наличие F-пилей — нитей белковой природы — и их способность к конъюгации, то есть переносу части генетического материала от одной бактериальной клетки к другой при их непосредственном контакте.

R-плазмиды (факторы резистентности) отвечают за устойчивость к действию антибиотиков и сульфаниламидных препаратов (бактериостатиков) — лекарств с противомикробным действием [5–7].

D-плазмиды определяют синтез ферментов, обеспечивающих расщепление углеводородов нефти и других трудноусваиваемых соединений [8].

Однако вернемся к сибирской язве. Плазмида pXO1 кодирует три компонента сибиреязвенных токсинов (рис. 4). Фактор отека (EF) вызывает местную воспалительную реакцию — собственно, отек; протективный антиген (PA) обладает иммуногенным действием, то есть способностью вызывать иммунный ответ организма. И третий фактор — летальный (LF) — нарушает внутриклеточный синтез макромолекул, что приводит к некрозу и разрушению клеток, в первую очередь — макрофагов. Каждый из этих факторов по отдельности не обладает патогенным действием, но сочетание протективного и летального факторов образует летальный токсин, а протективного и отечного — отечный токсин [2], [9–11].

Плазмиды B. anthracis

Рисунок 4. Плазмиды B. anthracis и продукты их синтеза. Регулятор AtxA, кодируемый плазмидой pXO1, контролирует синтез компонентов токсинов сибирской язвы со своей же плазмиды и компонентов капсулы с pXO2. Компоненты EF (фактор отека), LF (летальный фактор) и PA (протективный антиген) собираются в токсины ETx (отечный токсин) и LTx (летальный токсин), вызывая в целевых клетках-хозяевах отек и смерть соответственно. Компоненты капсулы ABCDE взаимодействуют на мембране бактериальной клетки с образованием поли-гамма-D-глутаматной капсулы, которая защищает клетки B. anthracis от уничтожения фагоцитами во время инфекции. PAI — остров патогенности в составе плазмиды.

Виды сибирской язвы

Сибирская язва существует в четырех формах: кожная, желудочно-кишечная, легочная и инъекционная [2], [12], [13].

Кожная форма является самой распространенной и наименее опасной. Она возникает при проникновении бактерий через поврежденную кожу — порез или царапину — при контакте с больным животным или продуктами животного происхождения. В течение двух-трех дней после заражения на коже развивается папула (вид кожной сыпи), которая затем окружается кольцом из везикул (воспалительных элементов сыпи) и, наконец, высыхает. Обычно к 5–6 дню из нее образуется похожий на уголь черный карбункул: он безболезнен и окружен отеком (рис. 5). Без лечения до 20% людей с кожной сибирской язвой погибает от сепсиса, однако при правильном лечении выживают почти все пациенты.

Кожная форма сибирской язвы

Рисунок 5. Кожная форма сибирской язвы

Желудочно-кишечная сибирская язва проявляется при употреблении в пищу сырого или недоваренного мяса зараженного животного. Инфекция так же развивается в течение недели. Характерный карбункул чаще всего встречается на стенке терминальной подвздошной или слепой кишки, однако могут быть поражены и ротоглотка, желудок, двенадцатиперстная кишка и верхняя подвздошная кишка. Желудочно-кишечная сибирская язва имеет две клинические формы: брюшную и пищеводную. При брюшной форме начальные симптомы — тошнота, рвота и лихорадка. По мере прогрессирования заболевания возникают сильные боли в животе, кровоизлияние и диарея с кровью, за которыми следуют сепсис и смерть. Все это — результат тяжелого и широко распространяющегося некроза начального отдела кишечника. При пищеводной форме сибирской язвы симптомы включают боль в горле, нарушение глотания, лихорадку, увеличение лимфоузлов в области шеи и отечность. Из-за таких неспецифических проявлений трудно поставить верный диагноз, что приводит к высокой смертности: умирает более половины пациентов. Однако при правильном лечении выживаемость может достигать 60%.

Самая смертоносная форма сибирской язвы — легочная: она возникает при вдыхании спор В. anthracis. Болезнь начинается коварно — с похожих на грипп симптомов: легкой температуры, усталости, недомогания, боли в мышцах и непродуктивного кашля. Начальная стадия длится около 48 часов, после чего резко сменяется развитием острой фазы. Появляются сильная одышка, тахикардия, учащенное свистящее дыхание, влажные хрипы, лихорадка и посинение кожи (цианоз). В конечном итоге пульс становится очень быстрым и слабым, одышка и цианоз прогрессируют, затем быстро наступают кома и смерть. Без лечения выживает только 10–15% пациентов, однако при агрессивном лечении выживаемость может повышаться и до 55%.

Не так давно была обнаружена новая, инъекционная, форма сибирской язвы в среде героиновых наркоманов. Ее симптомы иногда напоминают кожную форму, однако инфекция в этом случае локализуется глубоко под кожей или в мышце — в зависимости от того, куда была сделана инъекция.

Ни одна из форм сибирской язвы не заразна. Это означает, что болезнь не передается от человека к человеку, как простуда или грипп, — инфицирование может происходить только одним из означенных выше способов [13].

Вскрытие покажет

Лечение и профилактика

Для лечения всех форм сибирской язвы ВОЗ рекомендует интенсивную поддерживающую терапию и антибиотикотерапию. В качестве антибиотика, как правило, выступает знаменитый пенициллин. В тяжелых случаях его комбинируют со фторхинолонами (ципрофлоксацином или левофлоксацином) или макролидами (клиндамицином или кларитромицином). Также могут использоваться и другие антибиотики широкого спектра. При заражении самой опасной, легочной, формой сибирской язвы в ход идет тяжелая артиллерия: гемодинамическая поддержка, искусственная вентиляция легких, назначение кортикостероидов. Очень важно начать своевременное лечение, чтобы уничтожить бактерии раньше, чем их токсины попадут в кровоток [15].

Также при лечении сибирской язвы используют человеческие моноклональные (происходящие от одной клетки-предшественницы) антитела: раксибакумаб и обилтоксаксимаб. Оба препарата связывают протективный антиген (PA), в результате чего нейтрализуются оба сибиреязвенных токсина. Это происходит из-за того, что PA играет ключевую роль в сборке токсинов и поражении клеток-мишеней. Препараты рекомендованы для лечения легочной формы сибирской язвы в сочетании с антибактериальной терапией [17], [18].

Лечение сибирской язвы проводится в течение 3–7 дней при неосложненной кожной форме и 10–14 дней — при системной инфекции, которая охватывает весь организм. Если заболевание — результат биотерроризма, длительность лечения, по рекомендациям ВОЗ, может возрастать до 60 дней. В таком случае назначают ципрофлоксацин или доксициклин с тремя дозами вакцины против сибирской язвы (или же без нее) [15].

Почему различаются курсы лечения инфекций, возникших естественным путем и вызванных искусственно? Дело в том, что искусственные инфекционные болезни обладают самостоятельными клиническими аспектами, этиологией и эпидемиологией. Для заражения злоумышленники могут использовать усовершенствованные штаммы микроорганизмов: с повышенной вирулентностью, устойчивостью к отдельным лекарствам и способностью преодолевать иммунитет, возникший в результате вакцинации. О том, что заболевание вызвано воздействием биологического оружия, могут говорить невозможные эпидемиология и клиническая форма болезни. Проще говоря, можно заподозрить биотерроризм, если в природе не существует условий для развития данного эпидемического процесса, либо подобной клинической картины не наблюдается при естественном заражении. Например, существует патология мелкодисперсного аэрозоля: поражение глубоких отделов легких, вызванное проникновением инфекционных агентов размером менее 5 мкм. Эту патологию может вызвать только целенаправленное распыление биологических частиц из аэрозоля с дисперсной фазой 1–5 мкм [19].

Против сибирской язвы существуют и вакцины (см. табл.).

Несмотря на уже существующие вакцины, разрабатывают и новые — с расчетом на то, что они окажутся более безопасными и эффективными [21]. Однако ни одной вакцины нет в свободном доступе, и ВОЗ рекомендует их только для групп риска — людей, чья деятельность связана с высоким риском инфицирования: ветеринарам, некоторым лабораторным работникам и военнослужащим. Например, с 2015 года вакцину получают сотрудники Министерства обороны США и члены их семей [15].

Идеальное биологическое оружие?

Если сравнить, скажем, B. anthracis и Y. pestis — возбудителя чумы — то окажется, что B. anthracis обладает некоторыми преимуществами — разумеется, в качестве биологического оружия. Так, мы уже говорили о том, что возбудитель сибирской язвы крайне устойчив во внешней среде и может храниться в почве десятилетиями. По сравнению с ним, Y. pestis обладает небольшой устойчивостью: при низкой температуре чумная палочка сохраняется в почве до 28 суток, при высокой — быстро погибает. В выделениях больных людей и животных Y. pestis может сохраняться довольно продолжительное время (что, опять же, зависит от температуры и наличия других бактерий), но обычно не больше месяца. В крови больных животных возбудитель чумы сохраняется до 260 суток, а в замороженных человеческих трупах — 4–5 месяцев [23]. В отличие от B. anthracis, Y. pestis не образует споры.

Clostridium botulinum, возбудитель ботулизма, во многом похож на B. anthracis: это тоже грамположительная спорообразующая бактерия, обитающая в почве. В чем-то C. botulinum даже более устойчив: он выдерживает кипячение до 6 часов, тогда как B. anthracis — только 10 минут. Ботулинический токсин — самый сильный из всех биологических ядов, однако для его продуцирования нужны строго анаэробные условия, а возбудитель сибирской язвы может существовать в любой среде [8].

Читайте также: