От каких факторов зависят особенности противоинфекционного иммунитета

Обновлено: 18.04.2024

Макроорганизм имеет широкий спектр средств защиты своей целостности и поддержания гомеостаза. Однако для минимизации энергетических и пластических затрат макроорганизм для устранения конкретного антигена использует лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антигенов иммунное реагирование макроорганизма имеет свои особенности.

Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогенности микроба и в первую очередь его способностью к токсинообразованию. Различают иммунитетантибактериальный - против структурных компонентов бактериальной клетки и антитоксический - против белковых токсинов.

Основными факторами антибактериальной защиты являются антитела и фагоциты. Антитела эффективно инактивируют биологически активные молекулы бактериальной клетки (токсины, ферменты агрессии и др.), маркируют их, запускают антителозависимый бактериолиз и иммунный фагоцитоз. Фагоциты непосредственно осуществляют фагоцитоз, в том числе иммунный, антителозависимый бактериолиз и внеклеточный киллинг патогена при помощи ион-радикалов и ферментов. Важная роль в борьбе с грамположительными микробами принадлежит лизоциму, а с грамотрицательными - комплементу (альтернативный путь активации), кроме того, существенное значение имеют белки острой фазы (С-реактивный и маннозосвязывающий протеин).

Ряд бактерий, относящихся к факультативным внутриклеточным паразитам, отличается повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (незавершенный фагоцитоз). К их числу относятся микобактерии, йерсинии, бруцеллы, сальмонеллы и некоторые другие. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено иммунитета, что ведет к аллергизации организма по механизму ГЗТ. Особое значение приобретают активированные макрофаги и естественные киллеры, осуществляющие АЗКЦТ, а также γδТ-лимфоциты.

Напряженность специфического антибактериального иммунитета оценивают в серологических тестах по титру или динамике титра специфических антител, а также по состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

Особенности противовирусного иммунитета

Особенности иммунной защиты макроорганизма при вирусных инфекциях обусловлены двумя формами существования вируса: внеклеточной и внутриклеточной. Основными факторами, обеспечивающими противовирусный иммунитет, являются специфические антитела, Т-киллеры, естественные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внеклеточным вирусом, так как у них нет доступа внутрь живой клетки. Антитела нейтрализуют вирусные адгезины и нейраминидазы, препятствуя адсорбции вирусов на клетках-мишенях и их инфицированию. Они также связывают вирусные белки и нуклеиновые кислоты, образовавшиеся после разрушения зараженных вирусами клеток. Сформировавшиеся иммунные комплексы элиминируются путем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на цитоплазматической мембране инфицированных клеток, индуцирует естественные киллеры к АЗКЦТ.

Клетки, инфицированные вирусом и приступившие к его репликации, экспрессируют вирусные белки на цитоплазматической мембране в составе молекул антигенов гистосовместимости - MHC I класса. Измененная структура MHC I класса этих антигенов гистосовместимости является маркером для Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их.

Мощным противовирусным свойством обладает интерферон. Он не действует непосредственно на внутриклеточный вирус, а связывается с рецептором на мембране клетки и подавляет в ней все биосинтетические процессы.

Сывороточные ингибиторы неспецифически связываются с вирусной частицей и нейтрализуют ее, препятствуя тем самым адсорбции вируса на клетках-мишенях.

Напряженность противовирусного иммунитета оценивают преимущественно в серологических тестах по нарастанию титра специфических антител в парных сыворотках в процессе болезни. Определяют также концентрацию интерферона в сыворотке крови.

Макроорганизм имеет широкий спектр средств защиты своей целостности и поддержания гомеостаза. Однако для минимизации энергетических и пластических затрат макроорганизм для устранения конкретного антигена использует лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антигенов иммунное реагирование макроорганизма имеет свои особенности.

Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогенности микроба и в первую очередь его способностью к токсинообразованию. Различают иммунитетантибактериальный - против структурных компонентов бактериальной клетки и антитоксический - против белковых токсинов.

Основными факторами антибактериальной защиты являются антитела и фагоциты. Антитела эффективно инактивируют биологически активные молекулы бактериальной клетки (токсины, ферменты агрессии и др.), маркируют их, запускают антителозависимый бактериолиз и иммунный фагоцитоз. Фагоциты непосредственно осуществляют фагоцитоз, в том числе иммунный, антителозависимый бактериолиз и внеклеточный киллинг патогена при помощи ион-радикалов и ферментов. Важная роль в борьбе с грамположительными микробами принадлежит лизоциму, а с грамотрицательными - комплементу (альтернативный путь активации), кроме того, существенное значение имеют белки острой фазы (С-реактивный и маннозосвязывающий протеин).

Ряд бактерий, относящихся к факультативным внутриклеточным паразитам, отличается повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (незавершенный фагоцитоз). К их числу относятся микобактерии, йерсинии, бруцеллы, сальмонеллы и некоторые другие. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено иммунитета, что ведет к аллергизации организма по механизму ГЗТ. Особое значение приобретают активированные макрофаги и естественные киллеры, осуществляющие АЗКЦТ, а также γδТ-лимфоциты.

Напряженность специфического антибактериального иммунитета оценивают в серологических тестах по титру или динамике титра специфических антител, а также по состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

Особенности противовирусного иммунитета

Особенности иммунной защиты макроорганизма при вирусных инфекциях обусловлены двумя формами существования вируса: внеклеточной и внутриклеточной. Основными факторами, обеспечивающими противовирусный иммунитет, являются специфические антитела, Т-киллеры, естественные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внеклеточным вирусом, так как у них нет доступа внутрь живой клетки. Антитела нейтрализуют вирусные адгезины и нейраминидазы, препятствуя адсорбции вирусов на клетках-мишенях и их инфицированию. Они также связывают вирусные белки и нуклеиновые кислоты, образовавшиеся после разрушения зараженных вирусами клеток. Сформировавшиеся иммунные комплексы элиминируются путем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на цитоплазматической мембране инфицированных клеток, индуцирует естественные киллеры к АЗКЦТ.

Клетки, инфицированные вирусом и приступившие к его репликации, экспрессируют вирусные белки на цитоплазматической мембране в составе молекул антигенов гистосовместимости - MHC I класса. Измененная структура MHC I класса этих антигенов гистосовместимости является маркером для Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их.

Мощным противовирусным свойством обладает интерферон. Он не действует непосредственно на внутриклеточный вирус, а связывается с рецептором на мембране клетки и подавляет в ней все биосинтетические процессы.

Сывороточные ингибиторы неспецифически связываются с вирусной частицей и нейтрализуют ее, препятствуя тем самым адсорбции вируса на клетках-мишенях.

Напряженность противовирусного иммунитета оценивают преимущественно в серологических тестах по нарастанию титра специфических антител в парных сыворотках в процессе болезни. Определяют также концентрацию интерферона в сыворотке крови.

Взаимодействие между системой иммунитета и микроорганизмом может либо не иметь последствий, либо привести к колонизации им тканей, что проявится широким спектром клинических вариантов инфекционного процесса – от манифестной формы инфекционного заболевания, до бессимптомного микробного носительства

Инфекционные болезни – это обширная группа заболеваний человека, вызываемых патогенными вирусами, бактериями, риккетсиями, грибами и простейшими у чувствительных макроорганизмов. Инфекционные болезни – ведущая причина смертности в мире: ежегодно погибает около 17 млн. человек. Появились новые инфекции – ВИЧ-инфекция, лихорадка Эбола, атипичная пневмония и др. Отмечается активация ранее известных болезней – туберкулеза, гепатитов, малярии в связи с изменчивостью микроорганизмов и модуляцией иммунореактивности людей в сторону повышения их чувствительности.

Следовательно, главной стратегией борьбы с инфекциями в 21-м веке должно быть иммунопрофилактическое повышение популяционной и индивидуальной неспецифической и специфической резистентности – иммунитета у людей.

Противобактериальный иммунитет

Факторы, определяющие форму и тяжесть течения инфекционного процесса, зависят от микроорганизмов (доза, патогенность, вирулентность и т.д.) и от состояния макроорганизма (возраст, общее состояние здоровья, состояние иммунокомпетентных систем и т.д.).

Результатом взаимодействия микробов и макроорганизма может быть нестерильный иммунитет, когда факторы патогенности и иммунитет уравновешены, стерильный иммунитет – освобождение от инфекта и инфекция – размножение вирулентного микроба.

Неспецифическая резистентность и местный иммунитет

Возбудители заболеваний часто проникают в организм через слизистые оболочки носа, дыхательных путей, глаз, мочеполовых путей и кишечного тракта. Реже это происходит через кожу, преимущественно при повреждении эпителия.

На пути проникновения микробов находятся местные факторы защиты. Неповрежденные кожа и слизистые оболочки непреодолимы для многих микроорганизмов. Кроме механического барьера, кожа обладает значительными бактерицидными свойствами, которые связаны с выделением молочной и жирных кислот, ферментов, пота, сального секрета и т.д. Слизистые оболочки носоглотки и дыхательных путей обладают выраженными защитными свойствами. Секреты, выделяемые слизистыми, слюнными и пищеварительными железами, не только смывают микроорганизмы с поверхности слизистых оболочек, но и оказывают существенное бактерицидное действие за счет содержащихся в них лизоцима, различных ферментов, кислой среды желудочного содержимого, а также нормальной микрофлоры организма и др.

Нормальная бактериальная флора слизистых оболочек, особенно кишечника, препятствует развитию патогенных микроорганизмов. Ее нарушение при антибиотикотерапии ведет к дисбактериозам и инфекции.

Неспецифическая защита организма в значительной мере контролируетcя генетическими механизмами, которые обеспечивают видовой иммунитет – невосприимчивость организмов одного вида к инфекционным заболеваниям другого вида вследствие исключения возможности размножения возбудителей. Имеются данные о генетически наследуемой невосприимчивости в отдельных популяциях людей к ряду инфекционных заболеваний (малярия, туберкулез, корь, полиомиелит и др.).

Тяжелое течение инфекционного процесса или фатальный для хозяина исход может наблюдаться при снижении уровня неспецифической защиты и иммунологической реактивности хозяина, большой дозе и высокой вирулентности возбудителя, а также при неестественных путях его проникновения. Хронизация инфекционного процесса, как правило, определяется несостоятельностью иммунного ответа к возбудителю. Чувствительность к менингококкам повышена при дефиците терминальных компонентов комплемента, а тяжелое течение менингококковой инфекции ассоциировано с определенным аллотипом FcRIIa рецептора.

Комплекс факторов естественного врожденного иммунитета может полностью элиминировать микроорганизмы без развития специфического иммунного ответа. В этот комплекс входят гуморальные факторы: лизоцим, СРБ, маннансвязывающий белок, комплемент (альтернативный путь активации), трансферрин, а также лейкоциты (нейтрофилы, макрофаги), которые выделяют ранние цитокины – ФНО, ИЛ-1, ИНФ и др., активирующие все клетки СИ.

Антитела В1-лимфоцитов серозных полостей – важный фактор естественного иммунитета. Антитела классов IgM и sIgA, образуемые ими, осуществляют врожденный антибактериальный иммунитет, в первую очередь, против бактерий кишечника, а также капсулообразующих микробов (пневмококков, гемофильной палочки). IgM-антитела оказывают комплементзависимую цитотоксичность, а sIgA опсонируют до 90% бактерий тонкого кишечника, препятствуя их адгезии к эпителию. Эти антитела исходно специфичны к распространенным антигенам бактерий: фосфорилхолину, полисахаридам и ЛПС.

-Т-клетки, представляющие врожденный клеточный иммунитет, во многом определяют резистентность мышей к M.tuberculosis, так дефицитные по ним мыши быстро погибают от этой инфекции.

В некоторых ситуациях микроорганизмы персистируют без явного иммунного ответа на фоне полезной ареактивности организма. Однако существуют механизмы, сдерживающие их размножение. К такой ситуации можно отнести бактерионосительство.

Факторы естественного иммунитета служат первым этапом защиты, а затем они включают механизмы адаптивного (приобретенного) иммунитета.

Формирование противобактериального иммунитета

Специфический иммунный ответ развивается в макроорганизме против антигенов возбудителя, его токсинов и других продуктов жизнедеятельности или против антигенов вакцин и анатоксинов. В результате такого взаимодействия клетки СИ, в первую очередь макрофаги, дендритные клетки, распознают чужеродные антигены уже в местах их первичного внедрения и запускают иммунный ответ. На клетках усиливается экспрессия адгезинов и интегринов.

Сила и специфичность этого ответа зависит от совокупности генов, контролирующих систему главного комплекса гистосовместимости (МНС) или HLA-антигенов у человека. Кроме того, весьма важную роль в распознавании липидных, например, микобактериальных антигенов, играют CD1-молекулы.

Наконец, важнейшую роль в индукции антимикробного иммунитета с дальнейшим перенаправлением его по клеточному или гуморальному пути играет система Toll-like рецепторов (TLR), распознающих молекулярные структурные образы патогенов (подробнее – см. гл. 1).

Для каждого конкретного возбудителя имеются свои условия и особенности развития инфекции или иммунитета, зависящие от его вирулентности, пути проникновения и других свойств. Проникновение многих возбудителей в организм сопровождается фазой бактериемии и антигенемии, когда бактерии и их антигены циркулируют в крови (брюшной тиф, сальмонеллезы и др.). Часто она сопровождается началом клинических проявлений, потому что часть бактерий распадается и их эндотоксин – ЛПС – вызывает клинические синдромы (лихорадку и др.).

В зависимости от химической природы антигенов возбудителя, внутри- или внеклеточной его локализации и других факторов, иммунный ответ макроорганизма может происходить с преобладанием Т-клеточного или антительного В-клеточного иммунитета с образованием вначале IgM, а затем IgG и IgA антител. После элиминации возбудителя клоны эффекторных клеток под влиянием супрессии иммунного ответа уменьшаются и остаются долгоживущие клетки памяти, обеспечивающие длительный, а при отдельных инфекциях – пожизненный иммунитет. Приобретенный антибактериальный иммунитет и антивирусный имеют много общего.

При повторной встрече макроорганизм за счет даже небольшого фонового количества антител, а также способности быстрого размножения Т- и В-лимфоцитов с вовлечением клеток памяти способен нейтрализовать возбудителя. Феномен развития иммунологической памяти после первичной встречи с антигенами возбудителя служит основой приобретенного иммунитета, а феномен усиления иммунологической памяти после повторных встреч с антигенами используется при ревакцинации – повторном введении вакцин с целью поддержания достаточно напряженного иммунитета.

Специфический иммунитет у части компактно проживающего населения (коллектива) составляет основу коллективного иммунитета: 80% иммунных людей достаточно для прекращения эпидемического распространения самых контагиозных инфекционных заболеваний. Однако в связи с тем, что не все вакцинированные отвечают достаточным иммунитетом, на практике для прекращения эпидемического процесса при различных инфекциях требуется прививать не менее 95% населения. Для объективного контроля за уровнем индивидуального и коллективного иммунитета определяют титры протективных антител в крови.

Способность к иммунному ответу изменяется с возрастом. В организме новорожденного функционируют уже все механизмы системы иммунитета, однако дети первых месяцев и даже первых лет жизни иначе чем взрослые реагируют на антигены. Защита новорожденных от микроорганизмов обеспечивается антителами –иммуноглобулинами класса G, проходящими трансплацентарно от матери. Существенный вклад в поддержание иммунологической реактивности детей вносит поступление секреторных иммуноглобулинов А, лизоцима и даже иммунокомпетентных клеток с молоком матери. У многих пожилых людей, особенно на фоне вирусных инфекций и других заболеваний, наблюдается снижение иммунологической реактивности и повышение чувствительности к инфекции.

Варианты приобретенного антибактериального иммунитета

Приобретенный иммунитет к бактериальным инфекциям различается по механизмам в зависимости от факторов патогенности возбудителя. В одних случаях, когда бактерии выделяют токсины, или чувствительны к антителам, он эффективен, в других – неэффективен, например, при индукции антител к внутриклеточным бактериям, в третьих – при выделении избытка цитокинов, иммунный ответ повреждает собственные ткани.

Бактериальные инфекции, которые зависят от продукции экзотоксинов, индуцируют антитоксический иммунитет (дифтерия, столбняк, ботулизм и др.). Ведущая роль в нейтрализации токсинов принадлежит IgM- и IgG-антителам. IgM-антитела в крови выявляются уже через 48 часов после заражения и достигают пика через 7-10 дней (при инфекциях – позже). Затем преобладают IgG-антитела. Молекула антитела, присоединившись вблизи активного центра токсина, может стереохимически блокировать его связь с рецептором. В комплексе с антителами токсин теряет способность к диффузии в тканях и может стать объектом фагоцитоза.

Основным механизмом антибактериальной защиты является фагоцитоз (рис. 3.1). В иммунном организме эффективность фагоцитоза повышается за счет опсонизирующего действия специфических IgM- и IgG-антител, взаимодействующих Fab-фрагментами с антигенами на поверхности бактерий и одновременно с Fc-рецепторами на мембранах фагоцитов. Это приводит к окислительному взрыву и активации других бактерицидных систем фагоцитирующих клеток.

Д остаточно давно стало понятно, что иммунная система является компонентом гомеостатического треугольника, в который кроме нее входят нервная и эндокринная системы. А иммунитет защищает постоянство клеточного состава организма человека, выявляя и удаляя любые генетически чужеродные клетки и вещества, поступающие извне и образующиеся внутри организма. Против всех этих антигенов развивается иммунный ответ с образованием разных эффекторных клеток и молекул.

Если не нарушены взаимные регуляторные отношения между иммунной, нервной и эндокринной системами и все участники иммунного ответа качественно выполняют свои функции, человек будет адекватно реагировать на любые антигены, в том числе на микроорганизмы. При этом организм без видимой клинической симптоматики ответит на контакты с нормальными и условно–патогенными микроорганизмами, а также на облигатные патогены в случае предварительной искусственной или естественной иммунизации. Если же таковой не было, развивается инфекционное заболевание, протекающее более или менее быстро в зависимости почти исключительно от эффективности проводимого лечения, в первую очередь этиотропного.

По данным ВОЗ, в настоящее время первой особенностью состояния здоровья населения в мире является снижение иммунореактивности: по разным источникам до 50–70% людей имеют нарушения иммунитета. И второй особенностью, вытекающей из первой, считают повышение частоты заболеваний, вызываемых условно–патогенной микробиотой, а также рост числа аллергических, аутоиммунных и онкологических болезней.

Нами установлено, что у женщин с вульвовагинитами, где этиологическими агентами являются хламидии, вирусы герпеса, грибы, мико– и уреаплазмы почти в 80% случаев имеются отклонения в эндокринной системе: нарушения менструального цикла, заболевания щитовидной железы. В то же время известно, что именно гормоны женской половой сферы и щитовидной железы являются активаторами иммунной системы и ответственны за состояние слизистой оболочки женских половых путей. Следует подчеркнуть, что эпителиоциты в настоящее время рассматриваются не только как барьерные, но и как иммунокомпетентные клетки. Известно, что в отсутствие повреждающих и стимулирующих воздействий эпителиоциты выполняют барьерную и секреторную функции и как будто ничем не напоминают иммунокомпетентные клетки. Но тем не менее уже в состоянии покоя они несут на своей поверхности рецепторы для цитокинов: ИФН- g , ИЛ 4,17 и др., что является предпосылкой для вовлечения их в иммунные процессы. В условиях повреждения эпителиального барьера или воздействия микробов или их продуктов происходит активация эпителиальных клеток. Фактически активация есть постоянно из–за присутствия на слизистых различных представителей мира микробов. При этом эпителиоциты приобретают свойства иммунокомпетентных клеток: начинают сами выделять цитокины, например, ИЛ 1, 6, ФНО, ИФН- a , по спектру, похожему на цитокины макрофагов и потому определяющие характер воспаления и участие эпителиоцитов в представлении антигенов лимфоидным клеткам. Также эпителиоциты выделяют гемопоэтины: ростовые факторы для нейтрофильных гранулоцитов, моноцитов, ИЛ 7, действующие и на сами эпителиальные клетки, а не только на гемопоэз. Описана также выработка эпителиальными клетками ИЛ 12, 15, 16, 17, 18, секреция ими хемокинов, отвественных за привлечение в слизистые циркулирующих Т–лимфоцитов и др. клеток

Стало очевидным, что попытки решить проблему лечения этих инфекционных заболеваний с помощью антибиотиков и противовирусных препаратов, других этиотропных средств далеко не всегда приводят к полному успеху, если не принимать во внимание состояние иммунного реагирования. Следует даже вывод о том, что если есть иммунитет полноценный, нет инфекций. Если при наличии клинических признаков воспаления обнаруживаются выше указанные микроорганизмы, значит нет полноценного, качественного иммунного реагирования в целом или местно, по крайней мере. И мы имеем дело с неблагоприятным для организма течением инфекционно–воспалительного процесса: оно приобретает черты хронического. Следовательно, насущной становится задача мобилизации резервов иммунной защиты, ее активизации.

Кроме того, в клинической медицине насущной стала проблема резистентности микроорганизмов к антибактериальным, противовирусным и антимикотическим препаратам. Считают, что до 90% банальных микроорганизмов устойчивы сегодня к этиотропной терапии. И при этом еще этиотропное лечение нередко вызывает побочные эффекты в виде дисбизов, гепатотоксического и иммуносупрессивного действия, реже эндокринотоксического и нефротоксического.

Чаще всего терапия является комплексной, включающей как антибактериальные, так и иммунотропные препараты. Среди иммунотропных или иммуномодулирующих следует различать препараты общего или системного действия и местного. В случаях изменения общего иммунного реагирования или вторичных иммунодефицитных состояний с нарушением функции Т–системы следует использовать Иммунофан. В качестве системного активатора киллерных клеток и механизмов, особенно если речь идет о преобладании внутриклеточной или вирусной инфекции, препаратом выбора может стать Иммуномакс. Он вводится достаточно коротким курсом из 6 инъекций (1,2,3,8,9,10 дни) и при этом оставляет длительное последействие, восстанавливая адекватность иммунного реагирования в течение еще 6 месяцев. При наличии интоксикации, необходимости антиоксидантной терапии, для стабилизации мембран клеток и иммуномодулирующего эффекта может быть использован в качестве системного препарата полиоксидоний. Интерферонсодержащие препараты, но не интерфероногены, как системные средства, оказывают лечебный, и в том числе иммуномодулирующий эффект при вирусной, например, герпетической этиологии воспалительных процессов урогенитальной сферы.

Как средство прежде всего местного действия препаратом выбора может быть Гепон. Он повышает функциональную активность фибробластов и эпителиоцитов, что определяет высокую устойчивость к инфицированию и повышает способность эпителиальных покровов к регенерации. При этом Гепон легко всасывается через эпителий, эффективно воздействуя на местную защиту и против бактерий, и против вирусов, и против грибов. Кроме того, Гепон тормозит репликацию вируса в инфицированных клетках. Препарат эффективен и при острых воспалительных процессах, поскольку может значительно сократить размеры и степень воспаления, сроки выздоровления и с гарантией предотвратит переход острого воспаления в хроническое. Местно Гепон может быть использован в виде орошений или мази.

Показана эффективность местной монотерапии гепоном при кандидозе слизистых оболочек, как известно хроническом рецидивирующем заболевании, трудно поддающемся вполне современной качественной этиотропной терапии. У женщин орошали слизистую влагалища и вульвы, у мужчин использовали примочки или инстиляции 0,04% раствором Гепона. Сразу после курса терапии исчезали признаки воспаления, споры и мицелий гриба со слизистой почти у всех наблюдаемых пациентов с сохранением эффекта и через месяц после лечения.

Ключевые слова: мукозальный иммунитет, микробиота, антибиотики, иммуносупрессия, инфекции, антибиотикорезистентность, иммуномодуляция, заместительная терапия.

Microbiota, mucosal immunity and antibiotics: the fineness of the interaction
I.G. Kozlov

D. Rogachev National Medical Research Center for Pediatric Hematology, Oncology and Immunology, Moscow

Обзорная статья посвящена тонкостям взаимодействия микробиоты, мукозального иммунитета и антибиотиков

Введение

Иммунология в первые два десятилетия ХХI в. продолжала радовать многочисленными открытиями, целый ряд которых имел практическую направленность и позволил расшифровать патогенез многих заболеваний, понять механизмы действия некоторых часто используемых лекарственных препаратов. В этот промежуток времени наибольший интерес с точки зрения практической медицины представляют результаты трех взаимопересекающихся направлений фундаментальных исследований, а именно изучение мукозального иммунитета (иммунитет барьерных тканей) и открытие сигнальных рецепторов врожденного иммунитета (pattern-recognition receptors — PRR), характеристика нормальной микрофлоры (микробиоты) и описание ее взаимодействия с барьерным иммунитетом, а также последствия применения антибиотиков на систему мукозальный иммунитет/микробиота.

Мукозальный иммунитет и сигнальные рецепторы врожденного иммунитета

Микробиота: иммунологические механизмы симбиоза

Состав

Микробиота присутствует у любого многоклеточного организма, и ее состав специфичен для каждого вида организмов. Существуют различия и внутри вида в зависимости от условий жизни и особенностей питания отдельных особей.
У человека микробиота насчитывает более 1000 видов микроорганизмов (бактерий, вирусов, грибов, гельминтов, простейших), хотя в точности этот параметр оценить весьма затруднительно (т. к. многие виды не высеваются, и оценка проведена на основании многопараметрического параллельного секвенирования ДНК) [24–27]. Объем микробиоты оценивается в 1014 клеток, что в 10 раз больше количества клеток в организме человека, а количество генов в микробиоте в 100 раз больше, чем у хозяина [3, 28–31].
Количество и состав микробиоты на различных этажах МАЛТ также существенно отличаются. Наиболее бедная микробиота выявляется в нижних отделах дыхательного тракта и дистальных отделах урогенитального тракта (раньше считалось, что они стерильны, однако последние исследования показывают присутствие нормофлоры и там) [32]. Самая большая микробиота населяет тонкий и толстый кишечник, и она является наиболее исследованной.
В микробиоте кишечника, безусловно, преобладают бактерии, а среди них — анаэробы, относящиеся к родам Firmicutes (95% Clostridia) и Bacteroides. Представители родов Proteobacteria, Actinobacteria, Verrucomicrobia и Fusobacteria представлены в значительно меньшей степени [26, 27, 33, 34]. Бактерии в кишечнике существуют в двух состояниях, образуя мозаичную межвидовую биопленку в верхней части слизистого слоя или находясь в планктонной форме в пристеночной части просвета. Считается, что состав и количество кишечной микрофлоры достаточно стабильны и поддерживаются как за счет межвидового сдерживания, так и за счет воздействий со стороны макроорганизма [30].

Функции

Взаимодействие микробиоты и МАЛТ

Антибиотики и иммуносупрессия

Варианты преодоления иммуносупрессии, вызванной антибиотиками

Тема непрямой микробиота-опосредованной иммуносупрессии в результате назначения антибиотиков только начинает становиться актуальной для медицинского профессионального сообщества. Но учитывая ее важность для самых разных областей медицины и нарастающую проблему антибиотикорезистентности, в ближайшее время можно ожидать многочисленные попытки решить эту проблему. Некоторый опыт в данной области уже имеется.

Трансплантация фекальной микробиоты (ТФМ)

Использование пробиотиков

МАМР и их минимальные биологически активные фрагменты (МБАФ)

Заключение

Читайте также: