Пирамида чисел для цепей паразитов это

Обновлено: 26.04.2024

Экосистемы очень разнообразны по относительной скорости создания и расходования как первичной продукции, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правила пирамиды продукции: на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило выражают в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях. Пирамида продукции отражает законы расходования энергии в пищевых цепях.

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т. е. насколько сильно выедание образовавшихся запасов. Немаловажную роль при этом играет скорость оборота генераций основных продуцентов и консументов.


Рис. 150. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976): П – продуценты; РК – растительноядные консументы; ПК – плотоядные консументы; Ф – фитопланктон; 3 – зоопланктон

В большинстве наземных экосистем действует также правило пирамиды биомасс, т. е. суммарная масса растений оказывается больше, чем биомасса всех фитофагов и травоядных, а масса тех, в свою очередь, превышает массу всех хищников (рис. 150). Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. В разных фитоценозах, где основные продуценты различаются по длительности жизненного цикла, размерам и темпам роста, это соотношение варьирует от 2 до 76 %. Особенно низки темпы относительного прироста биомассы в лесах разных зон, где годовая продукция составляет лишь 2–6% от общей массы растений, накопленной в телах долгоживущих крупных деревьев. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5 %. В сообществах с господством травянистых форм скорость воспроизводства биомассы гораздо выше: годовая продукция в степях составляет 41–55 %, а в травяных тугаях и эфемерно-кустарниковых полупустынях достигает даже 70–76 %.

Отношение первичной продукции к биомассе растений определяет те масштабы выедания растительной массы, которые возможны в сообществе без подрыва его продуктивности. Относительная доля потребляемой животными первичной продукции в травянистых сообществах выше, чем в лесах. Копытные, грызуны, насекомые-фитофаги в степях используют до 70 % годового прироста растений, тогда как в лесах в среднем не более 10 %. Однако возможные пределы отчуждения растительной массы животными в наземных сообществах не реализуются полностью и значительная часть ежегодной продукции поступает в опад.

В пелагиали океанов, где основными продуцентами являются одноклеточные водоросли с высокой скоростью оборота генераций, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы (рис. 151). Вся чистая первичная продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей очень мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества.


Рис. 151. Схема соотношения продукции и биомассы у бактерий (1), фитопланктона (2), зоопланктона (3), бентоса (4) и рыб (5) в Баренцевом море (по Л. А. Зенкевичу из С. А. Зернова, 1949)

Для океана правило пирамиды биомасс недействительно (пирамида имеет перевернутый вид). На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни крупных хищников велика, скорость оборота их генераций, наоборот, мала и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

В тех трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило пирамиды чисел: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано с тем, что хищники, как правило, крупнее объектов своего питания и для поддержания биомассы одного хищника нужно несколько или много жертв. Из этого правила могут быть и исключения – те редкие случаи, когда более мелкие хищники живут за счет групповой охоты на крупных животных. Правило пирамиды чисел было подмечено еще в 1927 г. Ч. Элтоном, который отметил также, что оно неприменимо к цепям питания паразитов, размеры которых с каждым звеном уменьшаются, а число особей возрастает.

Все три правила пирамид – продукции, биомассы и чисел – выражают в конечном счете энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют чрезвычайное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ – основной источник запасов пищи для человечества. Не менее важна и вторичная продукция, получаемая за счет сельскохозяйственных и промысловых животных, так как животные белки включают целый ряд незаменимых для людей аминокислот, которых нет в растительной пище. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей и точнее всего выполнены для более простых водных экосистем. Примером энергетических соотношений в конкретном сообществе могут послужить данные, полученные для экосистем одного из озер (табл. 2). Отношение П/Б отражает скорость прироста.

Поток энергии в экосистеме эвтрофного озера (в кДж/м 2 ) в среднем за вегетационный период (по Г. Г. Винбергу, 1969)


В данном водном сообществе действует правило пирамиды биомасс, так как общая масса продуцентов выше, чем фитофагов, а доля хищных, наоборот, меньше. Наивысшая продуктивность характерна для фито– и бактериопланктона. В исследованном озере отношения их П/Б довольно низки, что говорит об относительно слабом вовлечении первичной продукции в цепи питания. Биомасса бентоса, основу которой составляют крупные моллюски, почти вдвое больше биомассы планктона, тогда как продукция во много раз ниже. В зоопланктоне продукция нехищных видов лишь ненамного выше рациона их потребителей, следовательно, пищевые связи планктона достаточно напряжены. Вся продукция нехищных рыб составляет лишь около 0,5 % первичной продукции водоема, и, следовательно, рыбы занимают скромное место в потоке энергии в экосистеме озера. Тем не менее они потребляют значительную часть прироста зоопланктона и бентоса и, следовательно, оказывают существенное влияние на регулирование их продукции.

Описание потока энергии, таким образом, является фундаментом детального биологического анализа для установления зависимости конечных, полезных для человека продуктов от функционирования всей экологической системы в целом.

Важнейший вид взаимоотношений между организмами в биоценозе, фактически формирующими его структуру, — это пищевые связи хищника и жертвы: одни — поедающие, дру­гие — поедаемые. При этом все организмы, живые и мертвые, являются пищей для других организмов: заяц ест траву, лиса и волк охотятся на зайцев, хищные птицы (ястребы, орлы и т. п.) способны утащить и съесть как лисенка, так и волчонка. Погибшие растения, зайцы, лисы, волки, птицы становятся пищей для детритофагов (редуцентов или иначе деструкторов).

Все организмы, входящее в биоценоз по способу питания, подразделяют на автотрофов и гетеротрофов.

Автотрофы (от греч. autos – сам) – осуществляют превращение неорганических веществ в органические (зеленые растения и некоторые микроорганизмы).

По механизму превращения неорганических веществ в органические автотрофы делится на :

• фототрофы (фотосинтез) – зеленые растения, сине-зеленые водоросли;

• хемотрофы (хемосинтез) – серные бактерии и др.

Гетеротрофы(от греч. разный) – используют для питания готовые органические вещества (все животные и человек, паразиты, грибы и др). По современным данным Дж. Н. Андерсена, гетеротрофов делят на:

• некротрофы (от греч. nekros – мертвый) трупноядные животные;

• биотрофы (от греч. biosis – живой) питаются за счет других живых организмов (паразиты, кровососы и др);

• сапротрофы (от греч. sapros – гниль) питаются отмершей органикой.

Существуют организмы и со смешанным типом питания, которых называют миксотрофами (от англ. mix – смешивать).

Поддержание жизнедеятельности организмов и круговорот веществ в экосистемах возможно только за счет постоянного притока энергии.

В конечном итоге вся жизнь на земле существует за счет энергии солнечного излучения, которая переводится фотосинтезирующими организмами (автотрофами) в химические связи органических соединений. Все остальные организмы получают энергию с пищей. Все живые существа являются объектами питания других, т.е. связаны между собой энергетическими отношениями. Пищевые связи в сообществах – это механизмы передачи энергии от одного организма к другому.

Перенос энергии пищи от ее источника – автотрофов (растений) – через ряд организмов, происходящий путем поедания одних организмов другими, называется пищевой (трофической) цепью.

Для высвобождения запасенной химической энергии гетеротрофы разлагают органические соединения на исходные неорганические компоненты, завершая тем самым круговорот веществ.

По отношению к трофическим (пищевым) связям организмы экосистемы подразделяются на продуцентов, консументов и редуцентов.

Продуценты (производители первичной продукции) - организмы, способные из неорганических веществ создавать органические, т.е. производить и накапливать потенциальную энергию в форме химической энергии, которая содержится в синтезированных органических веществах (углеводах, жирах, белках). В наземных экосистемах такой синтез осуществляют, главным образом, цветковые растения; в водной среде – микроскопические планктонные водоросли.

Консументы (т.е потребители) – это организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Роль консументов выполняют в природе, в основном, животные. Можно выделить консументы различного порядка. Первичные консументы питаются автотрофными (фотосинтезирующими) продуцентами. Это, в основном, травоядные животные. Вторичные консументы питаются травоядными организмами, т.е. являются плотоядными формами. Третичными являются консументы, питающиеся вторичными консументами и т.д. Можно выделить также консументов 4-го и 5-го порядка.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганическое соединение. Это, главным образом, бактерии и грибы. Они являются как бы завершающим звеном биологического круговорота веществ.

Место каждого звена в цепи питания называют трофическим уровнемили цепью питания.

Первый трофический уровень – это всегда продуценты, создатели органической массы; второй – растительноядные консументы; третий – плотоядные, четвертый – организмы, потребляющие других плотоядных. По мере продвижения по цепи хищников животные все более увеличиваются в размерах и уменьшаются численно.




Понятие пищевой цепи удобно для изложения, хотя и носит несколько упрощенный характер.

Пищевая цепь — это последовательность организмов, в которой каждый из них съедает или разлагает другой. Она представляет собой путь движущегося через живые организмы однонаправленного потока поглощенной при фотосинтезе ма­лой части высокоэффективной солнечной энергии, поступив­шей на Землю. В конечном итоге эта цепь возвращается в ок­ружающую природную среду в виде низкоэффективной тепло­вой энергии. По ней также движутся питательные вещества от продуцентов к консументам и далее к редуцентам, а затем обратно к продуцентам.

Каждое звено пищевой цепи называют трофическим уров­нем. Первый трофический уровень занимают автотрофы, ина­че именуемые первичными продуцентами. Организмы второго трофического уровня называют первичными консументами, третьего — вторичными консументами и т. д. Обычно бывают четыре или пять трофических уровней и редко более шести.

Детритная пищевая цепь начинается с детрита.

Концепция пищевых цепей позволяет в дальнейшем про­следить круговорот химических элементов в природе, хотя простые пищевые цепи, подобные изображенным ранее, где каждый организм представлен как питающийся организмами только какого-то одного типа, в природе встречаются редко. Реальные пищевые связи намного сложнее, ибо животное мо­жет питаться организмами разных типов, входящих в одну и ту же пищевую цепь или в различные цепи, что особенно ха­рактерно для хищников (консументов) высших трофических уровней. Связь между пастбищной и детритной пищевыми це­пями иллюстрирует предложенная Ю. Одумом модель потока энергии.

Всеядные животные (в частности, человек) питаются и консументами, и продуцентами. Таким образом, в природе пищевые цепи переплетаются, образуют пищевые (трофические) сети.

Для наглядности представления взаимоотношений меж­ду организмами различных видов в биоценозе принято исполь­зовать экологические пирамиды, различая пирамиды числен­ности, биомасс и энергии.

Пирамида численности. Для построения пирамиды численности подсчитывают число организмов на некоторой территории, группируя их по трофическим уровням:

• продуценты — зеленые растения;

• первичные консументы — травоядные животные;

• вторичные консументы — плотоядные животные;

• третичные консументы — плотоядные животные;

Консументы второго, третьего и более высоких порядков могут быть хищниками (охотиться, схватывая и убивая жертву), могут питаться па­далью или быть паразитами. В последнем случае они по ве­личине меньше своих хозяев, в результате чего пищевые цепи паразитов необычны по ряду параметров. В типичных пищевых цепях хищников плотоядные животные стано­вятся крупнее на каждом тро­фическом уровне.

Каждый уровень изображается условно в виде прямоуголь­ника, длина или площадь которого соответствуют численному значению количества особей. Расположив эти прямоугольни­ки в соподчиненной последовательности, получают эколо­гическую пирамиду численности, ос­новной принцип построения которой впервые сформулировал американский эколог Ч. Элтон.

Данные для пирамид численности получают достаточно легко путем прямого сбора образцов, однако существуют и не­которые трудности:

• продуценты сильно различаются по размерам, хотя один экземпляр злака или водоросли имеет одинаковый статус с одним деревом. Это порой нарушает правильную пирамидальную форму, иногда давая даже перевернутые пирамиды;

• диапазон численности различных видов настолько широк, что при графическом изображении затрудняет соблюдение масштаба, однако в таких случаях можно использовать логарифмическую шкалу.

При отборе образцов опре­деляют биомассу на корню или урожай на корню (т. е. в дан­ный момент времени), кото­рая не содержит никакой информации о скорости обра­зования или потребления био­массы.

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Поэтому при дальнейшем ана­лизе могут возникнуть ошибки, если не учитывать следующее:

• во-первых, при равенстве скорости потребления биомассы (потеря из-за поедания) и скорости ее образования урожай на корню не свидетельствует о продуктивности, т. е. о количестве энергии и вещества, переходящих с одного трофического уровня на другой, более высокий, за некоторый период времени (например, за год). Так, на плодородном, интенсивно используемом пастбище
урожай трав на корню может быть ниже, а продуктивность выше, чем на менее плодородном, но мало используемом для выпаса;

• во-вторых, продуцентам небольших размеров, например водорослям, свойственна высокая скорость роста и размножения, уравновешиваемая интенсивным потреблением их в пищу другими организмами и естественной гибелью. Поэтому продуктивность их может быть не меньше чем у крупных продуцентов (например, деревьев), хотя на корню биомасса может быть мала. Иными словами, фитопланктон с такой же продуктивностью, как у дерева, будет иметь намного меньшую биомассу, хотя мог бы поддерживать жизнь животных такой же массы.

Кажущихся аномалий лишены пирамиды энергий, рас­сматриваемые далее.

Пирамида энергий. Самым фундаментальным способом отражения связей между организмами разных трофических уровней и функцио­нальной организации биоценозов является пирамида энергий, в которой размер прямоугольников пропорциона­лен энергетическому эквиваленту в единицу времени, т. е. ко­личеству энергии (на единицу площади или объема), прошед­шей через определенный трофический уровень за принятый период. К основанию пирамиды энергии можно обо­снованно добавить снизу еще один прямоугольник, отражаю­щий поступление энергии Солнца.

Пирамида энергий отражает динамику прохождения мас­сы пищи через пищевую (трофическую) цепь, что принципи­ально отличает ее от пирамид численности и биомасс, отра­жающих статику системы (количество организмов в данныймомент). На форму этой пирамиды не влияют изменения раз­меров и интенсивности метаболизма особей. Если учтены все источники энергии, то пирамида всегда будет иметь типичный вид (в виде пирамиды вершиной вверх), согласно второму закону термодинамики.

Пирамиды энергий позволяют не только сравнивать раз­личные биоценозы, но и выявлять относительную значимость популяций в пределах одного сообщества. Они являются наи­более полезными из трех типов экологических пирамид, одна­ко получить данные для их построения труднее всего.

Экосистемы очень разнообразны по относительной скорости создания и расходования как первичной продукции, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правила пирамиды продукции (энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило выражают в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях. Пирамида продукции отражает законы расходования энергии в пищевых цепях.

Скорость создания органического вещества не определяет его суммарные запасы, т. е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит от того, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий, т. е. насколько сильно выедание образовавшихся запасов. Немаловажную роль при этом играет скорость оборота генераций основных продуцентов и консументов.

Рис. 150. Пирамиды биомассы в некоторых биоценозах (по Ф. Дре, 1976): П – продуценты; РК – растительноядные консументы; ПК – плотоядные консументы; Ф – фитопланктон; 3 – зоопланктон

В большинстве наземных экосистем действует также правило пирамиды биомасс, т. е. суммарная масса растений оказывается больше, чем биомасса всех фитофагов и травоядных, а масса тех, в свою очередь, превышает массу всех хищников (рис. 150). Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. В разных фитоценозах, где основные продуценты различаются по длительности жизненного цикла, размерам и темпам роста, это соотношение варьирует от 2 до 76 %. Особенно низки темпы относительного прироста биомассы в лесах разных зон, где годовая продукция составляет лишь 2–6% от общей массы растений, накопленной в телах долгоживущих крупных деревьев. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5 %. В сообществах с господством травянистых форм скорость воспроизводства биомассы гораздо выше: годовая продукция в степях составляет 41–55 %, а в травяных тугаях и эфемерно кустарниковых полупустынях достигает даже 70–76 %.

Отношение первичной продукции к биомассе растений определяет те масштабы выедания растительной массы, которые возможны в сообществе без подрыва его продуктивности. Относительная доля потребляемой животными первичной продукции в травянистых сообществах выше, чем в лесах. Копытные, грызуны, насекомые фитофаги в степях используют до 70 % годового прироста растений, тогда как в лесах в среднем не более 10 %. Однако возможные пределы отчуждения растительной массы животными в наземных сообществах не реализуются полностью и значительная часть ежегодной продукции поступает в опад.

В пелагиали океанов, где основными продуцентами являются одноклеточные водоросли с высокой скоростью оборота генераций, их годовая продукция в десятки и даже сотни раз может превышать запас биомассы (рис. 151). Вся чистая первичная продукция так быстро вовлекается в цепи питания, что накопление биомассы водорослей очень мало, но вследствие высоких темпов размножения небольшой их запас оказывается достаточным для поддержания скорости воссоздания органического вещества.

Рис. 151. Схема соотношения продукции и биомассы у бактерий (1), фитопланктона (2), зоопланктона (3), бентоса (4) и рыб (5) в Баренцевом море (по Л. А. Зенкевичу из С. А. Зернова, 1949)

Для океана правило пирамиды биомасс недействительно (пирамида имеет перевернутый вид). На высших трофических уровнях преобладает тенденция к накоплению биомассы, так как длительность жизни крупных хищников велика, скорость оборота их генераций, наоборот, мала и в их телах задерживается значительная часть вещества, поступающего по цепям питания.

В тех трофических цепях, где передача энергии происходит в основном через связи хищник – жертва, часто выдерживается правило пирамиды чисел: общее число особей, участвующих в цепях питания, с каждым звеном уменьшается. Это связано с тем, что хищники, как правило, крупнее объектов своего питания и для поддержания биомассы одного хищника нужно несколько или много жертв. Из этого правила могут быть и исключения – те редкие случаи, когда более мелкие хищники живут за счет групповой охоты на крупных животных. Правило пирамиды чисел было подмечено еще в 1927 г. Ч. Элтоном, который отметил также, что оно неприменимо к цепям питания паразитов, размеры которых с каждым звеном уменьшаются, а число особей возрастает.




Все три правила пирамид – продукции, биомассы и чисел – выражают в конечном счете энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер.

Знание законов продуктивности экосистем, возможность количественного учета потока энергии имеют чрезвычайное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ – основной источник запасов пищи для человечества. Не менее важна и вторичная продукция, получаемая за счет сельскохозяйственных и промысловых животных, так как животные белки включают целый ряд незаменимых для людей аминокислот, которых нет в растительной пище. Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из за методических трудностей и точнее всего выполнены для более простых водных экосистем. Примером энергетических соотношений в конкретном сообществе могут послужить данные, полученные для экосистем одного из озер (табл. 2). Отношение П/Б отражает скорость прироста.

Поток энергии в экосистеме эвтрофного озера (в кДж/м2) в среднем за вегетационный период (по Г. Г. Винбергу, 1969)


В данном водном сообществе действует правило пирамиды биомасс, так как общая масса продуцентов выше, чем фитофагов, а доля хищных, наоборот, меньше. Наивысшая продуктивность характерна для фито– и бактериопланктона. В исследованном озере отношения их П/Б довольно низки, что говорит об относительно слабом вовлечении первичной продукции в цепи питания. Биомасса бентоса, основу которой составляют крупные моллюски, почти вдвое больше биомассы планктона, тогда как продукция во много раз ниже. В зоопланктоне продукция нехищных видов лишь ненамного выше рациона их потребителей, следовательно, пищевые связи планктона достаточно напряжены. Вся продукция нехищных рыб составляет лишь около 0,5 % первичной продукции водоема, и, следовательно, рыбы занимают скромное место в потоке энергии в экосистеме озера. Тем не менее они потребляют значительную часть прироста зоопланктона и бентоса и, следовательно, оказывают существенное влияние на регулирование их продукции.

Описание потока энергии, таким образом, является фундаментом детального биологического анализа для установления зависимости конечных, полезных для человека продуктов от функционирования всей экологической системы в целом.

Чем отличается пирамида энергии от пирамиды чисел и биомассы?

Пирамиды биомасс гораздо лучше выражают соотношения между разными трофическими уровнями экосистемы. В целом, биомасса более низких уровней превышает биомассу более высоких. Однако из этого правила имеются существенные исключения. Например, в морях биомасса растительноядного зоопланктона существенно (иногда в 2 – 3 раза) больше биомассы фитопланктона, представленного преимущественно одноклеточными водорослями. Это объясняется тем, что водоросли очень быстро выедаются зоопланктоном, но от полного выедания их предохраняет очень высокая скорость деления их клеток.

Наиболее полное представление о функциональной организации экосистем дают пирамиды продукций. При этом величины продукций каждого трофического уровня лучше представлять в единых единицах измерения, лучше всего в энергетических. В таком случае пирамиды продукций будут являться пирамидами энергий.

В противоположность пирамидам численности и биомассы, отражающим статику системы (т.е. характеризующим количество организмов в данный момент времени), пирамиды продукции характеризуют скорости прохождения энергии пищи по трофическим цепям. Если правильно учтены все величины поступления и расхода энергии в трофической цепи, то в соответствии со вторым законом термодинамики пирамиды продукции всегда будут иметь правильную форму.

Численность и биомасса организмов, которые может поддерживать какой-либо уровень в тех или иных условиях зависит не от количества фиксированной энергии, имеющейся в данный момент на предыдущем уровне (т.е. от биомассы последнего), а от скорости продуцирования пищи на нем.

Экосистема определяется как сообщество, состоящее из живых и неживых организмов, которые существуют рядом и взаимодействуют друг с другом. Она не имеет определённых размеров, так как может быть такой же маленькой, как дерево, или такой же большой, как вся земная масса. Экосистемы разбиты на разные ранги, называемые трофическими уровнями, которые составляют экологическую пирамиду.

Что такое экологическая пирамида

История и описание

В 1927 году концепция экологической пирамиды была впервые предложена английским экологом Чарльзом Элтоном (1900−1991) (поэтому она также известна как элтонская пирамида). Экологическая пирамида — это графическое изображение треугольной формы, которое показывает количество организмов, биомассы и заключённой в них энергии на каждом трофическом уровне в экосистеме и их биологическую продуктивность. Она состоит из ряда горизонтальных полос, изображающих определённые ранги. Длина каждого столбца представляет общее количество особей, или биомассы, или энергии на каждом уровне в экосистеме.

Все организмы в биологии классифицируются на основе различных факторов окружающей среды, таких как образ жизни в определённой экосистеме (что едят и как получают энергию):

 Кем была введено понятие

  • Организмы, которые производят органические вещества из неорганических, называются продуцентами (производителями). Растения и некоторые бактерии являются преобразователями солнечной энергии в процессе фотосинтеза и создают (синтезируют) органические вещества, которые потребители используют в качестве пищи. Как правило, такие пирамиды в окружающем мире начинаются именно с потребителей. Они расположены внизу и проходят через различные ступени, поднимаясь по пирамиде. Вершина представляет самый высокий уровень в цепи питания.
  • Следующим уровнем в иерархии являются консументы — это потребители органического вещества. Травоядные животные употребляют растительную пищу, а плотоядные — животную. В результате процесса пищеварения, протекающего в организмах консументов, происходит первичное измельчение и разложение органического вещества.
  • После этого редуценты разрушают мёртвые или разлагающиеся организмы и при этом осуществляют естественный процесс разложения.

Экологическая эффективность

Экологическая эффективность — это эффективность, с которой энергия передаётся с одного трофического уровня на другой.

Количество трофических уровней в пастбищной пищевой цепи ограничено, поскольку передача энергии осуществляется по закону десяти процентов. Это означает, что только 10% энергии передаётся на каждый трофический уровень с нижестоящего.

Уменьшение на каждом последующем уровне обусловлено двумя причинами:

  • ​При каждом трофическом потоке часть доступной энергии теряется при дыхании или расходуется на обмен веществ.
  • Часть энергии теряется при каждом преобразовании.

Виды экологических пирамид

Подобные пирамиды представляют трофическую структуру, а также трофическую функцию экосистемы. Они могут быть следующих трёх видов:

Какова их эффективность и какие существуют ограничения

  1. Пирамида чисел (или численности). Здесь учитывается количество организмов на каждой ступени. В процессе продвижения вверх по уровням количество организмов уменьшается. Производители образуют наибольшее количество и, следовательно, находятся на самом дне.
  2. Пирамида энергии. Она вертикальная и представляет собой поток энергии от производителей к конечным потребителям.
  3. Пирамида биомассы. Она представляет количество биомассы организмов, присутствующих на каждом уровне. Биомасса — это ни что иное, как вес организмов.

В целом, все они являются вертикальными, за исключением некоторых случаев. Например, в пищевой сети детрита (остатки органических веществ, перегной, которые образуются при переработке мёртвых растений и животных бактериями и простейшими) пирамида чисел не является вертикальной, потому что многие организмы питаются мёртвыми растениями или животными. Перевёрнутой экологической пирамидой также является пирамида биомассы в океане. Но следует отметить, что пирамида энергии находится исключительно в вертикальном положении, поскольку поток энергии является однонаправленным.

Численность особей

Какие существуют виды экологических пирамид

Пирамида чисел графически представляет общее количество особей, присутствующее на каждом уровне. Этот вид может иметь две разные формы в зависимости от количества организмов: прямую и перевёрнутую.

В вертикальной числовой пирамиде количественное соотношение организмов обычно уменьшается снизу вверх. Это обычно происходит в экосистемах лугов и прудов, где растения (например, травы) занимают основание пирамиды. Последующие уровни включают потребителей.

Перевёрнутая пирамида чисел, с другой стороны, является противоположностью первой. Это обычно наблюдается в экосистемах леса с деревьями в качестве производителей и насекомых в качестве потребителей.

Среди трёх видов она наименее точна, поскольку не учитывает конкретное количество населения и, следовательно, не может полностью определить трофическую структуру в этой экосистеме. Она игнорирует биомассу организмов, а также не указывает на передаваемую энергию или использование её участвующими группами.

Вертикальная пирамида чисел на примере экосистемы пруда и луга кратко описывается следующим образом:

Травы занимают самый низкий уровень в пирамиде

  • Травы занимают самый низкий уровень (основание) из-за их обилия в экологии.
  • Следующая более высокая ступень — основной потребитель — травоядные, например, кузнечик. Индивидуальное количество кузнечиков меньше, чем у травы.
  • Следующая ступень — это основной хищник, например крысы. Количество крыс меньше, чем кузнечиков, потому что они питаются кузнечиками.
  • Далее вторичный хищник, змеи. Они питаются крысами.
  • И наконец, верхний хищник, такой как ястреб.

С каждым более высоким уровнем количество индивидуумов уменьшается.

При необходимости определить, какую массу растений сохранит от поедания гусеницами пара синиц при выкармливании 5 птенцов, если вес одного птенца 3 грамма, следует для начала составить цепь питания. Выглядеть она будет так: растения — гусеницы — синицы

Правило экологической пирамиды показывает, что на каждом предыдущем уровне количество биомассы и энергии, которые запасаются организмами за единицу времени больше, чем на последующем ~ в 10 раз. Следовательно, соотношение будет следующим: растения 1500 г — гусеницы 150 г — синицы 15 г. Таким образом, пара синиц, выкармливая своих птенцов, сохраняет 1,5 кг растений.

Масса живых организмов

Экологическая пирамида: описание, виды и их характеристика

Пирамида биомассы определяется как количество доступной пищи и сколько энергии передаётся на единицу площади продукта живого вещества, присутствующего в организме, и общее количество организмов, находящихся на определённой ступени. В менее сложных терминах это относится к пище, доступной для последующего уровня.

Большая часть биомассы, которую потребляют животные, используется для обеспечения энергии, превращается в новые ткани или просто остаётся непереваренной. Основную часть времени данный вид имеет истинную пирамидальную форму, причём биомасса на нижних уровнях выше уровней над ними.

Как и предыдущий вид, пирамида биомассы может иметь две формы: прямую и перевёрнутую. Обычно наземные экосистемы характеризуются вертикальной формой, имеющей большую базу (первичные продуценты) с меньшими уровнями (потребители), расположенными наверху.

С другой стороны, водные экосистемы являются полной противоположностью, поскольку они принимают перевёрнутую структуру. Это связано с тем, что производители фитопланктона (как правило, с меньшей биомассой) расположены у основания, а потребители, имеющие большую биомассу, расположены у вершины.

Биомасса также используется в качестве источника возобновляемой энергии при замене ископаемого топлива. Эта альтернатива существенно помогла в улучшении климатических условий планеты. Благодаря использованию биомассы в качестве топлива можно получить широкий спектр преимуществ, которые включают сокращение отходов и низкие затраты.

Основными характеристиками пирамиды биомассы являются:

Виды экологических пирамид

  • Она обычно определяется путём сбора всех организмов, занимающих каждый уровень отдельно, и измерения их сухого веса. Это преодолевает проблему разницы в размерах, поскольку взвешиваются все виды организмов на трофическом уровне.
  • На каждом уровне располагается определённая масса живого материала в определённое время.
  • Постоянный урожай измеряется как масса живых организмов (биомасса) или количество в единице площади.

Энергия и её передача

Последний, но не менее важный вид, это энергетическая пирамида, которая показывает общую энергию в экосистеме и сколько её требуется организмам, когда они поднимаются на более высокие уровни.

Структура потока энергии в пирамиде этого вида основана на принципах термодинамики. Этот закон конкретно говорит, что энергия не может быть ни создана, ни уничтожена, она только превращается в другую форму.

Её задача — показать, что энергия переносится с более низких уровней с большим количеством энергии (производители) на более высокие (потребители) и преобразуется в биомассу.

Следовательно, можно сделать вывод, что организмы, обнаруженные на самых высоких уровнях более коротких пищевых цепей, несут большее количество энергии, чем те, которые обнаруживаются в более длинных.

Правило экологической пирамиды

В отличие от первых двух видов, энергетическая пирамида всегда изображена в вертикальном положении с самыми большими энергоносителями в основании. Её идея очень важна в контексте биологического увеличения, которое определяется как тенденция увеличения количества токсичных веществ по мере продвижения вверх по уровням.

Когда производство рассматривается с точки зрения энергии, пирамида указывает не только количество потока энергии на каждом уровне, но и, что более важно, фактическую роль, которую различные организмы играют в передаче энергии. Она также показывает, сколько энергии нужно, когда она течёт вверх, чтобы поддерживать следующий уровень.

Она строится в соответствии со скоростью, с которой пищевой материал проходит через пищевую цепь. Некоторые организмы могут иметь небольшую биомассу, но общая энергия, которую они ассимилируют и передают, может быть значительно больше, чем у организмов с гораздо большей биомассой.

Примером экологической пирамиды биомассы может служить следующее описание:

Экологическая пирамида, понятие

  1. Предположим, что экосистема получает 1000 калорий световой энергии в данный день. Большая часть энергии не поглощается, а отражается в пространстве.
  2. Из поглощённой энергии только небольшая доля используется зелёными растениями, из которых они расходуют часть для дыхания, поэтому только 100 калорий хранятся в качестве энергозатратных материалов.
  3. Олень съедает растение, содержащее 100 калорий пищевой энергии. Он использует часть из них для своего метаболизма и сохраняет только 10 калорий в качестве пищевой энергии.
  4. Лев, который ест оленей, получает ещё меньше энергии. Таким образом, полезная энергия уменьшается от солнечного света до производителя, от травоядного животного до плотоядного.

Концепция энергетической пирамиды помогает объяснить феномен биологического увеличения — склонность токсических веществ к постепенному увеличению концентрации с более высокими уровнями.

Некоторые ограничения

Хотя все три вида очень специфичны для аспекта экосистемы, которую они хотят описать, все они всё ещё имеют тенденцию не замечать важные аспекты. Некоторые из этих ограничений следующие:

 важные аспекты экологической пирамиды

  • Эти виды применимы только в простых пищевых цепях, которые не обязательно встречаются в природе. Они также не учитывают возможное присутствие одного и того же вида на разных трофических уровнях.
  • Более того, ни одна из трёх экологических пирамид не даёт представления о разнице времён года и климата.
  • Другим организмам, таким как микроорганизмы и грибы, не отводится особой роли в пирамидах, несмотря на их жизненно важную роль в экосистемах.
  • Они не учитывают один и тот же вид, принадлежащий двум или более трофическим уровням.

Более того, сапрофитам (растениям, грибам или микроорганизмам, живущим на разлагающихся веществах) не отводится места в пирамидах, даже если они играют жизненно важную роль в экосистеме.

Читайте также: