Оперон фермента рнк полимеразы кишечной палочки включает 9450

Обновлено: 18.04.2024

Задача.1. Начало цепи одной из фракций гистона НЗ, выделенного из тимуса быка, имеет следующую аминокислотную последовательность : Ала-Арг-Тре-Лиз-. Какова возможная структура начальных фрагментов и-РНК и двухцепочечной ДНК?

Решение. По таблице 1 находим, что указанные аминокислоты гистона НЗ кодируется триплетами: ГЦЦ-ЦГЦ-АЦЦ-ААГ. По принципу комплементарности устанавливаем строение соответствующего участка молекулы ДНК.

Цепь и-РНК: ГЦЦ-ЦГЦ-АЦЦ-ААГ

Первая цепь ДНК: ЦГГ-ГЦГ-ТГГ-ТТЦ

Вторая цепь ДНК: ГЦЦ-ЦГЦ-АЦЦ-ААГ.


Задача.2. У больных серповидной анемией в молекуле гемоглобина глютаминовая кислота замещена на Валин. Чем отличается ДНК, больного серповидной анемией, от ДНК здорового человека?

Решение. Находим триплеты на и-РНК, кодирующие глютаминовую кислоту и валин, а по ним – нуклеотидный состав ДНК:

Здоровый человек Больной человек

Аминокислоты Глу Вал

Кодоны и-РНК ГАА ГУУ

Состав ДНК ГАА ГТТ

Задача.3.Какое изменение молекулы ДНК сильнее повлияет на строение белка: выпадение одного нуклеотида из триплета или целого триплета?

Решение. В качестве примера возьмем какой-либо участок цепи ДНК, несущий информацию о строении определенного пептида, и проанализируем его строение при возможных ситуациях.

а) при нормальном строении ДНК.

Цепь ДНК: …АГГ-ТГГ-ЦТЦ-ЦТГ-Г…

Пептид -Сер -Тре -Глу -Асп-

б) при выпадении из цепи ДНК одного нуклеотида. Допустим, выбит первый нуклеотид второго триплета (Т) .

Цепь ДНК: …АГГ-ГГЦ-ТЦЦ-ТГГ…

Пептид -Сер -Про -Арг -Тре-

в) при выпадении целого триплета из цепи ДНК. Допустим, выбит второй триплет (-ТГГ-) .

Цепь ДНК: …АГГ…-…ЦТЦ-ЦТГ-Г…

Пептид -Сер …-… -Глу -Асп-

Таким образом, при выпадении одного нуклеотида из цепи ДНК изменяется полностью аминокислотный состав белковой молекулы. Исключение целого триплета приводит к выпадению лишь одной аминокислоты. При этом последовательность всех остальных аминокислот в белковой цепи сохраняется.

Молекулярная масса одной аминокислоты в среднем – 100.

Молекулярная масса одного нуклеотида – 345.

Длина одного нуклеотида – 0,34нм.

Длина одной аминокислоты-0,3нм

Задача№4.Дана цепь ДНК: Ц Т А- Т А Г -Т А А -Ц Ц А- А

Определите: а) первичную структуру белка, закодированного в этой цепи;

б) количество (в %) различных видов нуклеотидов в этом гене (в двух цепях); в) длину этого гена; г) первичную структуру белка, синтезируемого после выпадения девятого нуклеотида в этой цепи ДНК.

Решение: а) Асп – ала- илей – гли --- .

б) всего в двух цепях-26 нуклеотидов. Чтобы найти количество адениловых нуклеотидов (в%) составляем пропорциию: А=Т-(9+9)=18; Ц+Г-(4+4)=8.

На основе принципа комплементарности (А=Т) - 34,6+34,6=69,2%

100% - 69,2%=30,8% приходится на (Г+Ц). 30,8:2=15,4%

В) В одной цепи ДНК всего-13 нуклеотидов. 13 х 0,34нм=4,42нм.

Г) после выпадения девятого нуклеотида

Асп – ала – мет – вал

Задача №5.Даны полипептидные цепи:

а) але – тре – лиз – аспи …

б) гли – илей – вал – глу – глун …

в) тре – сер – илей – сер – асп

Определите структуру соответствующих цепей ДНК.

Примечание: Из нескольких возможных кодонов и-РНК одной аминокислоты следует брать, для удобства проверки, первый кодон по порядку чтения таблицы генетического

Задача№21 Оперон фермента РНК-полимеразы кишечной палочки включает 9450пар нуклеотидов. РНК-полимераза состоит из 329 аминокислот. Сколько кодирующих и не кодирующих пар нуклеотидов входит в состав оперона РНК- полимеразы.

Решение: За 329 аминокислот в гене отвечает329х3=987 пар нуклеотидов. Не кодирующая часть 9450пар-987пар=8463пары нуклеотидов.Она включает регуляторную зону(промотор, ген оператор и т.д.)

Задача№22. Белок - полимер. Ген, кодирующий его, состоит из 10 900 пар нуклеотидов, в том числе включает 2 интрона по 5 тысяч пар нуклеотидов каждый.

Из скольких аминокислотных остатков состоит белок.

Решение: За белок отвечает только экзоны и на них приходится 900 пар нуклеотидов.

Ген включает 2 интрона по 5 тысяч: 5000х2=10 000пар нуклеотидов.

10 900-10 000=900пар нуклеотидов. 900:3=300 аминокислотных остатков.

Задача №23. Б елок – полимер. Ген, кодирующий его, включает 5 интронов по 10 тысяч.пар нуклеотидов и 4 экзона по 270пар нуклеотидов.

Сколько нуклеотидов входит в состав кодирующей зоны и-РНК этого белка и сколько он включает аминокислотных остатков?

Решение: Ген включает 5 интронов по 10 000пар нуклеотидов 10 000х5=50 000пар нуклеотидов, кроме этого включает 4 экзона по 270пар нуклеотидов:270х4=1080 пар нуклеотидов.

В состав кодирующий зоны входит 1080пар нуклеотидов. Каждая аминокислота кодируется триплетом (тремя нуклеотидами). 1080:3=360аминокислотных остатков.

Задача№24. Ген состоит из 21 200 пар нуклеотидов и включает 2интрона по 10 000пар нуклеотидов, каждый. Сколько аминокислотных остатков включает белок, синтез

которого контролируется этим геном.

Решение: 10 000х2=20 000пар нуклеотидов интрона. 21 200-20 000= 1 200пар нуклеотидов. 1200:3=400 аминокислотных остатков.

Задача№25. Чему равна длина гена, кодирующего белок из 420 аминокислотных остатков, если он включает 2 интрона по 3000 пар нуклеотидов каждый? Решение: За 420 аминокислот в гене отвечает 420х3=1260пар нуклеотидов. Не кодирующая часть 3000х 2=6000 нуклеотидов. Всего: 1260+6000=7260 пар нуклеотидов.

Чтобы определить длину гена 7260х0,34нм.=2468,4.

Задача №26. Общая масса всех молекул ДНК в 46 хромосомах одной соматической клетки человека

Составляет около 6х10-9мг. Определите, чему равна масса всех молекул ДНК в сперматозоиде и в соматической клетке перед началом деления и после его окончания.

1. Перед началом деления в исходной клетке количество ДНК удваивается и масса равна .

2.После окончания деления в соматической клетке количество ДНК остается таким же,

Как в исходной клетке:

3. В половых клетках 23 хромосомы, то есть в два раза меньше, чем в соматических,

Соответственно масса ДНК в сперматозоиде в 2 раза меньше и составляет .

Задача №27. Две цепи ДНК удерживаются друг против друга водородными связями. Определите: число двойных и тройных водородных связей в этой цепи ДНК, а также её

Длину, если известно, что нуклеотидов с аденином (А)-12, с гуанином (Г)-20, в обеих цепях.(расстояние между нуклеотидами в ДНК составляет – 0,34нм).

1. Аденин(А) комплементарен тимину (Т), и между ними образуются две водородные связи, следовательно, двойных водородных связей-12;

2. Гуанин (Г) комплементарен цитозину(Ц), и между ними образуются три водородные связи, следовательно, тройных водородных связей -20;

3. Всего нуклеотидов в цепи 12(А) +12(Т)+20(Г)+20(Ц)=64;

Длина участка молекулы ДНК: 64:2Х0,34=10,88нм.

Задача№28. Участок молекулы ДНК имеет структуру:

Определите:структуру второй цепи ДНК, нуклеотидный состав и-РНК и число тройных водородных связей в этом участке молекулы ДНК

1.) Вторая цепь ДНК имеет структуру:

2). И-РНК имеет нуклеотидный состав:

3). Число тройных водородных связей: тройные водородные связи образуются между гуанином (Г) и цитозином (Ц), их число=10

Задача №29. Дана цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА

Определите: 1) Первичную структуру закодированного белка

2) Процентное содержание различных видов нуклеотидов в этом гене (в двух цепях)

3). Длину этого гена

Послед-сть аминокислот: асп-тир-иле-гли.

Первая цепь ДНК: ЦТА-АТГ-ТАА-ЦЦА

Вторая цепь ДНК: ГАТ-ТАЦ-АТТ-ГГТ

Кол-во:А=8, Т=8,Г=4,Ц=4. Все кол-во:24,ээто 100%.

А=Т,=8, это (8х100%):24=33,3%

Длина гена: 12х0,34нм=4,08нм

Длина белка: 4аминок. х 0,3=1,2нм.

Информационная часть м-РНК содержит 144 нуклеотида.Определите число аминокислот, которые входят в состав кодируемого ею белка, число молекул т-РНК, участвующих в процессе трансляции этого белка, и число нуклеотидов в участке гена,кодирующих первичную структуру этого белка. Обьясните полученные результаты:

Решение: 1. аминокислоту кодирует триплет нуклеотидов, следовательно белок состоит из 144:3= 48 аминокислот

2. одна т-РНК транспортирует одну аминокислоту, следовательно, в процессе трансляции участвовало 48 т-РНК.

3. и-РНК является копией гена, который кодирует данный белок ,поэтому ген содержит 144 нуклеотида

Решение: а) ТАГ- ТГА-ТТТ-ТТА …

Задача№6.Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок инсулин из 51 аминокислоты?

Решение: Каждая аминокислота кодируется триплетом (тремя нуклеотидами) ДНК. Следовательно, для кодирования 51 аминокислоты белка потребуется

51х3=153 нуклеотида в одной цепи ДНК, а в гене – в два раза больше:

Задача№7. Молекулярная масса белка Х-50 000. Определите длину соответствующего гена.

Решение: Белок Х состоит из 50 000:100=500 аминокислот. Для кодирования

500 аминокислоты потребуется 500 триплетов. 500х3=1500 нуклеотидов.

Длина этой цепи ДНК=1500 х 0,34нм = 510нм.

Задача№8.Сколько нуклеотидов содержат гены (обе цепи ДНК),в которых запрограммированы следующие белки а) из 500 аминокислот, б) из 25 аминокислот,

в) из 48 аминокислот.

Решение: каждая аминокислота кодируется триплетом. Следовательно, а) 500 х 3=1500 нуклеотидов в одной цепи ДНК, а в гене –в два разабольше:1500х2=3000. б) 25 х 3 = 75 нуклеотидов, в одной цепи ДНК, а в гене 75х2=150 нуклеотидов.в) 48 х 3 = 144 нуклеотидов, в одной цепи ДНК, а в гене 144х2=288 нуклеотидов.

Примечание: Молекулярная масса одной аминокислоты в среднем 100.

Молекулярная масса одного нуклеотида 345.

Длина одного нуклеотида 0,34 нм.

Задача№9. Известна, молекулярная масса четырех видов белков:

а) 3000; б) 4600; в) 7800; г) 3500. Определите длину соответствующих генов.

Решение: а) 3000: 100=30 аминокислот.30х3=90 нуклеотидов.90х0,34=30,6 нм.

б) 4600:100=46 аминокислот.46х3=138 нуклеотидов.138 х 0,34=46,92нм.

в) 7800:100=78 аминокислот.78х3=234 нуклеотидов.234 х 0,34=795,6нм.

г) 3500: 100=35 аминокислот.35х3=105 нуклеотидов.105 х 0,34=35,7 нм.

Задача№10.. Одна из цепей ДНК имеет молекулярную массу 34 155.Определите

количество мономеров белка, запрограммированного в этой ДНК.

Решение: 34 155:345=99 нуклеотидов содержится в ДНК. 99:3=33 триплета в ДНК кодируют 33 аминокислоты белка.

Задача№11. В молекуле ДНК обнаружено 880 гуаниловых нуклеотидов, которые составляют 22% от общего количества нуклеотидов этой ДНК.

Определите: а) сколько содержится других нуклеотидов в этой молекуле ДНК.

б) какова длина ДНК

Решение: а) На основе принципа комплементарности Ц-Г= 22%+22%=44% или

Ц-Г=880+880=1760. На долю других видов нуклеотидов Т+А=приходится

100%-44%=56%.Для вычисления количества этих нуклеотидов составляем пропорцию:

Х-----100 Х= 4000 всего нуклеотидов в двух цепях.(А+Т)=(Ц+Г).

4000-1760=2240 нуклеотидов это 56%.

б) Для определения длины ДНК узнаем, сколько нуклеотидов содержится в одной цепи:

4000:2= 2000 нуклеотидов.

в) Вычисляем длину ДНК: 2000нук. х 0,34нм.=680нм.

Задача№12. Какова молекулярная масса гена (двух цепей ДНК), если в одной цепи его запрограммирован белок с молекулярной массой 1500?

Решение: а) 1500:100=15 аминокислот в белке;

б) 15х3=45 нуклеотидов в одной цепи гена

. в) 45х345=15 525 (молекулярная масса одной цепи гена).

г) молекулярная масса двух цепей 15 525х2=31050.

Задача №13. Определите длину молекулы ДНК, если в белке 51 аминокислота (инсулин), а длина одного нуклеотида 0,34 нм.

Решение: В молекуле белка 51 аминокислота. Каждая аминокислота кодируется триплетом, поэтому в одной цепи ДНК – 51 триплетов. 51х3=153 нуклеотида.

Вычисляем длину ДНК 153 х о,34нм. =52,02нм.

Задача №14. Сколько аминокислотных остатков включает белок, если в кодирующем его гена цитозина - 800, тимина - 430.

Решение: На основе принципа комплементарности А=Т и Г=Ц.

В двух цепях ДНК: (Г+Ц)=800+800=1600 нуклеотидов; ( А+Т)=430+430=860 нуклеотидов.

В двух цепях всего 2460 нуклеотидов. В одной цепи 2460:2=1230 нуклеотидов.

Каждый триплет кодирует одну аминокислоту: 1230:3=410 аминокислотных остатков.

Задача№15. В состав гена входит 30% тимина. Сколько в нем гуанина, если белок, кодируемый этим геном включает 350 аминокислот.

Решение: На основе принципа комплементарности А=Т -30%+30%=60%. Чтобы узнать сколько % в нем гуанина: 100% - 60%= 40%.(Г+Ц).

350х3=1050 нуклеотидов, в одной цепи ДНК. В двух цепях ДНК1050х2=2100 нуклеотидов.

Чтобы определить сколько % нуклеотидов приходится на А+Т- составляем пропорцию:

Х---------60% Х= 1260 нуклеотидов.

Чтобы определить сколько нуклеотидов приходится на Ц+Г- составляем пропорцию:

Х-----------40%. Х=840% нуклеотидов. 840: 2= 420 нуклеотидов гуанина.

Задача№16. Сколько аминокислотных остатков включает белок, если в кодирующем

его гене аденина – 300, гуанина – 720, цитозина – 720.

Решение: На основе комплементарности А=Т-(300+300)=600 нуклеотидов.

В одной цепи ДНК: 2040:2=1020 нуклеотидов. Каждая аминокислота кодируется триплетом. 1020 нуклеотидов : 3=340 аминокислотных остатков.

Задача № 17. В состав и-РНК входит: А-16%, У-28%, Г-24%, Ц-32%.

Определите процентный состав азотистых оснований молекулы ДНК, слепком с которой является указанная РНК.

Решение: На основе принципа комплементарности а) количество А=У, найдем среднее арифметич.% содержания этих нуклеотидов 16%+28%=44%.А=У-44:2=22%.

Г=Ц, найдем среднее арифмет. 100-44=56%(Г+Ц). 56:2=28%.

Задача№18.В гене аденина 20%, гуанина-900 оснований. Сколько аминокислотных остатков в белке, кодируемом этим геном?

Решение: На основе комплементарности Г=Ц-900+900=1800оснований. Чтобы найти количество аденина составляем пропорцию: 1800----100

Х-----40% Х=720 нуклеотидов (А+Т).

Задача№19. В состав т-РНК входит Г-34%, У-24%, А-22%, Ц-20%. Определите процентный состав азотистых оснований молекулы ДНК, слепком с которой является указанная РНК.

Решение: На основе принципа комплементарности а) А+У, найдем среднее арифмет.

% содержание этих нуклеотидов 22%+24%=46%. А-У=46:2=23%.

б) Г=Ц, найдем средне арифметич.100-46=54% на (Г+Ц). 54:2=27%.

Задача№20. В состав и-РНК входит Г-34%, У- 18%, Ц-28%, А-20%.Определите процентный состав азотистых оснований молекулы ДНК, с которой транскрибировалось и-РНК.

Решение: На основе принципа комплементарности а) А+У=20%+18%=38%. 38%:2=19%

Пользуясь методическими разработками, решить задачи по теме – 165 минут.

Устно ответить на вопросы конечного уровня – 20 минут.

Задачи по основам молекулярной биологии – 85 минут:

1. Сколько пар нуклеотидов входит в состав экзонов α- и β-цепей белка А, если известно, что α-цепь состоит из 100 аминокислот, а β-цепь включает в себя 150 аминокислот.

2. Гемоглобин взрослого человека Нв А – белок-тетрамер, состоящий из двух α- и двух β-полипептидных цепей, α-цепь включает 141 аминокислоту β-цепь – 146. Сколько пар нуклеотидов входит в состав экзонов генов α- и β-цепей гемоглобина А?

3. Оперон фермента РНК-полимеразы кишечной палочки включает 9450 пар нуклеотидов, РНК-полимераза состоит из 329 аминокислот. Сколько кодирующих и некодирующих пар нуклеотидов входит в состав оперона РНК полимеразы?

4. Белок В – мономер. Ген, кодирующий этот белок, вклю­чает 5 интронов по 10 тысяч пар нуклеотидов и 4 экзона по 270 пар нуклеотидов.

а) Сколько нуклеотидов входит в состав кодирующей зоны и-РНК данного белка?

б) Сколько пар нуклеотидов (экзонов и интронов) входит в состав данного гена?

в) Сколько аминокислот входит в состав данного белка?

5. В одной из цепей фрагмента ДНК нуклеотиды расположены в следующей последовательности 3'. ЦЦЦГЦЦАЦЦТГЦГГА. 5'. Напишите последователь­ности нуклеотидов в комплементарной цепи ДНК. Обозначьте черточками водородные связи между нуклеотидами цепей ДНК. Укажите стрелками направления транскрипции и трансляции.

6. На рисунке представлена упрощенная схема строения оперона прокариот:

Условные обозначения:

первый структурный ген (А)

второй структурный ген (В)

третий структурный ген (С)

терминатор транскрипции (tt)

регуляторный участок после промотора (оператор) (О).

Расставьте на схеме условные обозначения вышеуказанных участков оперона прокариот.

7. Изучите упрощенную схему, иллюстрирующую последовательность основных событий при экспрессии генов.


Условные обозначения:

посттрансляционные изменения белка

Расставьте номера условных обозначений в соответствии с последовательностью событий экспрессии генов, указанной на схеме.

8. В начальном фрагменте первого экзона гена – полипептидной цепи нормального гемоглобина человека (Нв А) имеется следующая последовательность нуклеотидов:

а) Какие аминокислоты кодируют 1, 3, 6 и 8 кодоны?

б) Как изменится аминокислотный состав этого белка, если в третьем кодоне второе основание будет заменено на Г?

в) В пятом кодоне произойдет делеция первого основания?

г) Какие нуклеотиды появятся на 5' – конце первого экзона гена, если новая мутация увеличила -полипептид на три аминокислоты: валин, лизин, пролин.

9. Четвертый пептид в нормальном гемоглобине состоит из следующих аминокислот: Валин-гистидин-лейцин-треонин-пролин-глутаминовая кислота-глутаминовая кислота-лизин. У больного с симптомом спленомегамии при умеренной анемии обнаружили следующий состав четвертого пептида:валин-гистидин-лейцин-треонин-пролин-лизин-глутаминовая кислота-лизин. Определите изменение в участке ДНК, кодирующем четвертый пептид гемоглобина, приведшее к заболеванию.

Задачи на пенетрантность – 80 минут

10. Подагра определяется доминантным аутосомным геном. Пенетрантность этого гена у мужчин 20%, а у женщин равна 0. Какова вероятность заболевания подагрой детей в семье, где один родитель гетерозиготен, а другой нормален по анали­зируемому признаку?

11. По данным шведских генетиков (К. Штерн, 1965), некоторые формы шизофрении наследуются как аутосомные доминантные признаки. При этом у гомозигот пенетрантность равна 100%, а у гетерозигот – 20%. Определите вероятность заболевания детей в семье, где один из супругов гетерозиготен, а другой нормален в отношении исследуемого признака.

12. Ангиоматоз сетчатой оболочки (резкое расширение и новообразование сосудов сетчатки глаза, дегенерация нервных элементов) наследуется как доминантный аутосомный признак. С пенетрантностью 50%.

Определите вероятность рождения больных детей в семье, где оба родителя являются гетерозиготными носителями ангиоматоза.

13. Карий цвет глаз доминирует над голубым и определяется аутосомным геном. Ретинобластома (врожденная злокачественная опухоль глаза) определяется другим доминантным аутосомным геном. Пенетрантность гена ретинобластомы составляет 60%.

Какова вероятность рождения голубоглазых детей, больными ретинобластомой, в браке гетерозиготных по обоим признакам родителей?

14. Отосклероз наследуется как доминантный аутосомный признак с пенетрантностью 30%. Отсутствие боковых верхних резцов наследуется как сцепленный с Х-хромосомой рецессивный признак с полной пенетрантностью. Определите вероятность проявления одновременно обеих аномалий у детей в семье, где мать гетерозиготна в отношении обоих признаков, а отец нормален по обеим парам генов.

15. Арахнодактилия наследуется как доминантный аутосомный признак с пенетрантностью 30%. Леворукость – рецессивный аутосомный признак с полной пенетрантностью. Определите вероятность проявления одновременно обеих аномалий у детей в семье, где оба родителя гетерозиготны по обеим парам генов.

16. Гипертрихоз (избыточный рост волос) края ушной раковины наследуется как сцепленный с Y-хромосомой признак с полным проявлением к 17 годам. Отосклероз наследуется как доминантный аутосомный признак с пенетрантностью 30%.

Определить вероятность проявления одновременно обеих аномалий в семье, где жена хорошо слышит и гомозиготна, а муж имеет обе аномалии, но мать его хорошо слышала.

Дезоксирибонуклеиновая кислота (ДНК) является биополимером, который состоит из мономеров – нуклеотидов. Каждый нуклеотид состоит из трёх компонентов: азотистого основания, сахара (дезоксирибозы), остатка фосфорной кислоты.

Соединение нуклеотидов в цепь происходит при участии фермента ДНК-полимеразы, которая обеспечивает присоединение каждого последующего нуклеотида через его фосфатную группу к гидроксилу в 3’ положении предыдущего нуклеотида. В результате полинуклеотидная цепь образуется путём образования фосфодиэфирных связей. На одном конце цепи находится фосфатная группа в положении 5’ и на другом – гидроксильная группа в положении 3’.

Полинуклеотидная цепь включает в себя 4 разновидности нуклеотидов, содержащие разные азотистые основания – пуриновые (аденин и гуанин) или пиримидиновые (тимин и цитозин).Название нуклеотида является производным от названия соответствующего азотистого основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами:

Молекула ДНК состоит из двух цепей, закрученных спирально вокруг общей оси. Цепи в молекуле ДНК соединены по принципу комплементарности и антипараллельности.

Принцип комплементарности подразумевает установление водородных связей между строго определенными азотистыми основаниями двух цепей. Аденин соединяется двумя водородными связями с тимином, а гуанин – тремя водородными связями с цитозином. Таким образом, в молекуле ДНК количество пуриновых азотистых оснований всегда соответствует количеству пиримидиновых азотистых оснований (правило Чаргаффа): А+Г = Т+Ц, причём А=Т, а Г=Ц.

Принцип антипараллельности подразумевает, что две полинуклеотидные цепи соединены так, что 5’ конец одной из них соединён с 3’ концом другой и наоборот.

Таким образом, в соответствии с моделью Уотсона и Крика две полинуклеотидные цепочки, соединённые водородными связями между комплементарными азотистыми основаниями, спирально закручены вокруг общей оси. Диаметр такой спирали составляет 2 нм. Длина одного витка – 3,4 нм и он включает в себя 10 пар нуклеотидов. Рассотяние между парами нуклеотидов составляет 0,34 нм. Эти параметры относятся к В-форме (правосторонняя) ДНК.

В любой живой системе ДНК выполняет следующие функции:

1. хранение наследственной информации в виде последовательности нуклеотидов (генетический код), которая определяет последовательность аминокислот в полипептидной цепи и свойства белка;

2. передача наследственного материала происходит путем репликации ДНК;

3. реализация наследственной информации в процессе синтеза белка.

внимательно прочитайте содержание работы № 1;

изучите и зарисуйте схему строения нуклеотида.


Нуклеозид = пентоза + азотистое основание

Нуклеотид = нуклеозид + фосфорная кислота = азотистое основание+ пентоза+фосфорная кислота.

В РНК пентоза - рибоза

В ДНК пентоза - дезоксирибоза

Рис. 1. Схема строения нуклеотида

изучите и зарисуйте схему соединения нуклеотидов в полинуклеотидную цепь.


Нуклеотиды соединяются друг с другом в полимерную цепочку с помощью фосфодиэфирных связей. Азотистые основания не принимают участия в соединении нуклеотидов одной цепи.

Рис. 2. Схема соединения нуклеотидов в полинуклеотидную цепь

изучите и зарисуйте схему строения молекулы ДНК.



Рис. 3. Схема строения ДНК

РАБОТА № 2. РЕПЛИКАЦИЯ (РЕДУПЛИКАЦИЯ) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

В репликации участвуют следующие ферменты:

ДНК-топоизомеразы (разрезают ДНК);

ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);

РНК-праймазы (образуют РНК-затравки, праймеры);

ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3'-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3'-конца к 5'-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3'–5' синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5'–3' - прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки, в S-период интерфазы. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

внимательно изучите содержание работы № 2;

зарисуйте и обозначьте схему репликации ДНК.


Рис. 4. Схема репликации ДНК

РАБОТА № 3. СТРОЕНИЕ И ФУНКЦИИ РНК.

Наследственная информация, записанная с помощью генетического кода, хранится в молекуле ДНК. Процессы жизнедеятельности осуществляются в клетке на основе полученной информации, однако в этих процессах участвует не сама ДНК, а РНК, выполняющая роль посредника.

Рибонуклеиновые кислоты (РНК), присутствующие в клетках как прокариот, так и эукариот, бывают трёх основных типов: информационная (матричная) РНК, транспортная РНК, рибосомная РНК. В ядре клеток эукариот также содержится гетерогенная ядерная РНК.

В отличие от молекулы ДНК, РНК представляет собой одну полинуклеотидную цепь, включающую 4 разновидности нуклеотидов, содержащих остаток фосфорной кислоты, сахар – рибозу и одно из четырёх азотистых оснований – аденин, гуанин, цитозин и урацил (вместо тимина).

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках.

Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

изучите и зарисуйте схему строения нуклеотида РНК (рис. 5);

изучите и зарисуйте схему строения молекулы тРНК (рис. 6).


Нуклеотиды РНК содержат остаток фосфорной кислоты, сахар – рибозу и одно из четырёх азотистых оснований – аденин, гуанин, цитозин и урацил (вместо тимина).


Обзор

Многообразие мобильных генетических элементов

Автор
Редакторы


Организмы и геномы можно таким образом расценивать как секции биосферы, по которым гены глобально циркулируют с различной интенсивностью, и в которые персональные гены и опероны могут включаться, если они предоставляют достаточные преимущества.
K. Jeon и J. Danielli [1]


Основные сокращения

МГЭ мобильные генетические элементы ГГП горизонтальный генетический перенос ОРС открытая рамка считывания, последовательность нуклеотидов между инициирующим и терминирующим кодонами гена ori T место начала переноса цепи плазмидной ДНК при мобилизации ori V место начала репликации (копирования, воспроизводства) плазмидной ДНК rep ген белка-инициатора репликации многих бактериальных плазмид

Вирусы: суперпаразиты и помощники


В 2012 году охарактеризовали интегрированную в ДНК мимивирусов форму вирофага и даже новый класс МГЭ — трансповироны, способные встраиваться в ДНК и мимимирусов, и вирофагов [7]. Подобно бактериофагам, переносящим гены от одних бактерий к другим, вирофаги могут играть важную роль в ГГП между разными группами вирусов и их хозяевами.

Многие профаги кодируют факторы вирулентности, трансформируя нетоксигенные бактерии в агентов-убийц: профаг CTXphi из Vibrio cholerae кодирует холерный токсин, а упомянутый выше P22 — ферменты конверсии О-антигена сальмонеллы, позволяя ей уходить от иммунного надзора.

В составе фагов обнаруживают другие МГЭ (например, транспозоны, несущие гены антибиотикорезистентности) и их модули (системы репликации и переноса конъюгативных плазмид). Самый известный пример слияния модулей фагового и плазмидного происхождения — фаг Р1, способный реплицироваться и длительно поддерживаться вне хромосомы, ничем не отличаясь от плазмиды. Профаги разных бактерий детально рассмотрены в обзоре [8].

Плазмиды — маленькие гиганты больших процессов

Плазмиды — внехромосомные двуцепочечные молекулы ДНК, способные к длительному автономному существованию в клетках прокариот и некоторых эукариот. Чаще всего плазмидные ДНК суперскручены и ковалентно замкнуты в кольцо, однако у актиномицетов и спирохет встречаются и линейные формы, что обычно сочетается с линейной организацией хромосом. Размер плазмид обычно варьирует от 0,85 т.п.н. (pRKU1 из Thermotoga petrophila) до 600 т.п.н., но у бруцелл и ризобий описаны мегаплазмиды размером более 1 млн п.н., что иногда делает вопрос их дифференцировки от дополнительных хромосом риторическим [9]. Элиминация мегаплазмид, в отличие от хромосом, обычно не вызывает фатальных для бактериальной клетки последствий, однако вместе с плазмидами могут утратиться такие важные функции, как способность к фиксации азота и формированию симбиотических клубеньков (у ризобий).

На долю плазмидной ДНК может приходиться 1–15% наследственной информации бактериальной клетки, однако известны случаи, когда плазмидами контролируется до 25% (у некоторых Archaea) и даже до 40% информации (2 мегаплазмиды размером около 1,4 и 1,6 млн п.н. у Sinorhizobium meliloti).

Плазмидами часто мобилизуются сосуществующие с ними в одной клетке неконъюгативные МГЭ (но обладающие как минимум сайтом начала переноса oriT, а чаще и генами mob) и даже хромосомы. Мобилизация генов хромосомы возможна в случае интеграции в неё конъюгативной плазмиды. Это возможно, когда в обеих молекулах присутствуют одинаковые инсерционные последовательности (IS-элементы), обеспечивающие гомологичную рекомбинацию (типичный пример — F-фактор E.coli). Однако интеграция может быть и RecA-независимой, если плазмида кодирует тирозиновую интегразу (плазмиды стрептомицетов pSE101, pSAM2 и псевдомонад pKLK106). В этом случае интеграция чаще происходит в гены тРНК, но в некоторых хозяевах эта закономерность нарушается [3].

Транспозоны — универсальные генетические челноки

Транспозоны — МГЭ, перемещающиеся как в пределах одной молекулы ДНК, так и между разными репликонами одного генома (конъюгативные транспозоны — и между геномами). Фланкированы инвертированными повторами, а в центральной части содержат гены, ответственные за перемещение. Транспозоны прокариот подразделяют на IS-элементы, Tn-элементы и Mu-подобные фаги [10].

Интегроны — природные системы клонирования и экспрессии

В процессе перемещения от одного интегрона к другому или от одного сайта в интегроне к другому сайту, генная кассета существует как автономная и неспособная к репликации двунитевая кольцевая молекула ДНК. Кассеты, захватываемые интегронами и суперинтегронами, могут содержать гены факторов патогенности, метаболических путей, детерминанты антибиотико- и дезинфектантоустойчивости или гены рестрикционных ферментов. Интеграза IntI катализирует сайт-специфическую рекомбинацию между сайтами attI и attC, в результате чего происходит интеграция или вырезание кассеты. Множество событий интеграции ведет к образованию мультикассетных рядов, в которых все кассеты фланкированы attC-сайтами. Известны хромосомные суперинтегроны, включающие до 179 генных кассет (у Vibrio cholerae), однако среди клинически значимых бактерий большинство интегронов содержит до 5–8 генных кассет. Наиболее эффективно экспрессируются кассеты, расположенные ближе к промотору, но изменение селективного давления может способствовать перестройкам в составе интегрона.


Рисунок 3. Интегрон — ДНК, улавливающая генные кассеты и распространяемая в составе более высокоорганизованных МГЭ. а — Структура интегрона класса 1. Pint — промотор интегразы, Pant — промотор кассет антибиотикорезистентности. Остальные элементы объяснены в тексте; б — Иерархическая организация МГЭ.

Все интегроны, несущие кассеты антибиотикорезистентности, разделяют на 5 классов на основании гомологии последовательностей кодируемых ими интеграз. Большинство интегронов антибиотикорезистентности относится к классу 1 (часто ассоциированы с Tn21-семейством). Они включают два концевых невариабельных региона, называемых константными последовательностями (constant sequences, CS), и высоковариабельный центральный участок. В одном конце интегрона (5’-CS), обычно находятся intI, attI и промотор, от которого экспрессируются гены кассеты. В другом конце (3’-CS), находится часть гена qacEΔ1, который, будучи интактным, несёт устойчивость к четвертичным аммониевым соединениям. За ним расположен ген sul, определяющий резистентность микроорганизма к сульфаниламидам, и 1–2 гена с неустановленной функцией — orf5 и иногда orf6 (рис. 3, а). Интегроны класса 2 ассоциированы с Tn7-семейством, классов 3 и 5 — с плазмидами, класса 4 — с конъюгативным геномным островом SXT Vibrio cholerae.


Рисунок 4. Схематическое изображение структуры геномного острова в составе бактериальной хромосомы. DR — прямые повторы ДНК хромосомы, фланкирующие ГО; IS — инсерционные элементы.

Геномные острова гонококков (GGI) кодируют систему секреции типа IV (T4SS), родственную плазмидным системам конъюгационного переноса. Посредством T4SS распространяется не только сам элемент и его продукты, но секретируется в окружающую среду и хромосома Neisseria gonorrhoeae, которая затем может трансформировать другие бактерии и участвовать в рекомбинационных событиях.

Главные нарушители границ и их мекка

Из обитателей отстойников, а что самое опасное — из бактерий вод, уже прошедших очистку, — в большом количестве выделяют плазмиды IncP-1-группы несовместимости (в системе классификации плазмид псевдомонад) [12]. Эти относительно небольшие молекулы дарят хозяевам массу селективных преимуществ (от множественной резистентности до биодеградации хлорорганики) и способны распространяться не только среди псевдомонад, но и практически всех грамотрицательных и некоторых грамположительных бактерий. Кроме того, они способны мобилизовать неконъюгативные R-плазмиды (например, IncP-4) к переносу в ещё более широкий спектр бактерий, а также в дрожжи и клеточные линии млекопитающих [17].

Биология плазмид в России и за рубежом. Что же можно возвести на крепком фундаменте?

Читайте также: