Особенности биологического метода диагностики инфекционных заболеваний

Обновлено: 23.04.2024

Цель бактериологического методазаключается в выделении чистой культуры возбудителя заболевания из исследуемого материала путем посева на питательные среды, накопление чистой культуры и идентификация данной культуры до вида, на основании изучения ряда свойств: морфологических, тинкториальных, культуральных, биохимических, антигенных, по наличию факторов патогенности, токсигенности и определение его чувствительности к антимикробным препаратам и бактериофагам.

Бактериологический метод включает:

1) посев исследуемого материала в питательные среды;

2) выделение чистой культуры;

3) идентификацию микроорганизмов (определение принадлежности к виду). Выделение и идентификация чистых культур аэробных и анаэробных бактерий предусматривает проведение следующих исследований:

1этап (работа с нативным материалом) Цель: получение изолированных колоний

1. Предварительная микроскопия дает ориентировочное представление о микрофлоре

2. Подготовка материала к исследованию

3. Посев на плотные питательные среды для получения изолированных колоний

II этап Цель: получение чистой культуры

1. Макроскопическое изучение колоний в проходящем и отраженном свете (характеристика величины, формы, цвета, прозрачности, консистенции, структуры, контура, поверхности колоний).

2. Микроскопическое изучение изолированных колоний

3. Постановка пробы на аэротолерантность (для подтверждения присутствия в исследуемо материале строгих анаэробов)

4. Посев колоний, характерных для определенного вида, на среды накопления чистой туры и инкубация в оптимальных условиях. ,

Цель: идентификация выделенной чистой культурыДля идентификации выращенной культуры по комплексу биологических свойств изучается:

морфология и тинкториальные свойства;

культуральные свойства (характер роста на питательных средах)

• биохимические свойства (ферментативная активность микроорганизмов)

• серологические свойства (антипенные)

• вирулентные свойства (способность к продукции факторов патогенности: токсины, ферменты, факторы защиты и агрессии)

Биологический метод — заражение различным материалом (клиническим, лабораторным) лабораторных животных для индикации возбудителя, а также для определения некоторых свойств микроорганизмов, характеризующих их патоген-ность (токсигенность, токсичность, вирулентность).

В качестве лабораторных животных используют белых мышей и крыс, морских свинок, кроликов и др.

Воспроизведение заболевания у животного — абсолютное доказательство патогенное микроорганизма (в случае бешенства, столбняка и др.). Именно поэтому биологическая проба на животных — ценный и достоверный диагностический метод, особенно при тех инфекциях, возбудители которых в исследуемых биологических средах организма человека содержатся в малых концентрациях и плохо или медленно растут на искусственных средах.

Биологический метод применяют в целях накопления возбудителя в организме чувствительного животного и получения чистой культуры на искусственных средах, используя в качестве материала для посева кровь и внутренние органы животных.

Дополнительно:

Молекулярно-биологические методы, используемые в диагностике инфекционных болезней (ПЦР, рестрикционный анализ и др.).

Полимеразная цепная реакция позволяет обнаружить микроб в ис¬следуемом материале (воде, продуктах, материале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследуемого материала выделяют ДНК, в которой определяют наличие специфичного для данного микроба гена. Обнаружение гена осуществляют его накоплением. Для этого необходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следующим образом. Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомого гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в результате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом количество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ. Данный метод основан на применении ферментов, носящих название рестриктаз. Рестриктазы представляют собой эндонуклеазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов. Особое значение для методов молекулярной генетики имеют рестриктазы, которые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относительно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может происходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической единицы находится строго определенное (генетически задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашивают бромистым этидием и фотографируют в УФ-излучении. Таким образом можно получить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, выделенных из различных штаммов, можно оп¬ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергнутые мутациям.

Этот метод используется также как начальный этап метода определения последовательности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства различных ДНК. Применяется при идентификации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная молекула нуклеиновой кислоты, меченная ра¬диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, содержащий радиоактивный зонд. Создаются условия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу¬ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, отличается консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких копиях. Фрагменты ДНК, полученные после об¬работки ее рестриктазами, содержат последовательности генов рРНК, которые могут быть обнаружены методом молекулярной гибридизации с меченой рРНК соответствующего виды бактерий. Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штам¬мов и определение их вида. В настоящее время риботипирование проводится в автомати¬ческом режиме в специальных приборах.

Опосредованная транскрипцией амплификация рРНК используется для диагностики сме¬шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб¬ридизации амплифицированных рРНК, спе¬цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице выделенной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммуноферментного анализа (ИФА).

Реакция проводится в автоматическом режиме в установках, в которых одномоментное определение рРНК, принадлежащих различным видам бактерий, достигается разделением амплифицированного пула рРНК на несколько проб, в которые вносятся комплементарные видоспецифическим рРНК меченые олигонуклеотиды для гибридизации.

Расшифруйте результаты

Реакция Райта (реакция развёрнутой агглютинации) + - сомнительная агглютинация (титр 1:50). При таких результатах рекомендуется повторная постановка р-ции Райта через некоторое время (7-10 дней)

Пробы Бюрне (кожно-аллергическая проба) ++++ - резко положительная. Она определяет способность организма специфически отвечать местной реакцией кожи на внутрикожное введение бруцеллина – фильтрата бульонной культуры бруцелл. Она становится резко положительной на 3-4 день от начала болезни, в дальнейшем сохраняется с большим постоянством на протяжении очень длительного времени, даже после клинического выздоровления.

ОФП (опсонофагоцитарная проба) 6 –слабоположительная. Её проводят с 15-20 дня заболевания. Она основана на способности сегментоядерных нейтрофилов фагоцитировать бруцеллы благодаря наличию в крови человека специфических опсонинов, нарастающих в процессе бруцеллезной болезни (можно определить по формуле: Фагоцитарное Число Больного разделить на Фагоцитарное Число Здорового (Фагоцитарное Число – это среднее число поглощенных микробных клеток в одном фагоците)).

Реакция Райта и проба Бюрне взаимно дополняют друг друга. Максимальный диагностический эффект достигается при комплексном их применение, что является надежным способом диагностики бруцеллеза. Вследствие сомнительной реакции Райта можно предположить: латентный период либо недавно перенесенное заболевание – бруцеллез. А положительная пробы Бюрне сохраняется в течение длительного времени, даже после полного клинического выздоровления.

Биологический метод — заражение различным материалом (клиническим, лабораторным) лабораторных животных для индикации возбудителя, а также для определения некоторых свойств микроорганизмов, характеризующих их патоген-ность (токсигенность, токсичность, вирулентность).

В качестве лабораторных животных используют белых мышей и крыс, морских свинок, кроликов и др.

Воспроизведение заболевания у животного — абсолютное доказательство патогенное микроорганизма (в случае бешенства, столбняка и др.). Именно поэтому биологическая 0%EE%E1%E0"проба на животных — ценный и достоверный диагностический метод, особенно при тех инфекциях, возбудители которых в исследуемых биологических средах организма человека содержатся в малых концентрациях и плохо или медленно растут на искусственных средах.

Биологический метод применяют в целях накопления возбудителя в организме чувствительного животного и получения чистой культуры на искусственных средах, используя в качестве материала для посева кровь и внутренние органы животных.

Дополнительно:

Молекулярно-биологические методы, используемые в диагностике инфекционных болезней (ПЦР, рестрикционный анализ и др.).

Полимеразная цепная реакция позволяет обнаружить микроб в ис¬следуемом материале (воде, продуктах, материале от больного) по наличию в нем ДНК микроба без выделения последнего в чистую культуру.

Для проведения этой реакции из исследуемого материала выделяют ДНК, в которой определяют наличие специфичного для данного микроба гена. Обнаружение гена осуществляют его накоплением. Для этого необходимо иметь праймеры комплементарного З'-концам ДНК. исходного гена. Накопление (амплификация) гена выполняется следующим образом. Выделенную из исследуемого материала ДНК нагревают. При этом ДНК распадается на 2 нити. Добавляют праймеры. Смесь ДНК и праймеров охлаждают. При этом праймеры, при наличии в смеси ДНК искомого гена, связываются с его комплементарными участками. Затем к смеси ДНК и праймера добавляют ДНК-полимеразу и нуклеотиды. Устанавливают температуру, оптимальную для функционирования ДНК-полимеразы. В этих условиях, в случае комплементарное™ ДНК гена и праймера, происходит присоединение нуклеотидов к З'-концам праймеров, в результате чего синтезируются две копии гена. После этого цикл повторяется снова, при этом количество ДНК гена будет увеличиваться каждый раз вдвое. Проводят реакцию в специальных приборах — амплификаторах. ПЦР применяется для диагностики вирусных и бактериальных инфекций.

Рестрикционный анализ. Данный метод основан на применении ферментов, носящих название рестриктаз. Рестриктазы представляют собой эндонуклеазы, которые расщепляют молекулы ДНК, разрывая фосфатные связи не в произвольных местах, а в определенных последовательностях нуклеотидов. Особое значение для методов молекулярной генетики имеют рестриктазы, которые узнают последовательности, обладающие центральной симметрией и считывающиеся одинаково в обе стороны от оси симметрии. Точка разрыва ДНК может или совпадать с осью симметрии, или быть сдвинута относительно нее.

В настоящее время из различных бактерий выделено и очищено более 175 различных рестриктаз, для которых известны сайты (участки) узнавания (рестрикции). Выявлено более 80 различных типов сайтов, в которых может происходить разрыв двойной спирали ДНК.

В геноме конкретной таксономической единицы находится строго определенное (генетически задетерминированное) число участков узнавания для определенной рестриктазы.

Если выделенную из конкретного микроба ДНК обработать определенной рестриктазой, то это приведет к образованию строго определенного количества фрагментов ДНК фиксированного размера.

Размер каждого типа фрагментов можно узнать с помощью электрофореза в агарозном геле: мелкие фрагменты перемещаются в геле быстрее, чем более крупные фрагменты, и длина их пробега больше. Гель окрашивают бромистым этидием и фотографируют в УФ-излучении. Таким образом можно получить рестрикционную карту определенного вида микробов.

Сопоставляя карты рестрикции ДНК, выделенных из различных штаммов, можно оп¬ределить их генетическое родство, выявить принадлежность к определенному виду или роду, а также обнаружить участки, подвергнутые мутациям.

Этот метод используется также как начальный этап метода определения последовательности нуклеотидных пар (секвенирования) и метода молекулярной гибридизации.

Метод молекулярной гибридизации позволяет выявить степень сходства различных ДНК. Применяется при идентификации микробов для определения их точного таксономического положения.

Метод основан на способности двухцепочечной ДНК при повышенной температуре (90 °С) в щелочной среде денатурировать, т. е. расплетаться на две нити, а при понижении температуры на 10 °С вновь восстанавливать исходную двухцепочечную структуру. Метод требует наличия молекулярного зонда.

Зондом называется одноцепочечная молекула нуклеиновой кислоты, меченная ра¬диоактивными нуклидами, с которой сравнивают исследуемую ДНК.

Для проведения молекулярной гибридизации исследуемую ДНК расплетают указанным выше способом, одну нить фиксируют на специальном фильтре, который затем помещают в раствор, содержащий радиоактивный зонд. Создаются условия, благоприятные для образования двойных спиралей. В случае наличия комплементарности между зондом и исследуемой ДНК, они образу¬ют между собой двойную спираль.

Риботипирование и опосредованная транскрипцией амплификация рибосомальной РНК. Последовательность нуклеотидных оснований в оперонах, кодирующих рРНК, отличается консервативностью, присущей каждомувиду бактерий. Эти опероны представлены на бактериальной хромосоме в нескольких копиях. Фрагменты ДНК, полученные после об¬работки ее рестриктазами, содержат последовательности генов рРНК, которые могут быть обнаружены методом молекулярной гибридизации с меченой рРНК соответствующего виды бактерий. Количество и локализация копий оперонов рРНК и рестрикционный состав сайтов как внутри рРНК-оперона, так и по его флангам варьируют у различных вида бактерий. На основе этого свойства построен метод риботипирования, который позволяет производить мониторинг выделенных штам¬мов и определение их вида. В настоящее время риботипирование проводится в автомати¬ческом режиме в специальных приборах.

Опосредованная транскрипцией амплификация рРНК используется для диагностики сме¬шанных инфекций. Этот метод основан на обнаружении с помощью молекулярной гиб¬ридизации амплифицированных рРНК, спе¬цифичных для определенного вида бактерий. Исследование проводится в три этапа:

1. Амплификация пула рРНК на матрице выделенной из исследуемого материала ДНК при помощи ДНК-зависимой РНК-полимеразы.

2. Гибридизация накопленного пула рРНК с комплементарными видоспецифическим рРНК олигонуклеотидами, меченными флюорохромом или ферментами.

3. Определение продуктов гибридизации методами денситометрии, иммуноферментного анализа (ИФА).

Реакция проводится в автоматическом режиме в установках, в которых одномоментное определение рРНК, принадлежащих различным видам бактерий, достигается разделением амплифицированного пула рРНК на несколько проб, в которые вносятся комплементарные видоспецифическим рРНК меченые олигонуклеотиды для гибридизации.

Расшифруйте результаты

Реакция Райта (реакция развёрнутой агглютинации) + - сомнительная агглютинация (титр 1:50). При таких результатах рекомендуется повторная постановка р-ции Райта через некоторое время (7-10 дней)

Пробы Бюрне (кожно-аллергическая проба) ++++ - резко положительная. Она определяет способность организма специфически отвечать местной реакцией кожи на внутрикожное введение бруцеллина – фильтрата бульонной культуры бруцелл. Она становится резко положительной на 3-4 день от начала болезни, в дальнейшем сохраняется с большим постоянством на протяжении очень длительного времени, даже после клинического выздоровления.

ОФП (опсонофагоцитарная проба) 6 –слабоположительная. Её проводят с 15-20 дня заболевания. Она основана на способности сегментоядерных нейтрофилов фагоцитировать бруцеллы благодаря наличию в крови человека специфических опсонинов, нарастающих в процессе бруцеллезной болезни (можно определить по формуле: Фагоцитарное Число Больного разделить на Фагоцитарное Число Здорового (Фагоцитарное Число – это среднее число поглощенных микробных клеток в одном фагоците)).

Реакция Райта и проба Бюрне взаимно дополняют друг друга. Максимальный диагностический эффект достигается при комплексном их применение, что является надежным способом диагностики бруцеллеза. Вследствие сомнительной реакции Райта можно предположить: латентный период либо недавно перенесенное заболевание – бруцеллез. А положительная пробы Бюрне сохраняется в течение длительного времени, даже после полного клинического выздоровления.

Методы лабораторной диагностики бактериальных инфекций. Бактерии – возбудители кишечных инфекций. Характеристика кишечной палочки и ее значение для макроорганизма. Заболевания, вызываемые кишечной палочкой. Принципы их лабораторной диагностики, лечения и профилактики.

Для диагностики инфекционных болезней в настоящее время широко используют лабораторные методы исследования. К ним относятся следующие методы:

3. Биологические (биопроба).

Выбор методов исследования зависит от предварительного диагноза заболевания.

Материалом для исследования может быть кровь, спинномозговая жидкость, мокрота, кал, моча, желчь, рвотные массы, слизь из зева, носа, отделяемое уретры, шейки матки, пунктаты органов, и.т.д, что зависит от характера, формы, периода болезни.

Микросопический метод основан на микроскопии мазков приготовленных из патологического материала. Мазки могут быть нативными, фиксированными и окрашенными.

Преимущество метода: простота и быстрота получения результата (30-60 минут).

Недостатки метода:

1) частая невозможность видовой идентификации возбудителей (например, патогенных энтеробактерий);

2) необходимость достаточного количества возбудителя в исследуемом материале.

Метод в большинстве случаев является ориентировочным. Однако в диагностике некоторых инфекций (например, менингита, лептоспироза, возвратного тифа, сифилиса) этот метод может быть основным.

Достоверность метода повышается при проведении иммунофлюоресцентного исследования. Этот метод основан на обработке препаратов из исследуемого материала специальными сыворотками, содержащими антитела к возбудителю, меченные флюорохромами. Меченые антитела соединяются с соответствующим антигеном, который выявляется. Под люминесцентным микроскопом вокруг этих комплексов видна зона свечения.

В настоящее время этот метод широко применяется для обнаружения различных микроорганизмов в патологическом материале.

Микробиологический методоснован на выделении чистой культуры возбудителя из патологического материала и ее идентификации. Выделение проводят путем его посева на соответствующие питательные среды. Идентификацию чистых культур проводят по морфологическим, культуральным, биохимическим, антигенным, токсигенным и другим признакам.

Преимущества метода:

1) высокая информативность и достоверность;

2) возможность определения in чувствительности выделенной культуры к антибиотикам и назначения рациональной химиотерапии;

3) возможность выявления бактерионосителей среди различных групп населения;

4) возможность расшифровки эпидемиологической цепочки (источник инфекции, пути ее передачи) на основании идентификации био-, серо-, фаговаров возбудителей.

Недостаток метода : длительность исследования (от 2-4 дней до 3-4 недель - 2 месяцев).

Метод является основным в диагностике большинства инфекций.

Биологический метод основан на заражении исследуемым материалом лабораторных животных с целью выделения и идентификации чистой культуры возбудителя (или его токсина), а также для постановки диагноза по клинической картине заболевания.

Преимущества метода:

1) возможность выделения возбудителя, когда он не растет или плохо культивируется на искусственных питательных средах (например, возбудители туляремии, риккетсиозов, хламидиозов);

2) возможность выделения возбудителя при обильном загрязнении патологического материала посторонней микрофлорой;

3) возможность дифференциации патогенных микроорганизмов (например, возбудителей эндемического и эпидемического риккетсиозов) и определение их вирулентности;

4) возможность изучить иммунитет и эффективность лечебно-профилактических препаратов.

Недостатки метода:

3) гибель лабораторных животных (в результате инфекционного процесса или специального умерщвления).

Биопроба на животных применяется главным образом при зоонозах, а также для обнаружения токсинов ( например, ботулинического).

Серологический метод направлен на обнаружение антител в сыворотке больного (серодиагностика) и на выявление антигенов возбудителей (сероидентификация) непосредственно в исследуемом материале.




Для серодиагностики и сероидентификации применяются различные высокочувствительные иммунологические реакции: агглютинации, РНГА,РСК, преципитации,иммунофлюоресценции, иммуноферментный, радиоиммунный анализ.

При серодиагностике в качестве антигенов используют живые культуры микроорганизмов или диагностикумы – убитые взвеси микроорганизмов или экстракты из них, полученные химическим путем.

Для сероидентификации возбудителей применяют диагностические сыворотки с высоким содержанием антител и выраженной специфичностью.

Преимущества серологического метода:

1) является одним из основных в диагностике вирусных инфекций и риккетсиозов (в связи с трудностями выделения и идентификации этих возбудителей);

2) быстрота получения результатов;

3) высокая чувствительность;

4) позволяет оценить эффективность вакцинопрофилактики;

5) позволяет провести эпидемиологический анализ инфекциооной заболеваемости.

Основной недостаток метода: относительная достоверность, так как могут быть положительные результаты серологических исследований не только у больных, но и у лиц, перенесших соответствующую инфекцию в прошлом (анамнестическая реакция) или у получавших профилактические прививки (прививочная реакция).

Возможны ложноположительные результаты при идентификации антигенов возбудителей в связи с широким антигенным родством между родами и видами внутри каждого семейства и даже среди различных семейств.

В целом серологический метод в лабораторной практике чаще имеет вспомогательное значение и не может заменить бактериологическое исследование.

Аллергический методоснован на выявлении повышенной чувствительности организма к специфическому аллергену, которым является возбудитель заболевания. Для выявления такой чувствительности ставят кожно-аллергические пробы. Человеку, у которого предполагают наличие заболевания, сопровождающегося аллергией (туберкулез, бруцеллез, туляремия, сап, сибирская язва и др.), вводят внутрикожно малые количества аллергена из возбудителя данной инфекции (убитые микробные клетки или извлеченные из них антигенные комплексы или продукты жизнедеятельности возбудителя). При наличии инфекционной аллергии через 24-72 часа возникает воспалительная реакция в виде гиперемии, инфильтрата, отека кожи. В основе положительной кожной реакции лежит клеточная реакция ГЗТ, которая отражает специфическую повышенную чувствительность организма к инфекционному аллергену. Она возникает в результате текущего, перенесенного заболевания, вакцинации или инфицирования организма.

Кроме кожно-аллергических проб используются методы аллергодиагностики in vitro (реакции лейкоцитолиза, торможения миграции лейкоцитов, лимфобласттрансформации), позволяющие оценить состояние специфической сенсибилизации лейкоцитов крови в отношении определенного антигена.

Читайте также: