Резистентность организма к инфекционным болезням

Обновлено: 28.03.2024

Резюме. Обзор предпринят с целью в очередной раз обратить внимание педиатров, особенно занимающихся лечением хронических наследственных и приобретенных болезней у детей, к проблеме хронического стресса, адаптационного синдрома, осложняющих течение основного заболевания и снижающих эффективность медикаментозного лечения. Рассмотрены работы исследователей-педиатров, в том числе Е.В. Неудахина с соавт., К.И. Григорьева с соавт., а также биохимиков - О.В. Космачевской с соавт. Исследователи констатируют: хронический стресс и адаптационный синдром чаще всего характеризуются снижением биоэнергетики, синдромом вегетативной дистонии, дисфункцией желудочно-кишечного тракта, особенно у детей с наследственной дисплазией соединительной ткани, пороками развития сердца, с аллергическими заболеваниями, гломерулонефритом, пиелонефритом. Среди внешних факторов развития хронического стресса и адаптационного синдрома упоминаются экопатология, психоэмоциональные воздействия, тепловые, холодовые влияния, метеозависимость. Предлагаются медикаментозные и немедикаментозные средства профилактика и коррекции хронического стресса.

Ключевые слова: хронический стресс, адаптационный синдром, дети

Summary. Review in order to once again draw the attention of pediatricians, especially those engaged in the treatment of chronic hereditary and acquired diseases in children, to the problem of chronic stress, adaptation syndrome, complicating the course of the underlying disease, reducing the effectiveness of medical treatment. Attention is drawn to the main groups of researchers-pediatricians, including: E.V. Neudakhina with co-authors, K.I. Grigorieva with co-authors, as well as biochemists -O.V. Kosmachevskaya with co-authors. The researchers state: chronic stress, adaptation syndrome are most often characterized by a decrease in bioenergetics, autonomic dystonia syndrome, dysfunction of the gastrointestinal tract, especially in children with hereditary connective tissue dysplasia, heart malformations, allergic diseases, glomerulonephritis, pyelonephritis. Among the external factors of chronic stress and adaptation syndrome mentioned ecopathology, psycho-emotional effects, heat, cold effects, weather dependence. We offer medical and non-medical means of prevention and correction of chronic stress.
Key words: chronic stress, adaptation syndrome, children

Способность к адаптации - это фундаментальное свойство всех живых систем на всех структурно-функциональных уровнях организации живого организма, включая неспецифический компонент (образующийся спонтанно, неферментативно). Эта способность может развиваться на уровне как целого организма, так и различных его систем. Описанные три общие неспецифические адаптационные реакции (ОНАР), периодически сменяющие друг друга на разных уровнях реактивности организма (тренировка, адаптация, истощение), представлены в таблице 1. Молекулярные механизмы на клеточном уровне затрагивают изменения в энергетическом и редокс-состояниях, которые могут вызывать перестройки в эпигеноме. Активные метаболиты (например, активные формы кислорода, азота, карбонильные соединения) могут принимать непосредственное участие в формировании адаптивного ответа через модификацию белков рецепторных и/или инициирующих кооперативные переходы внутриклеточных структур.

Таблица 1 Периодическая система адаптационных реакций

Тип общей неспецифической адаптационной реакции Стадии адаптационной реакции
Тренировка (реакция на слабые воздействия) Ориентировка, перестройка, тренированность. Неспецифическая резистентность достигается за счет развития охранительного торможения в ЦНС (снижение возбудимости, чувствительности), а также повышения активности защитных систем организма (в стадии тренированности). Наблюдаются снижение уровня метаболизма до низкого, энергетически выгодного, гипокоагуляционный сдвиг в системе свертывания крови, мягкое повышение противовоспалительного потенциала, умеренное повышение активности половых желез. Резистентность повышается медленно, без элементов повреждения, больших энергетических трат и не приводит к истощению наличных функциональных резервов. Биологический смысл - путем небольшого снижения чувствительности оградить организм от несущественных и многочисленных слабых воздействий самым экономичным путем
Активация (реакция на воздействие средней силы) Спокойная активация, повышенная активация, переактивация. Неспецифическая резистентность достигается за счет повышения активности защитных систем, в ЦНС преобладает умеренное физиологическое возбуждение. Наблюдаются преобладание процессов анаболизма над процессами катаболизма, умеренное повышение активности половых желез. Свертывающая и антисвертывающая системы крови уравновешены, резистентность повышается быстро и не приводит к истощению наличных функциональных резервов. Биохимический смысл - активно бороться со стрессом, повышать неспецифическую резистентность организма
Стресс (реакция на сильное воздействие) Тревога, резистентность, истощение. Неспецифическая резистентность достигается за счет развития запредельного торможения, что резко снижает чувствительность. Наблюдаются состояние напряжения обмена, повышение коагуляционного потенциала, противовоспалительный эффект, иммунодепрессия, снижение функции половых желез. Резистентность повышается быстро за счет повреждения и больших энергетических затрат. Биологический смысл - противостоять стрессу путем снижения чувствительности организма и подавления естественной защиты
Примечание. В таблице приведены некоторые показатели метаболизма при развитии качественно различных ОНАР без соотношения их со стадиями. Строки показывают развитие реакций во времени, столбцы - от дозы (силы) воздействия. В таблице учитываются данные работ [1, 2].

Развитие адаптационного синдрома сопровождается ранними и постоянными признаками повреждения клетки: 1) активацией свободнорадикального окисления фосфолипидов клеточных мембран, появлением биохимической люминисценции; 2) нарастанием функционирования мембранных ферментов; 3) изменением свойств мембран (микровязкость, состав фосфолипидов); 4) выходом из клетки различных веществ (неорганических ионов, молочной, пировиноградной, кетоглутаровой кислот, белков, аминокислот); 5) разобщением окислительного фосфорилирования, прекращением дыхания; 6) усилением аэробного (анаэробного) гликолиза; 7) ацидотическим сдвигом (сдвигом рН цитоплазмы с 7,32-7,45 до 6,5-5,39 единиц); 8) выходом из клетки калия, входом натрия и воды. Многие изменения имеют биохимическую целесообразность, т.е. до определенной степени выраженности их можно считать адаптационными [1]. Границы адаптации и стресса представлены в таблице 2.

Таблица 2 Некоторые основные процессы, происходящие в клетке при стрессе, и их биохимическое (адаптивное) значение [1]

Процесс Биологическое значение
Образование АФК и инициация реакции ПОЛ Происходят модификация остатков гистидина и цистина за счет образования аддуктов Михаэля, оснований Шиффа и S-S-связей, блокирование ряда идущих в нормальных условиях ферментативных процессов
Адсорбция белков на мембране Адсорбция нефункционирующих белков на мембранах и других внутренних структурах позволяет существенно удлинить время их жизни, в том числе за счет повышения устойчивости к протеолизу. Адсорбированные слои белка оказывают стабилизирующее действие на мембрану
Активация аэробного гликолиза Гликолитический механизм синтеза АТФ значительно более устойчив, чем окислительное фосфорилирование. Переход на гликолиз позволяет клетке поддерживать энергетическую функцию в стрессовых условиях
Внутриклеточный ацидоз Происходят активация гидролитических ферментов, оптимум действия которых расположен в кислой зоне, полимеризация актина. Внутриклеточная кислая среда оказывает стабилизирующее влияние на клеточную мембрану. Наблюдаются уменьшение доли ионизированных остатков цистеина в белках, торможение физиологических процессов
Выход калия из клетки Происходит снижение активности ферментов, функционирование которых зависит от присутствия ионов калия
Повышение концентрации ионов кальция Ионы кальция оказывают стабилизирующее действие на белки, липиды мембраны, стимулируют активность фосфолипаз
Полимеризация актина Увеличивается вязкость содержимого клетки, в связи с чем замедляется диффузия веществ
Синтез стрессовых белков Стрессовые белки (белки теплового шока) стабилизируют структуру белков, маскируют эффекты мутаций и посттрансляционных модификаций
Примечания: АФК - активные формы кислорода; ПОЛ - перекисное окисление липидов.

Эрготропные и трофотропные адаптационно-компенсаторные реакции, проявляющиеся в превосходной степени, превращаются из физиологических в патологические, что может способствовать развитию клинических симптомов и заболеваний. К основным маркерам эрготропной стадии (реакции) относятся: дефицит массы тела, симпатикотония, гипердинамическая реакция миокарда, лейкоцитоз, нейтрофилез, лимфопения, гиперсекреция глюкокортикоидов, гипосекреция минералокортикоидов и инсулина, гиперлипидемия за счет ТГ, ФЛ, эХОЛ [13, 20]. К маркерам трофотропной стадии (реакции) относятся: избыточная масса тела, ваготония, лейкопения, нейтропения, лимфоцитоз, гиперсекреция глюкокортикоидов, инсулина и минералокортикоидов, гипогликемия, гипоальбуминемия, гиперлипидемия за счет ТГ, свободных жирных кислот, холестерина и ФЛ. Показано, что при нарастании дислипидемии, инсулинорезистентности и глюкозотолерантности возникает гиперинсулинемия,стимулируется симпатическая нервная система, усиливается образование катехоламинов и глюкокортикоидов. Авторы утверждают, что гипотрофия и ожирение являются проявлениями различных стадий хронического стресса [5, 12-14, 20] (табл. 3).

Таблица 3 Классификация хронического стресса [20]

Стадии Маркеры Фазы
Эрготропная Дефицит массы тела, симпатикотония, лейкоцитоз, нейтрофилез, лимфопения, гиперсекреция глюкокортикоидов, минералокортикоидов и инсулина, гипергликемия, гиперлипидемия за счет триглицеридов, фосфолипидов и эфиров холестерина Напряженной адаптации
Относительной компенсации
Декомпенсации
Трофотропная Ожирение, ваготония, лейкопения, нейтропения, лимфоцитоз, гипосекреция глюкокортикоидов, гиперсекреция минералокортикоидов и инсулина, гипогликемия, гипоальбуминемия, гиперлипидемия за счет триглицеридов, холестерина и свободных жирных кислот

Таблица 4 Основные клинические формы экопатологии у детей по Ю.Е. Вельтищеву [9]

Клинические варианты Проявления экопатологии
Синдромы экологической дезадаптации или общей экогенной (химической) сенсибилизации, в том числе синдром нездоровых зданий, синдром ирритации (бронхиальной, кишечной), парааллергия Утомляемость, функциональные нарушения ЦНС, сердечно-сосудистой системы, желудочно-кишечного тракта. Вегетативная дистония, сердечные аритмии, неврологические реакции. Патология ЛОР-органов (носовые кровотечения, гиперплазия миндалин, назальная гиперсекреция). Анемия. Бронхообструктивный синдром. Повторные ОРВИ, бронхиты, пневмонии. Замедление темпов физического, нервно-психического, полового развития. Артралгия. Повышенная чувствительность ко многим ксенобиотикам (полиаллергия)
Синдром специфической низкодозовой химической гиперчувствительности Недостаточность местного и системного иммунитета, респираторные аллергозы, бронхиты, пневмонии, аутоаллергические заболевания, проявления кожной и органной реакции гиперчувствительности замедленного типа. Гиперчувствительность к конкретным химическим веществам
Синдром низкодозовой радиационной гиперчувствительности Вторичный иммунодефицит, лимфаденопатия, хроническая патология ЛОР-органов. Аномалии поведения. Невротические реакции
Хроническая ксеногенная интоксикация Токсические энцефалопатии, нефропатии, гепатопатии, остеопатии, гипопластическая анемия, вторичные иммунодефициты. Накопление ксенобиотиков в организме
Хронические болезни Различные классы хронических болезней: воспалительные, дегенеративные, атипично протекающие, резистентные к проводимой терапии. Диатезы
Особые социально значимые болезни, состояния и последствия Проявления доминантно наследуемых болезней у детей клинически здоровых родителей (новые генные мутации), большинство хромосомных болезней, врожденные пороки развития, канцерогенез, новые экологические заболевания у детей (болезни Ю-Шо, Ю-Ченг и т.п.), репродуктивные потери. Инвалидность
Синдром множественной химической чувствительности Полисимптомное экологически обусловленное заболевание, вызванное воздействием факторов окружающей среды малой интенсивности. При этом нарушаются процессы адаптации организма к действию разных факторов на фоне наследственной или приобретенной повышенной индивидуальной чувствительности к химическим веществам


В своей монографии К.И. Григорьев [9] обращает внимание на то, что живой организм - это сложноорганизованная система, в которой все находится в динамическом равновесии, все пульсирует, совершает колебания. Указывается на подчиненность биологических ритмов основному их водителю в ядрах гипоталамуса с гормоном-посредником - мелатонином [32], который поддерживает циклы сна и бодрствования, двигательную активность и температуру тела, работу почек, антиоксидантную защиту. Циркадная система включает три компонента: эндогенные часы, афферентный путь днем, эфферентный путь от центрального генератора до периферических органов. К настоящему времени установлено, что у детей с устоявшимися биоритмами меньше риск развития синдрома внезапной смерти, хронических заболеваний в будущем, таких как сахарный диабет, атеросклероз, бронхиальная астма, экзема, и выше уровень интеллекта, чем у их сверстников с нечеткой организацией физиологических реакций [9, 33, 34].

В норме детский организм адаптируется к внешним воздействиям быстро и легко, а врожденная способность адаптироваться к ним реализуется постепенно по мере взросления ребенка и закаливания организма. Выявление и коррекция синдрома вегетативной дистонии, клинических признаков адаптационных реакций и их профилактика помогают снизить частоту осложнений и рецидивов основного заболевания, повысить эффективность лечения [9, 35-37]. Авторы считают, что самое главное в реституции, восстановлении нарушенных адаптационных саморегулирующих механизмов - их тренировка. Это обеспечивает по крайней мере частичное восстановление нарушенных регуляторных функций и их стабилизацию на физиологически допустимом уровне. Выдвинуты принципы активационной терапии. Наблюдаются ее положительные результаты, полученные при использовании гомеопатических средств, грязелечения, специально подобранных физических воздействий малой интенсивности [6, 38]. Стресс-реакция для формирования устойчивой адаптации формирует энергетические и структурные ресурсы организма в функционирующую систему, ответственную за адаптацию (содержание глюкозы, АТФ, липидов, аминокислот, нуклеотидов, окислительно-восстановительные реакции). Наступившая устойчивая адаптация (тренированность, или возросшая резистентность по отношению к действующему фактору) устраняет нарушения гомеостаза и стресс-реакцию. Однако при чрезмерных воздействиях и сильных раздражителях могут не сформироваться функциональные системы, ответственные за выработку адаптации. Нарушение гомеостаза в результате стресс-реакции может служить основой общего звена патогенеза для большинства инфекционных и неинфекционных заболеваний 36. Адаптивность - уровень физического приспособления индивида к невзгодам - зависит от уровня здоровья, но может рассматриваться и как мера здоровья ребенка, как мера резервных возможностей организма [19]. Это свойство не имеет специфичности, мало зависит от действующего фактора. Тренировка механизмов адаптации может быть надежным средством повышения защитных сил организма, обеспечивая необходимый лечебно-профилактический эффект в отношении адаптационных реакций. Обсуждаются медикаментозные средства повышения адаптации (адаптол, ноофен, церебролизин, интестинол, тенакан и др.) и немедикаментозные (закаливание, климатотерапия, аэротерапия, оптимизация питания, ЛФК, аппаратная физиотерапия, массаж, магнитотерапия, гипноз, музыка, танцы и др.) [38].


Обзор

Антибиотикорезистентные бактерии одолевают один препарат за другим и неконтролируемо распространяются

Авторы
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Вступление

Нейтрофил обезвреживает метициллин-резистентную бактерию

По данным комиссии, собранной британским министерством здравоохранения в 2014–2016 гг., ежегодно около 700 000 человек по всему миру умирает от бактериальных инфекций, которые вызваны невосприимчивыми к действию антибиотиков патогенами. К 2050-му эта цифра может вырасти до 10 миллионов человек в год [2]. А по данным за 2019 год, только в США и европейских странах суммарно от болезней, вызванных резистентными бактериями, умирает около 68 000 человек в год (рис. 2) [3], [4].

Количество смертей от болезней, вызванных резистентными к антибиотикам бактериями

Рисунок 2. Количество смертей от болезней, вызванных резистентными к антибиотикам бактериями, в европейских странах по данным за 2015 год

Если у нас закончатся эффективные противомикробные лекарства , то мы также не сможем безопасно проводить хирургические операции или использовать методы лечения, угнетающие иммунную систему, такие как химиотерапия, которая применяется для лечения онкологических заболеваний. Пострадают в первую очередь развивающиеся страны за счет плохой доступности медицины, проблем с гигиеной и слаборазвитой инфраструктуры [2].

О механизмах резистентности и ее передаче можно подробнее почитать в материалах [5] и [6].

Распространение резистентности: связь с уровнем потребления антибиотиков и влияние окружения

Иногда случается так, что потребление антибиотиков сокращается, а уровень устойчивости наоборот, только растет. Например, так произошло в Исландии 20 лет назад. В 2002 году было опубликовано исследование [8], согласно которому, несмотря на сокращение потребления противомикробных препаратов с 1,5 до 1,1 курса в год на одного ребенка (возрастом от одного года до шести лет), за пять лет распространенность устойчивых к пенициллину пневмококков выросла в двух наиболее удаленных от столицы регионах в четыре и в десять раз. Причем в десять раз она выросла там, где сокращение потребления антибиотиков было самым значительным по стране. Хотя в среднем за этот период уровень резистентности в Исландии действительно сократился: на 5%. Авторы исследования предположили, что из-за слабого коллективного иммунитета жители сельских регионов (рис. 3, 4) оказываются более уязвимыми к новым патогенам, которые сначала распространяются в крупных городах и только спустя время доходят до деревень. Можно было бы предположить, что свою роль сыграли и маленькие дозы лекарства или некорректная длительность терапии, однако, по данным исследования, все дети получали адекватное лечение.

Болунгарвик

Рисунок 3. Поселение Болунгарвик (исл. Bolungarvík), где зарегистрировали самый значительный рост резистентности при наиболее сильном снижении объема потребления антибиотиков.

Маяк Оусхоулавити

Рисунок 4. Маяк Оусхоулавити (исл. Óshólaviti) в Болунгарвике. Фотограф: Герберт Ортнер, Вена (Herbert Ortner, Vienna).

Тем не менее исландский кейс остается скорее частным примером того, как на резистентность могут влиять и другие факторы, помимо объема потребления противомикробных препаратов. В целом же, прием антибиотиков остается одной из главных причин распространения устойчивости в мире [2–4].

К сожалению, даже если человек никогда не злоупотреблял антибиотиками, он может получить резистентную микрофлору от кого-то из своего непосредственного окружения, например, от родственников.

Исследование [9] на основе данных, полученных в 1998 году в двух деревнях штата Юта (рис. 5), показало, что вероятность получить как устойчивые, так и чувствительные штаммы растет с увеличением количества детей в семье. А прием антибиотиков ребенком увеличивает количество именно устойчивых бактерий у братьев и сестер.

Билборд на въезде в штат Юта

В 2019 году израильские ученые показали, что прием матерями фторхинолонов (противомикробных лекарств широкого действия) повышал риск заражения резистентными штаммами не принимавших эти лекарства детей на 50% [10].

Бактерии распространяются не только в семьях, но и в других небольших сообществах, где люди тесно взаимодействуют, например в больницах. Так, в 2001 году другой исследовательский коллектив из Израиля подтвердил, что прием цефалоспоринов и амикацина (полусинтетического антибиотика группы аминогликозидов) в шести отделениях больницы был связан с повышенным риском заражения устойчивыми патогенами в течение последующих месяцев, в том числе и у пациентов, не принимавших эти антибиотики в течение предыдущего года. Причем у принимавших этот риск был выше 1,5–3 раза [11].

Распространение резистентности в больших сообществах

Исследователи рассматривали данные о потреблении антибиотиков и распространенности устойчивости к ним в американских штатах и европейских странах. Они предположили, что чем два штата или две страны теснее взаимодействуют, тем меньше между ними разница в уровне резистентности к антибиотикам, и непосредственное влияние объема потребления антибиотиков на устойчивость будет ниже, чем в идеальной ситуации, когда регион полностью изолирован от других.

Чтобы проверить гипотезу, ученые сначала использовали математические модели, с помощью которых они делали численные предсказания того, насколько спилловер-эффект увеличится от усиления интенсивности взаимодействия сообществ. А затем они обратились к эмпирическим данным и соотнесли разницу в уровне резистентности внутри регионов с интенсивностью их взаимодействия друг с другом. Степень интенсивности определяли по данным о перелетах американскими и европейскими авиалиниями — ученые предположили, что чем меньше рейсов между регионами, тем слабее эти регионы взаимодействуют (рис. 6).

Карта авиаперелетов

Рисунок 6. Карта авиаперелетов

Источники информации о потреблении антибиотиков и распространении устойчивости внутри регионов ученые распределили по трем группам: первые две включали в себя американские базы данных, а третья — данные по европейским странам.

Но в итоге было сформировано шесть датасетов вместо девяти: два убрали, потому что пришлось исключить данные по устойчивости пневмококков к β-лактамам в США — в предыдущих исследованиях на этих датасетах связь между объемом потребления антибиотиков и уровнем резистентности получила отрицательную точечную оценку. Кроме того, информация по потреблению фторхинолонов для США была только во втором наборе данных, так что для этой комбинации патогена и антибиотика собрали два датасета вместо трех, как у остальных (один европейский и один американский).

После попарного сравнения регионов, связь между интенсивностью взаимодействия и снижением зависимости уровня резистентности от объема потребления антибиотиков оказалась статистически значимой в четырех из шести датасетов. Иными словами, чем активнее люди перемещались между сообществами, тем меньшее влияние на распространенность устойчивости оказывал уровень потребления антибиотиков внутри каждого из них — значительную роль начинали играть соседи.

Ученые также сгруппировали все сообщества по парам и ранжировали список по степени интенсивности взаимодействия. Затем они сравнили первые 10% пар из начала с 10% пар с конца и выяснили, что для пар в начале рейтинга связь между объемом потребления антибиотиков и резистентностью в среднем на 50% слабее, чем для пар, которые взаимодействовали меньше всего.

О чем говорят эти данные? В первую очередь о том, что спилловер-эффект оказывает значимое влияние на распространение устойчивости бактерий к антибиотикам на уровне США и европейских стран. Из этого наблюдения следуют несколько важных выводов. Во-первых, бессмысленно проводить какую бы то ни было политику по сокращению потребления антибиотиков с целью снизить уровень резистентности, не учитывая ситуацию в соседних регионах. Во-вторых, куда эффективнее любые меры принимать не на уровне отдельной страны или штата, а на уровне более крупных регионов: США или Евросоюза целиком. В-третьих, массовые испытания антибиотиков могут привести к росту устойчивости внутри всей контрольной популяции (если она не полностью изолирована от испытуемых) за счет все того же спилловер-эффекта.

Разница в уровне доходов у американского населения по штатам

Рисунок 7. Разница в уровне доходов у американского населения по штатам. Экономическое неравенство сказывается и на сфере здравоохранения: у людей с высоким и низким доходом разные условия проживания, неравный доступ к медицине и др. Это может быть релевантно при анализе эпидемиологической обстановки региона.

К тому же, чтобы упростить себе задачу, в рамках исследования ученые исходили из того, что связь между объемом потребления антибиотиков и уровнем резистентности неоспорима, а изменения в распространенности устойчивости следуют за изменениями в объеме потребления антибиотиков в течение какого-то относительно небольшого и обозримого отрезка времени, хотя оба эти положения являются предметом активного изучения. Попарное сравнение сообществ также существенно упрощает задачу построения математической модели и обработки данных. Однако надо понимать, что на деле регионы взаимодействуют между собой одновременно, и это взаимодействие может иметь сезонный характер, или его интенсивность может меняться в зависимости от каких-то социальных, политических или экологических процессов. Так что теоретические выкладки, полученные исследователями, довольно грубы и позволяют составить только беглое представление о проблеме.

Борьба с резистентностью: поиск новых решений

Карбапенем-резистентные энтеробактерии

Рисунок 8. Инфографика по карбапенем-резистентным энтеробактериям из доклада Департамента здравоохранения и социальных служб США. Согласно ей, в 2017 году насчитывалось 13 100 случаев госпитализации пациентов с инфекциями, вызванными карбапенем-резистентными энтеробактериями, в том числе и 1100 случаев летального исхода, а соответствующие затраты на здравоохранение в Америке составили 130 миллионов долларов США. Карбапанем-резистентные энтеробактерии представляют серьезную проблему для пациентов медицинских учреждений: некоторые штаммы развили устойчивости почти ко всем распространенным антибиотикам, что вынуждает врачей прибегать к более токсичным или менее эффективным препаратам.

Плазмиды

Рисунок 9. Как последовательности ДНК, ответственные за резистентность, попадают в клетку бактерии и хранятся в ней? Последовательности ДНК, кодирующие ферменты, которые обеспечивают резистентность, могут находиться в плазмидах — кольцевых ДНК внутри клеток бактерий, — передаваться в составе плазмид потомкам и родственникам при коньюгации. Еще такие последовательности ДНК могут передаваться из ДНК одной бактерии в ДНК другой путем трансдукции — переноса внутри вируса.

Разрушение β-лактамного кольца

Рисунок 10. Разрушение β-лактамного кольца β-лактамазой путем гидролиза связи между атомами углерода (серыми) и азота (голубыми)

Кэйтлин Зулауфа и Джеймс Кирби из Гарвардской медицинской школы нашли подходящие для вмешательства в работу плазмиды препараты среди тех, которые уже используются, но в иных целях, и попробовали объяснить их эффективность в борьбе с резистентными штаммами [22]. Это исследование кажется нам важным, поэтому ниже мы расскажем об экспериментах, проведенных коллегами-учеными, и данных, говорящих в пользу их открытия.

В результате скрининга более 12 000 биоактивных соединений исследователи выделили три, после воздействия которых копии pCRE не распространялись в культуре бактерий при делениях, что делало последующие поколения восприимчивыми к карбапенемам.

Наш первый кандидат — касугамицин — аминогликозидный антибиотик, который, судя по данным исследователей, мешает процессу синтеза белка RepE, играющего ключевую роль в размножении pCRE путем репликации (удвоения) [23]. То есть без RepE плазмида, скорее всего, не передастся новым поколениям бактерий. После воздействия касугамицина в течение 24 часов репликация pCRE случалась реже более чем в 10 раз (рис. 11), по сравнению с необработанными бактериями (более 90% потомков бактерий, резистентных еще сутки назад, утратили защиту). Однако даже во время применения максимальной в этом исследовании дозы касугамицина плазмиды все же размножались (их становилось больше на два порядка). Зафиксируем, что касугамицин не блокирует репликацию полностью, а лишь сильно замедляет ее.

Зависимость активности размножения плазмид от воздействия препаратов

Рисунок 11. Зависимость активности размножения плазмид в растущей бактериальной культуре от воздействия препаратов. По вертикальной шкале — количество плазмид бактерий после инкубирования при разных концентрациях препаратов, выраженное в процентах от количества плазмид в посевах в обычных условиях. Первые два столбца — контрольный эксперимент (без воздействия препаратов): серый столбец — количество в начале контрольного эксперимента; черный — в бактериях после обычных условий культивирования. Зеленые столбики — после культивирования при разных концентрациях касугамицина; красные столбики — после культивирования при разных концентрациях CGS 15943; фиолетовые столбики — после культивирования при разных концентрациях Ro 90-7501.

Таким образом, использование каких-то из этих препаратов может привести нас к победе над опасными карбапенем-резистентными энтеробактериями. Ученым предстоит долгая и кропотливая работа по поиску или синтезу веществ, которые окажутся действенными в устранении описанного нами механизма резистентности.

Расшифровки

WHN model модель распространения резистентности, учитывающая сосуществование в человеке резистентных и чувствительных к антибиотику бактерий и их конкуренцию; предложена в 2019 году [29]. D-types model модель распространения резистентности, учитывающая влияние длительности носительства людьми резистентных бактерий; предложена в 2017 году [30]. CGS 15943 аналог нуклеозидов, из которых построены ДНК и другие нуклеиновые кислоты (триазолохиназолин, точнее, 9-хлор-2-(2-фуранил)-[1,2,4]триазоло[1,5-c]хиназолин-5-амин), сильный антагонист аденозиновых рецепторов A1 и A2A с высокой селективностью [31], [32]. Ro 90-7501 ингибитор образования фибрилл амилоида ß42 (бибензимидазол, точнее, 2′-(4-аминофенил)-[2,5′-би-1H-бензимидазол]-5-амин) [28].


Обзор

Эмблема Глобального плана действий по борьбе с устойчивостью к антибиотикам, подготовленного Всемирной организацией здравоохранения. Наше противостояние с резистентностью настолько важно, что с недавних пор стало активно поддерживаться даже на межгосударственном уровне.

Автор
Редакторы

Быстрая выработка антибиотикорезистентности — глобальная проблема, и небольшими спорадически возникающими инициативами ее решить не получится. Необходимы скоординированные действия всех государств. Ситуация с устойчивостью не только к единичным, но уже и ко множеству антибиотиков усугубилась до такой степени, что ее решили обсудить на ежегодной сессии Генеральной ассамблеи ООН, состоявшейся в сентябре этого года в Нью-Йорке. Важно отметить, что вопросы здравоохранения включали в повестку сессий лишь трижды — когда обсуждали ВИЧ, незаразные болезни и лихорадку Эбола. Теперь в список добавилась и резистентность микроорганизмов к антибиотикам. То, что это явление стои́т в одном ряду с важнейшими проблемами здравоохранения, не вызывает удивления.

Глобальные инициативы до сентябрьской сессии Генассамблеи ООН

Казалось бы, предпринятые действия уже должны были придать ускорение поиску решений относительно антибиотикорезистентности. Однако в этом году проблема вновь обсуждалась на сессии Генеральной ассамблеи — значит, не всё так просто. Чтобы понять почему, нужно немного рассказать о биологических механизмах и последствиях устойчивости к антибиотикам.

Как и почему возникает резистентность

В природе резистентность появляется спонтанно из-за накапливающихся в ДНК случайных мутаций, которые повышают приспособленность микроорганизмов в среде с угнетающим веществом. Нередко это свойство приобретается и путем горизонтального переноса генов от других бактерий, поэтому детерминанты резистентности способны быстро распространяться даже между неродственными штаммами. При длительном воздействии антибиотика вначале погибает бόльшая часть популяции чувствительных к нему микроорганизмов, а та малая доля, что выживает, либо уже имеет жизненно важные для этих условий мутации, либо успевает мутировать или захватить нужные гены от бактерий-соседей и под селективным давлением антибиотика закрепить благоприобретения. В любом случае, выжившие способны нормально существовать и размножаться даже в присутствии антибиотика. То есть он больше на них не действует.

Нельзя сказать, что человечество не было осведомлено о способности микроорганизмов становиться резистентными к антибиотикам. Александр Флеминг, официально — первооткрыватель пенициллина , в своей нобелевской речи предупреждал о том, что препарат нужно использовать с умом и не позволять бактериям вырабатывать к нему устойчивость [5]. Сегодня это утверждение необходимо распространить на все известные и применяемые в медицине и сельском хозяйстве антибиотики.

Пенициллин и рост доли устойчивых к нему пневмококков

Рисунок 1. Существует прямая корреляция между использованием пенициллина и ростом доли устойчивых к нему пневмококков (Streptococcus pneumoniae).

В исследовании, опубликованном в журнале PNAS, подсчитали, что в 2010 году во всём мире в корма было добавлено более 63 000 тонн антибиотиков. И это — только по скромным оценкам. Ожидается, что к 2030 году указанное число возрастет на 67%, но, что должно особенно встревожить, оно удвоится в Бразилии, Индии, Китае, Южной Африке. И в России [10].

Побочным действием чрезмерного использования антибиотиков является то, что не все они метаболизируются. После выведения из организма они проникают в почву и задерживаются в ней, впоследствии накапливаясь в растениях. Через почву антибиотики попадают в воду и распространяются на значительные расстояния, воздействуя на бόльшее число микроорганизмов, чем изначально предполагалось. Они могут вновь попадать в организм человека и животных и воздействовать в том числе на их микробиом.

Таким образом, несмотря на многочисленные предупреждения, из-за массового и неправильного использования антибиотиков устойчивость к ним распространяется среди микроорганизмов всё шире и быстрее. А значит, людей и животных с каждым годом становится всё труднее лечить от бактериальных инфекций.

Проблемы, порождаемые резистентностью

Это не то, что могло бы произойти в отдаленном будущем.
Это наша настоящая реальность в развивающихся и развитых странах,
в селах и городах, в госпиталях, на фермах.
Мы теряем способность защищать людей и животных
от опасных для жизни инфекций.
Пан Ги Мун, генеральный секретарь ООН

Раньше, если у возбудителя болезни вырабатывалась устойчивость к какому-то одному антибиотику, использовали комбинации из нескольких, чтобы они уж точно уничтожили патоген. Но со временем появились бактерии, резистентные сразу к нескольким химически несхожим антибиотикам, что во много раз обострило ситуацию [11]. Более того, за последние 30 лет не удалось открыть никаких новых классов антибиотиков, при этом спектр используемых антибиотиков сужается, а это повышает шансы выработки к ним устойчивости (рис. 2). Чтобы осознать масштаб происходящего, стόит перечислить некоторые заболевания и статистику по ним.

Рост бактериальной антибиотикорезистентности

Рисунок 2. Рост бактериальной антибиотикорезистентности отбивает у фармкомпаний желание разрабатывать новые препараты. а — Уже 30 лет ничего не слышно о новых классах антибиотиков. б — По мере увеличения количества резистентных бактерий падает интерес к поиску новых антибиотиков, и число вводимых в клиническую практику препаратов стремится к нулю. Условные обозначения: * — процент клинических изолятов, устойчивых к антибиотикам; MRSA — метициллин-резистентные Staphylococcus aureus; VRE — ванкомицин-резистентные Enterococcus; FQRP — фторхинолон-резистентные Pseudomonas aeruginosa.

Согласно официальным оценкам, по причине резистентности к антибиотикам и невозможности вылечить различные инфекции в год умирает не менее 700 000 человек. Точно подсчитать число жертв невозможно, так что, увы, на самом деле их намного больше [12]. Особенно тревожной становится ситуация с туберкулезом: в 105 странах циркулируют возбудители, устойчивые сразу к нескольким антибиотикам, а по данным ВОЗ, такие штаммы Mycobacterium tuberculosis в 2014 году были найдены у 480 000 человек. Должен насторожить и побудить к действиям следующий факт: около половины таких случаев приходится на Индию, Китай и Россию (рис. 3) [13].

Мировая карта встречаемости мультирезистентного возбудителя туберкулеза

Рисунок 3. Мировая карта встречаемости мультирезистентного возбудителя туберкулеза. Карта составлена по статистическим данным за 2012 год. Диаметр круга положительно коррелирует с частотой случаев туберкулеза, устойчивого к терапии несколькими антибиотиками.

Для развивающихся стран с тропическим и субтропическим климатом, например Африки, одну из опасностей представляют эпидемии брюшного тифа, виновник которых выдерживает натиск сразу нескольких препаратов.

Всего за год — с 2013 по 2014 — более чем в четыре раза (с 0,6 до 2,5% среди исследованных штаммов) увеличилась устойчивость возбудителя гонореи Neisseria gonorrhoeae к антибиотику азитромицину. Комбинации препаратов — например, того же азитромицина и цефтриаксона — пока что действуют. Но, памятуя о печальном опыте с другими патогенами, уже сейчас необходимо продумывать альтернативные варианты лечения — чтобы быть готовыми к тому моменту, когда гонококк привыкнет и к этим антибиотикам [16]. Ситуация кажется не такой катастрофической по сравнению с другими, поэтому добавлю: в июне этого года Центр по контролю и профилактике заболеваний (CDC) министерства здравоохранения США сообщил, что гонококк перестал поддаваться лечению уже половиной ранее используемых антибиотиков [17].

Этот центр создал замечательную интерактивную карту распространенных в США резистентных штаммов бактерий [18].

Ожесточеннее становится борьба и с микробами-оппортунистами, которые в норме не вызывают болезнь, но для людей с ослабленным иммунитетом могут стать серьезной и даже смертельно опасной проблемой. Несмотря на то, что муковисцидоз — это наследственное заболевание, связанное с поражением желез внешней секреции и накоплением в легких вязкой мокроты (при легочной форме болезни), ему сопутствуют разные инфекции. Раньше, до начала нулевых, существовали детские лагеря для страдающих этим заболеванием, но впоследствии из-за стремительной передачи инфекций и выработки устойчивости к применяемым для лечения антибиотикам было решено отказаться от этой затеи. Пациентам теперь вообще строго не рекомендуется находиться близко друг к другу [19].

Последствия

Пациентов с заболеваниями, вызываемыми резистентными микроорганизмами, часто приходится пролечивать не одним антибиотиком, а их комбинациями, курс длится дольше обычного, что делает лечение довольно затратным и выматывающим. Более того, не всегда оно вообще доступно, поэтому повышается и смертность. Кроме целенаправленного лечения инфекции, под угрозу ставятся и стандартные врачебные вмешательства, которые впоследствии требуют использования антибиотиков — например, некоторые полостные операции или химиотерапия.

Не нужно забывать, что человек — это и биологическое, и социальное существо, и помимо выживания ему необходимо контактировать с другими представителями общества. И здесь возникает на первый взгляд неочевидная проблема: люди с инфекциями или ослабленным иммунитетом не могут полноценно общаться с другими людьми из-за опасности заражения. В пример можно привести упомянутую выше отмену летних лагерей для детей с муковисцидозом, поводом для которой стали вспышки инфекций, вызываемых резистентными штаммами Burkholderia cepacia [20]. Другое вынужденное ограничение — нахождение в отдельных боксах в инфекционных больницах. Получается, что устойчивость микроорганизмов к антибиотикам сильно влияет даже на психологическое состояние человека и его социализацию.

Группа под руководством британского финансиста Джима О`Нила провела подсчет экономических потерь, с которыми столкнется человечество к 2050 году, если всё останется по-прежнему и не получится продвинуться в решении проблемы резистентности. По этому сценарию потери трудоспособного населения к тому времени могут достичь 11–14 миллионов человек в год. В денежном выражении это означает, что кумулятивная потеря будет равна 100 трлн долларов, или средний годовой убыток составит 3 трлн долларов. К слову, весь годовой бюджет США лишь на 0,7 трлн превышает эту цифру (рис. 4) [9].

Распространение антибиотикорезистентности

Рисунок 4. Если мы не сумеем притормозить всё быстрее распространяющуюся антибиотикорезистентность, то к 2050 году именно по этой причине мир будет терять до 10 миллионов человек ежегодно.

Но настоящую цену возникающей резистентности подсчитать нереально.

Что предпринимается для решения проблемы?

Темпы приобретения бактериальной резистентности превышают
мировые темпы открытия новых антибиотиков.
Маргарет Чен, генеральный директор ВОЗ

Еще одним решением может стать иммунопрофилактика — например, своевременная вакцинация человека и домашних животных, благодаря которой у них вырабатывается собственный иммунитет. Сильный собственный иммунитет не позволяет организму пасовать перед патогенами и смело отражает их нападения. Чем меньше вероятность заболеть у одного, тем меньше вероятность, что он заразит других. Получается, что таким образом каждый вносит свой вклад в борьбу с патогенными микроорганизмами.

А вообще, есть базовые принципы, которых необходимо придерживаться, чтобы не позволять патогенным микроорганизмам распространяться: каждый должен соблюдать гигиену, организации — санитарные нормы, а государство — тщательнее следить за здоровьем населения (например, регулярно проводить диспансеризацию).

Существуют два глобальных плана действий. Первый сформирован в 2015 году Всемирной организацией здравоохранения [22], а второй, действие которого распространяется на период 2016–2020, разработан в этом году Продовольственной и сельскохозяйственной организацией ООН (FAO) [23]. По многим пунктам они пересекаются. Планируется обеспечивать инвестиции в изучение антибиотикорезистентности, повышать осведомленность об этом явлении, усиливать контроль над развитием устойчивости, предотвращать вспышки инфекций. На сентябрьской сессии Генеральной ассамблеи страны подтвердили, что будут разрабатывать свои внутригосударственные планы, ориентируясь на принятые международные.

Соответствующие локальные мероприятия уже начали проводить. Например, Минздрав России решил ужесточить контроль над продажей антибиотиков, чтобы уменьшить масштаб их применения без врачебного назначения.

Конгресс США заложил в бюджет 2016 года 160 млн долларов, для того чтобы поддержать исследования антибиотикорезистентности и изучение человеческого микробиома [24].

Репозиторий патогенов, имеющих четко охарактеризованные признаки резистентности, был создан в июле 2015 года в США и с тех пор пополнился многими представителями Enterobacteriaceae (включая сальмонелл), Staphylococcus, Enterococcus и Streptococcus [25]. Такой банк данных можно использовать для улучшения диагностики и испытания новых антибиотиков.

Заключение

Резистентность микроорганизмов к антибиотикам — серьезная и сложная проблема, которая затрагивает каждого человека. Немало решений было предложено и немало действий уже совершено на мировом и государственном уровнях, чтобы обуздать этот опасный феномен. Но еще больше только предстоит сделать. Стратегия борьбы с антибиотикорезистентностью не ограничивается сокращением использования антибиотиков и ужесточением норм их применения в медицинских целях. Она включает и информирование общественности о проблеме в целом — чтобы люди хотя бы немного понимали, почему всё это так важно и чем это грозит. И задача правительств и мировой общественности — обеспечить необходимые условия для подобных просветительских инициатив. Только так, с полным осознанием смысла и целей своих усилий, мы сможем хоть как-то продвинуться в решении проблемы антибиотикорезистентности.

Рис. М. Смагина

Такая ситуация не только усложняет борьбу с типичными инфекционными заболеваниями, но и ставит под угрозу применение многих жизненно важных медицинских процедур вроде трансплантации органов, имплантации протезов, передовой хирургии и химиотерапии раковых заболеваний. При всех этих процедурах повышается риск развития инфекционных заболеваний.

Как возникает и распространяется устойчивость к антибиотикам?

Почему же сложилась такая ситуация, что когда-то всемогущие АБ вдруг перестали эффективно действовать на бактерии? Чтобы ответить на этот вопрос, необходимо разобраться с основными способами возникновения устойчивости и путями ее распространения.

Устойчивость бактерий к АБ может быть врожденной и приобретенной. Врожденная устойчивость обусловлена особенностями строения структур клетки, на которые направлено действие антибиотика. Такая устойчивость может быть связана, например, с отсутствием у микроорганизмов мишени действия АБ или недоступностью мишени вследствие низкой проницаемости оболочки клетки. Приобретенная устойчивость возникает в результате контакта микроорганизма с антимикробным средством за счет возникновения мутаций либо благодаря горизонтальному переносу генов (ГПГ) устойчивости. В настоящее время именно горизонтальный перенос различных генов резистентности является главной причиной быстрого возникновения множественной лекарственной устойчивости у бактерий.

ГПГ — процесс, в котором организм передает генетический материал другому организму, не являющемуся его потомком. Такая переданная ДНК встраивается в геном и затем стабильно наследуется. Центральную роль в этом процессе играют различные мобильные генетические элементы — плазмиды, транспозоны, IS-элементы, интегроны. За последние годы сформировано четкое понимание того, что ГПГ является одним из ведущих механизмов эволюции бактерий.

Эволюционные корни проблемы устойчивости

Гипотеза о том, что актиномицеты-продуценты антибиотиков, живущие в почвах, становятся источником генов устойчивости к антибиотикам, была сформулирована еще в 1973 году американскими учеными Бенвенистом и Дэвисом (Benveniste, Davies). Однако впоследствии выяснилось, что гены продуцентов АБ имеют очень низкое сходство с генами патогенных бактерий. Поэтому было сделано предположение о том, что любые природные бактерии, а не только сами продуценты, являются источником генов устойчивости к АБ. Первые свидетельства в пользу этого предположения были получены французскими учеными при изучении происхождения генов бета-лактамазы и генов устойчивости к хинолонам. В обоих случаях удалось обнаружить природные бактерии, несущие гены, почти идентичные клиническим. Однако это были лишь единичные примеры; к тому же нельзя было исключить возможность переноса генов в обратном направлении, от клинических штаммов бактерий к бактериям природным.

Хозяйственная деятельность и устойчивость к АБ

Хотя гены устойчивости к АБ у бактерий возникли еще в древности, широкое распространение таких генов среди микроорганизмов началось после начала использования антибактериальных средств в медицине. Активное и повсеместное применение антибактериальных средств послужило мощнейшим эволюционным инструментом, способствуя селекции и распространению бактерий с измененным геномом. Более 100 тыс. тонн АБ, производимых ежегодно, заставляют микроорганизмы проявлять чудеса приспособляемости.

По сути, начав активно использовать антибиотики, человек неожиданно для себя поставил широкомасштабный и планомерный эксперимент по отбору устойчивых бактерий. Следует особо подчеркнуть, что в результате этого в клинике произошел отбор не только генов устойчивости, но и особых систем, значительно ускоряющих приобретение новых генов устойчивости за счет ГПГ. Это привело к тому, что АБ, которые еще недавно успешно использовались для борьбы с самыми различными возбудителями инфекций, теперь в подавляющем большинстве случаев оказываются неэффективными. Ведь в процессе эволюции у бактерий выработаны многочисленные приспособительные механизмы, позволяющие быстро меняться и выживать в условиях самого жесткого отбора, будь он естественным или искусственным.

Нынешняя опасная ситуация, сложившаяся в борьбе с инфекциями, напрямую связана с огромным количеством производимых АБ. Большинство из них плохо усваивается человеком и животными, в результате чего от 25% до 75% потребляемых антибактериальных средств без изменений выводится из организма с калом и мочой, попадая затем вместе с водой в естественные водоемы. По всему миру ученые регулярно находят в городских сточных водах высокую концентрацию АБ после их использования в медицине и животноводстве. И никакие очистные сооружения не в силах этому противостоять. Такая ситуация прямо способствует распространению резистентности к АБ: бактерии, живущие в естественной среде, после контакта с малыми дозами АБ из очистных сооружений приобретают к ним устойчивость. Подтверждением этому служит тот факт, что в местах слива сточных вод постоянно обнаруживаются бактерии с генами устойчивости к АБ, а также бактериофаги, передающие эти гены бактериям. Кроме того, использование для удобрения полей навоза животных, получавших антибиотики, также приводит к заметному увеличению в почве бактерий, содержащих гены устойчивости. Эти гены потом могут передаваться бактериям, живущим на растениях, а затем с растительной пищей попадать в кишечник человека и захватываться кишечной микрофлорой.

В немалой степени способствует распространению устойчивости к АБ заведенная в животноводстве практика создания крупных комплексов с многотысячными поголовьями. Плазмиды с генами устойчивости, R-плазмиды, очень быстро распространяются на ограниченном пространстве с большим количеством животных. И здесь уже можно увидеть социальные причины увеличения резистентности к АБ. Постепенная миграция сельских жителей в города приводит к исчезновению небольших животноводческих хозяйств и замене их гигантскими комплексами, которые являются прекрасным резервуаром для накопления факторов резистентности. В таких комплексах гены устойчивости к АБ приобретают не только животные, но и люди из обслуживающего персонала.

Еще одной ключевой причиной распространения устойчивости к АБ стало необоснованное назначение их врачами (наряду с самолечением). Вообще, как это ни парадоксально, любые контакты со сферой здравоохранения несут в себе повышенный риск заразиться бактериями, устойчивыми к целому спектру АБ. Нужна по-настоящему стерильная чистота, аккуратность и ответственность, чтобы противостоять распространению устойчивых штаммов в таких медицинских учреждениях.

Выход есть!

Но даже из такой сложной ситуации есть выход. И здесь будет уместно привести два примера. Дания в конце 1990-х первой в Европе ввела запрет на использование антибиотиков в качестве стимуляторов роста животных. Результаты такого шага не заставили себя ждать. Международная группа экспертов показала, что отказ Дании от АБ в животноводстве не только не нанес большого ущерба доходам фермеров, но и способствовал значительному снижению факторов устойчивости к АБ на фермах и в мясе животных. В выигрыше оказались все, кроме производителей АБ. Германия, запретив использование АБ авопарцина на птицефермах, тоже добилась внушительных результатов: количество энтерококков, устойчивых к ванкомицину (аналогу авопарцина), за четыре года после запрета снизилось в три раза.

Налицо непростая ситуация. Человечество стоит перед очень сложной многогранной проблемой. Научные исследования показали, насколько сложно устроены биологические процессы у живых организмов и как осторожно нужно вмешиваться в их естественный ход. Появление в последние десятилетия устойчивых к лекарствам супербактерий и множества новых инфекций — лучшее тому подтверждение. Бездумное применение антибиотиков создало реальную угрозу для человечества. И для того, чтобы устранить или хотя бы уменьшить эту угрозу, потребуются большие усилия, и в первую очередь правительств и научно-медицинского сообщества.

Читайте также: