Ретровирусы названы так потому что они

Обновлено: 18.04.2024

Лекция профессора молекулярной вирусологии Университетского колледжа Лондона Грега Тауэрса опубликована на сайте ПостНаука.

Одна интересная черта ретровирусов заключается в том, что мы можем понять их эволюцию и эволюцию нашей клеточной защиты. Вирус иммунодефицита человека пришел к нам от приматов. Самый распространенный тип ВИЧ называется ВИЧ-1. Он составляет примерно 60 миллионов человеческих заражений ВИЧ. Это практически единичный случай, когда вирус шимпанзе поразил человека и стал распространяться среди человеческого населения. Мы знаем, что направление заражения именно такое – от шимпанзе к человеку, – потому что у шимпанзе существует больше типов этого вируса, чем у людей.

Существует еще один тип ВИЧ, названный ВИЧ-2, который пришел к нам от африканских обезьян, а именно дымчатого мангобея. И снова разновидностей этого вируса у мангобеев намного больше, чем у человека. Это говорит нам о том, что перенос вируса происходит от обезьяны к человеку. ВИЧ-2 вызывает похожую болезнь, что и ВИЧ-1, у примерно 20–30% людей. Однако у большинства людей не наблюдаются никакие значимые симптомы после заражения ВИЧ-2. Поэтому один из важных вопросов ВИЧ-биологии заключается в поиске отличий между тем вирусом, который заразил 60 миллионов человек, и тем, что не инфицировал даже приблизительно такое число.

У приматов есть похожие вирусы. Более того, большинство африканских приматов имеют вирус, который родственен нашему ВИЧ-1. Обычно мы называем эти вирусы в соответствии с видом, в котором мы их нашли. Вирус шимпанзе называется ВИО (SIV) – вирус иммунодефицита обезьян (simian immunodefiency virus). В таком случае, бывает ли у шимпанзе СПИД? Это не до конца понятно. Не все шимпанзе заражены. Существуют определенные территории, где проживают зараженные шимпанзе. Но так как они не живут жизнью людей, не ведут утонченный образ жизни, а, наоборот, проживают более трудную жизнь, то умирают намного раньше, за ними становится очень сложно следить и выяснять, есть ли у них это заболевание.

Из-за этого долгое время мы думали, что они не страдают никакими болезнями, потому что у них нет такого сильного иммунодефицита, как у людей. Но в последнее время мы стали думать, что они тоже имеют эту болезнь, возможно, в менее суровой форме. Так как они не живут долго, им не приходится страдать от тех симптомов, которые переживает человек.

Таким образом, до конца не известно, что происходит с ретровирусной инфекцией в организме обезьян. У африканских обезьян вирус практически не вызывает никаких заболеваний, поэтому кажется, что имеет место адаптация как носителя, так и самого вируса по такому принципу, что обезьяна может быть инфицирована, но не страдать от болезней. Они могут заразиться в достаточно раннем возрасте, поэтому могут иметь вирус в своем теле, но при этом не ощущать значимых последствий для своей жизни.

Среди других видов ретровирусы тщательно изучались у мышей. Это делалось в основном потому, что ретровирусная инфекция у мышей способна вызывать рак. Мышь заражается ретровирусом, который обычно называют гамма-ретровирус. Оказывается, что эта ретровирусная инфекция вызывает у мышей рак. Люди, изучавшие рак в 1950–1960-х годах, то есть в самом начале подобных исследований, выращивали мышь до тех пор, пока она не становилась очень уязвимой к этой болезни, а потом пытались выяснить, почему у этих мышей развивается рак. Оказалось, что они получали рак, потому что были инфицированы ретровирусом. Эти ретровирусы переносили гены (онкогены), которые вызывали рак. Таким образом, все первичные исследования ретровирусов были направлены на понимание того, как работает рак и что его вызывает.

Когда появился ВИЧ и стал вызывать иммунодефицит, это стало первым случаем, когда такой тип вируса вызвал такую болезнь. До этого мы знали о ретровирусах только из исследований гамма-ретровирусов, вызывающих рак. Ретровирусы – это такие типы вирусов, которые можно рассматривать как вирусы, путешествующие налегке. Так, например, ВИЧ имеет всего девять генов, а другие ретровирусы вообще три. Так что они действительно путешествуют налегке по сравнению с вирусом герпеса, например, который имеет около двухсот генов. Я считаю, что их стратегия – путешествовать налегке и быть тихими. Их цель при поражении клетки – не активировать ее и не причинить много ущерба. Я думаю, что изначально они не вызывают сильных болезней, но в длительной перспективе эта инфекция может вызвать болезни вроде рака у мышей. Хотя, возможно, они не вызовут рак у диких мышей. Это происходит только тогда, когда мы пробиваем защиту мыши.

Итак, ретровирусы – это относительно милосердные вирусы, я считаю, потому что они не управляют вашим телом, как делают другие вирусы. Главное их отличие в том, что они превращают РНК в ДНК и интегрируют ДНК в хроматин. Это и есть уникальная черта ретровирусов. Некоторые другие вирусы поступают так же, но только в качестве дополнения. Ретровирусы целиком зависят от этого процесса интеграции. Если клетка не может от них избавиться, она должна умереть для избавления себя от вирусной инфекции.

Ретровирусы внедряют свой геном в хроматин хозяина. Стоит этим генам попасть внутрь хроматина – они останутся там навсегда. Клетка в целом относится к ним как к клеточным генам, так что они считываются, производят РНК, а позже эта РНК направляется в цитоплазму. Вирус производит протеин, клетка производит вирусный протеин, новые вирусы формируются, и они готовы двигаться дальше, заражать новые клетки. Так ретровирусы стали отличным инструментом для изучения клеточной биологии, и это потому, что они простые. Некоторые из них имеют всего три гена. Даже сложный ретровирус вроде ВИЧ имеет всего девять генов. Поэтому очень легко взять их, разделить на части и изучать, какая часть за что отвечает.

В поле генной терапии существует трюк, когда берут ретровирус, вынимают из него ретровирусные гены и вставляют те гены, которые нужны. Потом можно сформировать ретровирусные частицы. Этот трюк можно использовать для развития ретровирусного вектора. Работает это так: можно взять ретровирусный геном, который обычно шифрует все ретровирусные гены, избавиться от них и поставить на их место предпочтительный ген, например терапевтический ген или ген, который можно просто измерять, – мы обычно используем ЗФБ (GFP), который заставляет клетки зеленеть. Если вы это сделаете, вы сможете производить ретровирусные частицы, которые будут только заражать клетку и производить белок. В ретровирусе не окажется ретровирусных генов, так что он сможет производить только терапевтические гены или ЗФБ. И это прекрасный инструмент для изучения клеточной биологии.

Например, можно изменить клетку и посмотреть, продолжает ли вирус оказывать на нее свое влияние, или можно, наоборот, изменить вирус и проверить, может ли он теперь инфицировать клетку. Это будет называться генетическим подходом. Можно выяснить роль различных частей вируса в попадании в клеточное ядро, в попадании в клетку, в пересечении цитоплазмы.

Многие лаборатории сосредотачиваются на исследованиях ретровирусных векторов и ретровирусов, чтобы изучать врожденный иммунитет. Врожденный иммунитет, или внутриклеточный врожденный иммунитет, – это способность индивидуальной клетки защищать себя от вирусной инфекции. Я считаю, что это достаточно увлекательное направление. Осознание его важности произошло не так давно, около 20 лет назад. Теперь мы понимаем, что находимся под атакой вирусных инфекций на протяжении всей эволюции. За это время мы выработали очень сложные пути защиты себя от инфекций. У нас сформирована адаптивная иммунная система, Т-лимфоциты и антитела. Но кроме этого, каждая клетка нашего тела имеет способность защищать себя от инфекции. Ретровирусы дают прекрасную возможность это изучить.

Например, мы пытаемся узнать, как клетка понимает, что внутрь нее попал вирус. Она делает это при помощи процесса, который мы называем распознаванием образов. В наших клетках есть молекулы, способные обнаружить входящий вирус, потому что они замечают нечто, что выглядит иначе с конформационной и химической перспектив. Если рецептор распознавания образов видит входящий вирус, он вызовет антивирусную реакцию. Несколько вещей начнут происходить. Прежде всего, клетка начнет вырабатывать намного больше белка, чем делала раньше. Также она начинает выделять белок вида интерферон тип 1, что позволит еще незараженным клеткам узнать, что приближается вирус. Интерфероны активируют эти незараженные клетки на производство их антивирусной защиты. Это фантастически эффективный способ противостоять вирусной репликации. Так как ретровирусы с их тремя и девятью генами являются очень простыми, мы можем производить мутации и наблюдать за тем, являются ли они все еще способными проходить через защиту, и мы можем понять, как именно они это осуществляют.

Об авторе:
Грег Тауэрс – professor of Molecular Virology, University College London; Head of Research Group, UCL Division of Infection and Immunity.


Уже много лет между эволюционистами и креационистами продолжается спор о том, как же все-таки произошел человек — путем эволюции или божественного сотворения? К счастью, древние вирусы на протяжении миллионов лет ведут летопись эволюции и записывают ее в нашу ДНК.

После расшифровки нуклеотидной последовательности ДНК многих животных, в том числе и человека, стало возможным узнать, где именно в геноме находятся эти остатки древних вирусов. И взору ученых предстала строгая упорядоченность расположения эндогенных ретровирусов — выяснилось, что все они находятся в геномах в строго определенных местах. Некоторые из них характерны лишь для человека или для кошки и не встречаются у других животных. Другие же ретровирусы можно обнаружить в одном и том же месте, к примеру, в геномах гориллы, шимпанзе, орангутанга и человека.

Почти половина генома

Почти половина генома

У разных ретротранспозонов (транспозон — мобильный элемент ДНК) процесс обратной транскрипции имеет свои особенности.

У ретротранспозонов с длинными концевыми повторами (LTR-ретропозоны) обратная транскрипция происходит не в ядре, а в цитоплазме. Так как по своему строению и механизму перемещения LTR-ретропозоны имеют большое сходство с вирусами, данный класс подвижных элементов называют ретровирусоподобными. Их содержание в геноме человека — около 8% всей последовательности нуклеотидов.

Ко второму классу ретротранспозонов, без длинных концевых повторов (non-LTR), относятся элементы LINE (Long Interspersed Elements — длинные перемежающиеся элементы) и SINE (Short Interspersed Elements — короткие перемежающиеся элементы). Перемещение и встраивание ДНК-копии этих элементов происходит не в цитоплазме, а в ядре. Элементы LINE — самые многочисленные из подвижных структур человека: они занимают в ДНК пятую часть (около 20%) от всей последовательности нуклеотидов. И они же единственные из мобильных генов человека, сохранившие до сих пор свою самостоятельную способность к перемещению.

Одомашненные вирусы

Транскрипция — это перенос генетической информации с ДНК на рибонуклеиновую кислоту (РНК), при котором ДНК используется в качестве отправной точки, матрицы. Транскрипцию можно наблюдать всякий раз, когда осуществляется синтез новых белков. До открытия американцами обратной транскрипции считалось, что движение в направлении от РНК к ДНК невозможно. Но, как оказалось, этот генетический метод активно используется в живой природе, в том числе и такими опасными ее представителями, как вирусы (среди которых и самый опасный для человека — ВИЧ).

Жизненный цикл ретровируса

Жизненный цикл ретровируса

Вирус прикрепляется к строго определенным клеткам хозяина благодаря образованию связей белков капсида и рецепторов на поверхности клетки. После проникновения в клетку собственные ферменты или ферменты клетки хозяина разбирают капсид. Вирусная РНК высвобождается и подвергается обратной транскрипции: обратная транскриптаза формирует по матрице РНК цепочки ДНК, а интеграза инициирует проникновение провирусной ДНК в ядро и включение ее в геном хозяина. В ядре происходит процесс репликации (повторной сборки) вирусной РНК, который уже стал неотъемлемой функцией генома хозяина. В хозяйской цитоплазме вирусная РНК обзаводится капсидом. Отпочковываясь от клетки, обновленный вирус прихватывает с собой часть мембраны хозяина, используя ее в качестве собственной оболочки.

Устройство вириона

Устройство вириона

РНК ретровируса располагается в белковой оболочке под названием капсид. Наружная липидная оболочка покрыта ворсинками длиной 8−10 нм. Вирион имеет форму икосаэдра (двадцатигранника) и диаметр 80−100 нм.

Двигатель прогресса

Еще в конце 1980-х годов можно было встретить утверждение о том, что ретровирусы не способны вызывать эпидемический процесс. И отсюда — бесплодные попытки ученых создать вакцину против ВИЧ. Ретровирусы и сегодня не утратили своей способности вызвать большую пандемию. Однако ретровирусы, по мнению ученых, могут быть полезными. Предполагается, и не без оснований, что они сослужили нам хорошую службу в процессе эволюции, передав человеку и другим живым организмам свои структурные элементы, ставшие впоследствии нашими генами.

Академик РАН Евгений Свердлов

Как мы строим супервирус

Сегодня уже точно известен целый ряд важных генов, берущих свое начало от ретроэлементов. Прежде всего это некоторые гены, участвующие во внутриутробном развитии плода. Несколько лет назад появились данные, что ретровирусы могли сыграть весомую роль в эволюции плацентарных животных. Появление у древних организмов плаценты — важный этап их эволюционного развития в сторону усложнения. Плацента позволила предкам человека продлить внутриутробное развитие. Именно с этим сегодня связывают кардинальные изменения у млекопитающих, живших около 60 млн лет назад, — увеличение размеров мозга и постепенное развитие умственных способностей.

Основной целью российских биологов был поиск ретровирусов hsERV, которые осуществляют функции энхансеров (усилителей). Энхансеры — это нуклеотидная последовательность с регуляторными функциями, которая обычно находится вблизи (или внутри) генов и повышает их экспрессию. Из всех обнаруженных на сегодня hsERV лишь шесть копий находились в районах обычного расположения энхансеров. Изучив эти шесть ретровирусов, исследователи смогли выявить один hsERV, расположенный вблизи важного гена PRODH.

Ген PRODH кодирует фермент пролиндегидрогеназу, связанный с синтезом глутамата, одного из нейромедиаторов, стимулирующего передачу сигналов возбуждения в нервной системе. У шимпанзе аналогичный ген во всех местах его расположения (в гиппокампе, префронтальной коре и хвостатом ядре) не имеет рядом с собой участка ДНК с эндогенными ретровирусами и менее активен по сравнению с человеческим. Есть основания полагать, что внедрение ретровируса вблизи этого гена сыграло весомую роль в развитии умственных способностей человека.

Хозяева Земли

По мнению Супотницкого, именно ретровирусы (и ретроэлементы) — настоящие хозяева Земли. Они возникли раньше нас в процессе эволюции, принимали активное участие в создании сложных организмов и вполне способны ради большего разнообразия видов сгубить все человечество.

Автор выражает большую благодарность
д. б. н. А. А. Буздину (Институт биоорганической химии РАН)
за помощь при написании статьи.

Ретровирус довольно сложно устроен и ведет себя почти как живой организм. Тем не менее ретровирусы – не самостоятельные живые существа, а причудливый результат эгоистической эволюции отдельных фрагментов генома настоящих живых организмов.

Сотрудники кафедры генетики биологического факультета МГУ Л. Н. Нефедова и А. И. Ким детально изучили строение разнообразных ретроэлементов, имеющихся в геноме дрозофилы, чтобы понять, каким путем ретротранспозоны могли превратиться в ретровирусы. В основе исследования лежал сравнительный анализ нуклеотидных и аминокислотных последовательностей генов и белков различных ретроэлементов, а также их хозяев.

Наиболее вероятный путь эволюции ретроэлементов выглядит следующим образом. По-видимому, началось все с обратной транскриптазы – фермента, синтезирующего молекулы ДНК на матрице РНК (этот процесс называется обратной транскрипцией). Обратная транскриптаза – очень древний фермент. Возможно, он сыграл ключевую роль при переходе от РНК-мира к привычному нам ДНК-миру.

Тут, правда, есть еще один нюанс. Синтезированная путем обратной транскрипции ДНК ретроэлемента должна быть встроена в хозяйский геном. Для этого хромосому хозяина нужно разорвать, и синтезировать ДНК ретроэлемента как продолжение одного из образовавшихся свободных концов хозяйской ДНК.

Изначально с этой дополнительной работой – разрыванием хозяйской ДНК – справлялась, по-видимому, сама обратная транскриптаза. Но в дальнейшем ретроэлементы обзавелись дополнительным (вторым по счету) геном, который кодирует специальный белок, приспособленный именно для этой функции - эндонуклеазу. Эндонуклеазы – ферменты, разрезающие ДНК в определенных местах – есть практически у всех организмов, и ретроэлементам не составило труда заимствовать их у хозяев.

Такие простейшие ретротранспозоны, содержащие всего два гена – обратной транскриптазы и эндонуклеазы – реально существуют у дрозофилы.



Так или иначе, от трехгенного ретротранспозона до настоящего вируса остается только один шаг. И этот шаг был сделан, когда ретротранспозоны приобрели четвертый ген, называемый env. Этот ген кодирует белок, обеспечивающий проникновение вируса через наружную мембрану в клетку хозяина. Белок состоит из двух частей: одна отвечает за распознание определенных поверхностных белков (рецепторов) хозяйской клетки, вторая – за прохождение сквозь мембрану.

Каково происхождение гена env? Как выяснилось, гомологи этого гена (т.е. гены с похожей последовательностью нуклеотидов) есть и у насекомых, и у их паразитов – бакуловирусов и бактерии Wolbachia.

Судя по некоторым косвенным признакам, можно предположить, что изначально данный ген сформировался у животных-хозяев. Затем он был захвачен бакуловирусами – широко распространенными паразитами насекомых (см.: Насекомые-вредители защищаются от биологического оружия. Элементы, 8.10.07). Бакуловирусы являются ДНК-содержащими вирусами: их наследственная информация хранится в виде молекул ДНК, а не РНК, как у ретровирусов и других РНК-содержащих вирусов.

Не последнюю роль в распространении гена env и его гомологов может играть бактерия вольбахия – внутриклеточный паразит насекомых. В ее геноме тоже обнаружен гомолог гена env, скорее всего, заимствованный у хозяев. С другой стороны, известно, что хозяева тоже могут заимствовать гены и даже целые большие фрагменты генома у вольбахии (см.: Животные обмениваются генами с паразитическими бактериями. Элементы, 5.09.07). Таким образом, вольбахия, переходя от одного вида насекомых-хозяев к другому, может способствовать распространению разных вариантов гена env среди ретроэлементов.

Встраивание ретровирусов и ретротранспозонов в геном организма-хозяина может приводить к печальным последствиям. Эта собака родилась обесцвеченной и глухой на оба уха из-за того, что ретротранспозон встроился в один из ее генов (SILV), нарушив его работу. Фото с сайта www.pnas.org

Встраивание ретровирусов и ретротранспозонов в геном организма-хозяина может приводить к печальным последствиям. Эта собака родилась обесцвеченной и глухой на оба уха из-за того, что ретротранспозон встроился в один из ее генов (SILV), нарушив его работу. Фото с обложки журнала PNAS

Считалось, что из всех РНК-содержащих вирусов только ретровирусы способны синтезировать ДНК на матрице своей РНК и встраиваться в геном хозяйской клетки. Как выяснилось, другие РНК-содержащие вирусы тоже умеют это делать, хотя у них нет генов, необходимых для обратной транскрипции (синтеза ДНК на матрице РНК). Встраивание этих вирусов в хромосомы хозяина происходит благодаря своеобразной кооперации с уже обжившимися в хозяйском геноме ретровирусами.

До сих пор считалось, что такие вирусы не могут встраивать свой наследственный материал в геном хозяина (или, точнее, что это может происходить лишь исключительно редко, в силу стечения ряда маловероятных обстоятельств; необходимо помнить, что в биологии почти нет абсолютно строгих правил такого рода — любой догматизм здесь противопоказан).

В 1997 году швейцарские биологи установили, что в хромосомах мышей после заражения РНК-содержащим вирусом LCMV (lymphocytic choriomeningitis virus) систематически обнаруживаются фрагменты вирусного генома, а именно гены вирусного гликопротеина (GP) и нуклеопротеина (NP). Как происходит синтез ДНК на матрице вирусной РНК при отсутствии у вируса LCMV обратной транскриптазы, никто не знал.

Исследователи заражали мышиные клетки вирусом LCMV до тех пор, пока не получили две линии клеток, содержащих в своем геноме вирусные гены. Затем из этих клеток были выделены и размножены фрагменты геномной ДНК, включающие гены LCMV, вместе с прилегающими участками.

Оказалось, что в обеих линиях произошло встраивание в хозяйский геном вирусного гена GP. В одной линии клеток вирусный ген встроился в 7-ю хромосому, в другой — в 10-ю. Самое главное, что в обоих случаях к встроенному вирусному гену непосредственно прилегает нуклеотидная последовательность ретротранспозона IAP.

Это позволило ученым предположить, что обратная транскрипция вирусного генома и последующее встраивание получившейся ДНК в хозяйский геном были осуществлены благодаря деятельности ферментов, кодируемых ретротранспозоном IAP.

Чтобы проверить это предположение, исследователи вводили активные копии мышиного ретротранспозона IAP в клетки других видов млекопитающих (человека, зеленой мартышки, собаки и китайского хомячка), у которых интеграция генов LCMV в геном никогда не наблюдалась. В качестве контроля использовались клетки, в которые не вводили дополнительных генов или вводили ген зеленого светящегося белка. Затем все эти клетки заражали вирусом LCMV и смотрели, будет ли синтезироваться ДНК на матрице вирусной РНК.

В клетках всех четырех видов животных, в которые был введен ретротранспозон IAP, гены вируса LCMV подвергались обратной транскрипции (в среднем в 70% клеток). В контрольных клетках этого не произошло ни разу. Таким образом, IAP действительно необходим для встраивания генов LCMV в хозяйский геном, причем ретротранспозон успешно справляется с этой работой не только в клетках своего природного хозяина — мыши, но и в клетках других животных.

Используя в экспериментах разные варианты ретротранспозона IAP, исследователи установили, что для успешного встраивания LCMV необходимо наличие в составе IAP неповрежденных генов pol и gag (каждый из этих генов кодирует по несколько белков; обратная транскриптаза кодируется геном pol; см. схему строения ретровируса).

Вирус LCMV может проникать в семенники мышей, где активно работают ретротранспозоны IAP. Теоретически LCMV мог бы встроиться в геном сперматозоида и стать наследственным, но до сих пор этого не произошло: в геномах мышей, не зараженных вирусом LCMV, не удалось обнаружить никаких фрагментов генома LCMV, несмотря на целенаправленный поиск.

Авторы отмечают, что полученные ими результаты необходимо учитывать при разработке новых методов генной терапии, основанных на создании искусственных РНК-содержащих вирусов с нужными пациенту генами. Ведь в геноме человека тоже есть немало эндогенных ретровирусов. Правда, почти все они неактивны, но некоторые, возможно, частично сохранили активность. Эти эндогенные ретровирусы теоретически могут обеспечить встраивание геномов искусственных РНК-содержащих вирусов в человеческие хромосомы, что может привести к плохо предсказуемым последствиям. Поэтому все новые терапевтические РНК-вирусы должны проходить предварительную проверку на способность встраиваться в хозяйский геном.

Источник: Markus B. Geuking, Jacqueline Weber, Marie Dewannieux, Elieser Gorelik, Thierry Heidmann, Hans Hengartner, Rolf M. Zinkernagel, Lars Hangartner. Recombination of Retrotransposon and Exogenous RNA Virus Results in Nonretroviral cDNA Integration // Science. 2009. V. 323. P. 393–396.

Ryan1.jpg

Все вирусы кодируются геномами, равно как и все живое на нашей планете, от бактерий до млекопитающих. Большинство вирусных геномов строится на основе ДНК, но некоторые – на основе РНК. На самом деле вирусы – это единственные организмы, использующие РНК-код. Это заставляет некоторых биологов думать, что вирусы могли появиться на гипотетическом этапе эволюции, известном как РНК-мир, который, как считают сторонники этой теории, предшествовал нашему миру, построенному на базе ДНК. РНК в отличие от ДНК может реплицироваться без помощи белковых энзимов. Соответственно для перехода от первичного бульона химических веществ к самовоспроизведению на основании РНК потребовался бы совсем крохотный шаг. Вирусы являются облигатными паразитами, то есть всегда рождаются в клетках своих носителей. Они умирают, как и бактерии, под влиянием нагревания или токсичных химикатов. Они также проходят жизненные циклы, включающие репродуктивную фазу, что является еще одной базовой характеристикой живого организма. Следующий и, вероятно, самый важный вопрос звучит так: развиваются ли вирусы в соответствии с установленными эволюционными механизмами? Да, именно так они и делают.

Геномы вирусов мутируют быстрее, чем геномы любых других известных нам организмов. Этим частично объясняется, почему человеческому организму так сложно бороться с вирусом ВИЧ-1. Через год или два после инфицирования в одном пациенте развиваются миллионы различных модификаций вируса. Сами по себе вирусы не обладают эпигенетическими системами наследования, но иногда, проникая в ядра клеток носителя, они захватывают его систему. Способны ли они на гибридизацию? И снова можно привести множество ярких примеров – вспомните хотя бы новые пандемические вирусы гриппа, которые регулярно сеют панику во всем мире. Доступна ли вирусам симбиотическая эволюция, или, говоря научным языком, генетический симбиогенез? Ниже я расскажу, почему они являются идеальным примером этого явления.

Итак, почему некоторые ученые настаивают, что вирусы нельзя отнести к живому миру? Насколько я понимаю, это представление развивалось исторически на основании неверной предпосылки о возникновении вирусов.

Когда в середине ХХ века ученые пытались дать определение жизни, мы знали о вирусах еще очень мало, и биологи пришли к договоренности о том, что минимальным требованием к признанию организма живым должно являться наличие клеточной мембраны, внутри которой содержатся энзимные и биохимические средства для обмена веществ. Мне кажется, что создатели этого определения специально приложили усилия, чтобы исключить вирусы из понятия живого. Почему существо, имеющее клеточную мембрану, считается живым, а существо с вирусной оболочкой – нет? Что касается требования о наличии внутреннего обмена веществ, то на это способно лишь небольшое количество так называемых автотрофных бактерий. Выживание всех прочих форм жизни, включая нас самих, зависит от основных аминокислот, жирных кислот и витаминов, которые они получают из других организмов. Некоторые ученые считают, что вирусы следует исключить из мира живого из-за их паразитической природы, но ведь и многие виды бактерий также являются облигатными паразитами.

ВИЧ-1, основной возбудитель заболевания, часто распространяется при незащищенном половом контакте (вагинальном, анальном или оральном). Вирус проникает в организм человека через ткани слизистых. Он также может напрямую попасть в кровь, если зараженный и здоровый человек воспользуются одним и тем же оборудованием для инъекций, и передаться от матери ребенку во время беременности, родов и кормления грудью. Даже на этом эпидемическом этапе, когда вирус действует как эгоистичный генетический паразит, уже можно говорить о начале симбиотической эволюции. Международные исследования показали, что скорость прогрессирования болезни у зараженных людей зависит от подтипа гена человека, известного под названием HLA-B. Это один из генов, определяющих характер иммунного ответа при трансплантации органов. Распределение подтипов HLA-B по человеческой популяции влияет на эволюцию вируса, а сам вирус за счет летальности некоторых подвидов одинаковых подтипов генов изменяет генофонд человечества.

Ryan3.jpg

Точно так же, как колибри и цветы, люди и вирусы влияют на эволюцию друг друга. Именно такого паттерна можно ожидать от симбиотического эволюционного развития.

Это не означает, что вирус одновременно не развивается самостоятельно или того же не происходит с человечеством. В то же время естественный отбор начинает влиять не только на людей и вирусы по отдельности, но и на симбиоз в целом. Вирусологи называют этот паттерн паразитического взаимодействия коэволюцией. С симбиологической точки зрения мы наблюдаем, как союз, начавшийся с паразитизма, со временем может превратиться во взаимовыгодное сотрудничество.

Вирус ВИЧ-1 выборочно поражает иммунные клетки – лимфоциты, носящие название CD+T-хелперы. Мембраны этих клеток содержат важный иммуноглобулин CD4, который способствует слиянию клетки и вирусной оболочки. Так, вирусный геном проникает в ядро, где собственный энзим вируса, называемый обратной транскриптазой, превращает РНК-геном вируса в его ДНК-эквивалент, а затем с помощью энзима интегразы интегрирует его в геном ядра. Это удивительное влияние геномов вируса и носителя является важным шагом. После него вирус может отдать геному носителя команду производить дочерние вирусы, которые будут распространяться на другие клетки и повторять тот же процесс. Таким образом вирус будет постепенно двигаться по крови и тканям зараженного человека.

Точно так же, как ретровирус вводит свой геном в клетки CD4, многие ретровирусы поступают с зародышевыми клетками своих носителей, то есть со сперматозоидами и яйцеклетками. Это можно наблюдать на примере эпидемии ретровируса, поразившей коал в восточной части Австралии примерно 100 лет назад. Эта острая инфекция показывает нам, какой ужасной силой может обладать вирус, передающийся половым путем. Вирусологи подтверждают, что заражены уже все животные на севере страны, и эпидемия движется на юг. Со временем все коалы, кроме островных популяций, окажутся зараженными этим вирусом. Из-за вируса у животных развивается лейкемия и лимфосаркома, и уровень смертности очень велик. Изначально биологи беспокоились, что из-за эпидемии австралийским коалам может грозить вымирание, но, судя по всему, этого не произойдет. Ретровирус уже воздействует на половые клетки коал, так что в хромосомах этих животных уже присутствует от 40 до 50 вирусных локусов, которые они передадут потомкам. Так как голобионтический геномный союз имеет место в рамках ядерного, а не митохондриального генома, вставки ретровируса в геном коалы будут наследоваться в соответствии с классическими законами Менделя.

На сегодня вирус ВИЧ-1 еще не проник в половые клетки человека. Некоторые вирусологи полагают, что это невозможно, потому что ВИЧ принадлежит к подгруппе ретровирусов, называемых лентивирусами, которые не проходят процесс эндогенеза. Однако недавно лентивирусы были обнаружены в половых клетках европейских кроликов и мадагаскарских лемуров, которые, как и мы, являются приматами. Станет ли ВИЧ когда-нибудь частью нашего организма – неизвестно. Мы знаем, что множество ретровирусов попадали в зародышевые линии человека и его предков и влияли на эволюцию нашего генома, поэтому около 9 % его на сегодня состоит из ретровирусной ДНК. Ретровирусы, способные захватывать геном своего млекопитающего хозяина, называются эндогенными ретровирусами, или ЭРВ (ERV), в то время как разнообразные инфицирующие ретровирусы носят название экзогенных. Эндогенные ретровирусы человека обозначаются аббревиатурой ЭРВЧ (HER-V). Она объединяет от 30 до 50 семейств вирусов, которые в свою очередь подразделяются на более чем 200 групп и подгрупп. Последние из этих эволюционных линий, попавшие в геном предков человека, называются HERV-K, десять их подтипов являются исключительно человеческими.

Каждое семейство и подсемейство ЭРВЧ было приобретено нами в ходе отдельного процесса геномной колонизации, вторжения, произошедшего во время поразившей наших предков ретровирусной эпидемии. Учитывая, что мы видим сегодня на примере СПИДа и эпидемии коал, можно представить довольно мрачную картину выживания раннего человечества между волнами заболеваний. Когда две группы ученых восстановили первоначальный геном последнего ретровируса, обосновавшегося в человеческом организме, они обнаружили, что им был крайне заразный экзогенный ретровирус, обладающий патогенным потенциалом в тканевых культурах. Приятно понимать, что мы являемся наследниками победителей. Но сегодня нам следует учитывать последствия воздействия ретровирусов, которые все еще продолжают проникать в развивающийся человеческий геном.

Когда ретровирус захватывает половую клетку, он действует как паразит, и геном носителя начинает борьбу против его нападения. Эта борьба продолжается даже в том случае, если защитникам приходится то и дело менять оружие, когда вирусный геном уже колонизировал зародышевую линию и создал вирусные локусы в хромосомах. Антитела уже не будут эффективны против такого генома, поэтому в дело вступят другие приемы деактивации вирусных локусов, например эпигенетическое глушение, о котором я расскажу подробнее в следующей главе. Но такие эпигенетические меры, как метилирование вирусных локусов, не являются окончательным решением для подавления патогенного вируса. Для постоянного глушения потребуются мутации – либо наносящие вред вирусным генам и регуляторным регионам, либо вводящие нежелательные генетические последовательности в вирусный геном. В то же время постоянное присутствие вирусного генома в зародышевой линии носителя, зачастую в виде множества копий, распределенных по хромосомам, вводит новые возможности для симбиотического генетического взаимодействия между двумя разными геномами. С течением времени количество таких возможностей возрастает.

Обратите внимание: несмотря на то, что вирус и его носитель являются независимыми субъектами эволюции, они знакомы друг с другом. Более того, они имеют общую паразитическую историю, в течение которой вирус сумел создать множество стратегий для манипулирования иммунной системой носителя и физиологией его клеток. Во всех этих стратегиях важную роль играет вирусная оболочка, кодируемая вирусным геном env. В то же время человеческий геном, и в частности его защитные системы (некоторые из них являются неизменными, а некоторые – крайне изменчивыми и адаптивными), также разработал много способов отслеживания и обезвреживания вирусов, их инородных белков и генов.

Об авторе:
Dr Frank Ryan – Medical Adviser to Sheffield PCT; Honorary Research Fellow in Evolutionary Biology, Department of Animal and Plant Sciences, Sheffield University.

Читайте также: