Salmonella enteritidis and eggs

Обновлено: 19.04.2024

Salmonella Enteritidis (SE) has been the major cause of the food-borne salmonellosis pandemic in humans over the last 20 years, during which contaminated hen's eggs were the most important vehicle of the infection. Eggs can be contaminated on the outer shell surface and internally. Internal contamination can be the result of penetration through the eggshell or by direct contamination of egg contents before oviposition, originating from infection of the reproductive organs. Once inside the egg, the bacteria need to cope with antimicrobial factors in the albumen and vitelline membrane before migration to the yolk can occur. It would seem that serotype Enteritidis has intrinsic characteristics that allow an epidemiological association with hen eggs that are still undefined. There are indications that SE survives the attacks with the help of antimicrobial molecules during the formation of the egg in the hen's oviduct and inside the egg. This appears to require a unique combination of genes encoding for improved cell wall protection and repairing cellular and molecular damage, among others.

Similar articles

De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J, Herman L. De Reu K, et al. Int J Food Microbiol. 2006 Dec 1;112(3):253-60. doi: 10.1016/j.ijfoodmicro.2006.04.011. Epub 2006 Jul 5. Int J Food Microbiol. 2006. PMID: 16822571

Keller LH, Schifferli DM, Benson CE, Aslam S, Eckroade RJ. Keller LH, et al. Avian Dis. 1997 Jul-Sep;41(3):535-9. Avian Dis. 1997. PMID: 9356697

Gürtler M, Methner U, Kobilke H, Fehlhaber K. Gürtler M, et al. J Vet Med B Infect Dis Vet Public Health. 2004 Apr;51(3):129-34. doi: 10.1111/j.1439-0450.2004.00739.x. J Vet Med B Infect Dis Vet Public Health. 2004. PMID: 15107039 No abstract available.

Braden CR. Braden CR. Clin Infect Dis. 2006 Aug 15;43(4):512-7. doi: 10.1086/505973. Epub 2006 Jul 3. Clin Infect Dis. 2006. PMID: 16838242 Review.

Guard-Petter J. Guard-Petter J. Environ Microbiol. 2001 Jul;3(7):421-30. doi: 10.1046/j.1462-2920.2001.00213.x. Environ Microbiol. 2001. PMID: 11553232 Review.

Cited by 116 articles

Kulshreshtha G, D'Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Kulshreshtha G, et al. Front Immunol. 2022 Feb 25;13:838525. doi: 10.3389/fimmu.2022.838525. eCollection 2022. Front Immunol. 2022. PMID: 35281050 Free PMC article. Review.

Haubert L, Maia DSV, Rauber Würfel SF, Vaniel C, da Silva WP. Haubert L, et al. J Food Sci Technol. 2022 Mar;59(3):1097-1103. doi: 10.1007/s13197-021-05113-5. Epub 2021 May 4. J Food Sci Technol. 2022. PMID: 35153327

Tanga C, Remigio M, Viciano J. Tanga C, et al. Animals (Basel). 2022 Jan 17;12(2):213. doi: 10.3390/ani12020213. Animals (Basel). 2022. PMID: 35049834 Free PMC article. Review.

Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Abd El-Hack ME, et al. Poult Sci. 2022 Feb;101(2):101584. doi: 10.1016/j.psj.2021.101584. Epub 2021 Nov 8. Poult Sci. 2022. PMID: 34942519 Free PMC article. Review.

Kulshreshtha G, Benavides-Reyes C, Rodriguez-Navarro AB, Diep T, Hincke MT. Kulshreshtha G, et al. Foods. 2021 Oct 23;10(11):2559. doi: 10.3390/foods10112559. Foods. 2021. PMID: 34828840 Free PMC article.

Ozlem Turgay at Kahramanmaras Sutcu Imam University

The presence of Salmonella enteritidis was investigated in 123 liquid whole quail eggs. Salmonella strains were identified and sero-grouped by coagglutination test and slide agglutination test. Seven (5.69%) of 123 whole quail eggs were in group D1 and were sero-typed as Salmonella enteritidis. It was found that in phage-typing of Salmonella enteritidis, three of 7 strains were Salmonella enteritidis PT4, two of them were PT1, one of them was PT7, and one of them was indefinite.

Salmonella enteritidis and their phage types isolated from Quail Eggs.

Discover the world's research

  • 20+ million members
  • 135+ million publications
  • 700k+ research projects

Kahramanmarafl Sütçü ‹mam University, Agriculture Faculty, Food Science Department, Kahramanmarafl - TURKEY

Kahramanmarafl Sütçü ‹mam University, Science and Art Faculty, Biology Department, Kahramanmarafl - TURKEY

and sero-grouped by coagglutination test and slide agglutination test. Seven (5.69%) of 123 whole quail eggs were in group D1

aglütinasyon testleri sonucunda sero gurupland›rma yap›lm›flt›r. Yap›lan testler sonucunda 123 b›ld›rc›n yumurtas›ndan 7 tanesi ( %

. Salmonella was isolated from turkey in Dakahlia Governorate in Egypt with a percentage of (10%) and these results nearly in coordinated with Tel et al., (2013) who detected Salmonella with a percentage of (9.7%). Salmonella was isolated from quails in Port Said Governorate in Egypt with a percentage of (10%) (5 out of 50 examined quails) and these results differ from Zlem et al., (2002) who isolated seven Salmonellae from 123 whole quail eggs with incidence of (5.69%), while Mukhopadhayay (2007) who isolated Salmonella from liver and heart of 128 Japanese quails with an incidence of 1.6% and Rahman et al., (2011) who isolated Salmonella from quail in Bangladesh form liver, spleen and intestine with an incidence of 29.62%. Salmonella was isolated from pigeons in Dakahlia Governorate in Egypt with a percentage of (6.7%) (2 out of 30 examined pigeons) and these results nearly in coordinated with González-Acuña et al., (2007) who isolated Salmonella from pigeons with a percentage of (4%) and Rahman et al., (2011) isolated Salmonella from pigeons in Bangladesh form liver, spleen and intestine with an incidence of 26.66%. .

. Salmonella isolates were serotyped using poly and monovalent "O" and "H" antisera and the results of this study ( et al., (2010) who reported that S. Derby (83%) was the predominant serotype in commercial turkey processing plant (A) located in USA whereas S. Typhimurium (39%) was the most common serotype recovered in plant (B) also in USA. Salmonella isolates that were serotyped from quail isolates (table 4) revealed that three (60%) S. Shangani and two (40%) S. Jedburgh were isolated from Port Said Governorate and these results differ from Zlem et al., (2002) who isolated seven S. Enteritidis, three of 7 strains were S. Enteritidis PT4, two of them were PT1, one was PT7 and another one was indefinite but Neto et al., (2013) Pasmans et al., (2003) who reported that Salmonella Typhimurium var. Copenhagen phage types 2 and 99 are the most commonly isolated subtypes form pigeons, Osman et al., (2013) who isolated Salmonella Typhimurium, Braenderup and Lomita form pigeons in Cairo, Egypt. .

A B S T R A C T The aim of this study was to isolate Salmonellae from 579 birds (348 chickens, 104 ducks, 30 turkeys, 50 quail, 30 pigeons and 17 geese) from 4 Egyptian Governorates. The Samples collected from internal organs (liver, cecum, spleen and heart) were examined bacteriologically and serologically. Sixty-three (10.9%) out of 579 birds were found positive while 516 (89.1%) birds were negative for Salmonella isolation. The number and percentage of positive chickens, ducks, turkeys, quails, pigeons and geese were 43 (12.4%), 10 (9.6%), 3 (10%), 5 (10%), 2

. Several reports took into account isolation and characterization of bacterial pathogens such as Pasteurella spp., E. coli, Streptococci, Staphylococci , Salmonella, Mycoplasma gallisepticum from quail and quail products (Burns et al., 2003;Edwards, 1936;Kumar et al., 2001;Roy et al., 2006; Turgay et al., 2002; Wang et al., 2010). However, few reports referred to mixed infection with other microorganisms (Murakami et al., 2002) and their antibiotic sensitivity assay (Helm et al., 1999;Sultana et al., 2013). .

The aim of this study was to determine the presence of Listeria monocytogenes, Yersinia enterocolitica and Salmonella enteritidis in 123 liquid whole quail eggs. The method suggested by USDA-FSIS was used for the isolation and identification of L. monocytogenes. S. enteritidis was identified and sero-grouped by co-agglutination test and slide agglutination test. Y. enterocolitica was isolated in Trypticase-Soy Broth, with bile-oxalate-sorbose medium for enrichment. Both enrichment cultures were plated on Yersinia Selective Agar Base containing cefsulodin, irgasan and novobiocin (CIN Agar). No Yersinia was detected among the natural flora of the quail eggs. Seven (5.69%) of 123 whole quail eggs were determined to have S. enteritidis and 5 of them (4.06%) were found to have L. monocytogenes. There were significant differences between the 3 groups of bacteria (P < 0.05).

In the present study Salmonella spp. was surveyed in four flocks of meat-type quails reared in a farm that also had processing plant on site, located in the region of Bastos, state of São Paulo, Brazil. Meconium samples of one-day-old quail chicks were collected from transport cardboard boxes. Cecal content was collected on days 7, 14, 21, 28 and 35 of rearing. At 36 days of age, birds were slaughtered in the farm's processing plant, where two samples of water from the scalding and the chilling tanks and four carcasses per flock were collected. All samples were examined for Salmonella spp. using traditional bacteriological methods. Salmonella spp. was present in meconium samples of three flocks and in cecal feces of the four flocks. This bacterium was also isolated in the chiller water and in the carcasses of three of the evaluated flocks and in the scalding water of one flock. In this study, S. enterica subspecies enterica 4, 5, 12; S. Corvalis; S. Give; S. Lexington; S. Minnesota; S. Schwarzengrund; S. Rissen and S. Typhimurium were the eight serovars identified.

One of the important issues of food hygiene is Salmonella contamination of eggs that may cause food-borne infection and disease in humans. The aim of this study was to investigate Salmonella contamination of traditionally produced poultry eggs in Tehran. Contamination of eggs to other Enterobacteriaceae was also investigated. For this purpose, 200 eggs including 131 egg samples from chickens and 69 from quails, geese, and ducks (23 samples from each species) were investigated. After conventional isolation procedures, Salmonella contamination was detected in five chicken eggs. Serological tests revealed that all of the isolated genera belonged to D serogroup and multiplex PCR showed that all strains carried spv and sefA genes and also random sequence (specific for the genus Salmonella); therefore, all strains confirmed as Salmonella Enteritidis. Antimicrobial susceptibility test revealed sensitivity of all Salmonella isolates to florfenicol, ceftriaxone, trimethoprim–sulfamethoxazole, chloramfenicol, and oxytetracycline. In addition, except the quail eggs, 29 enteric bacteria were isolated from eggs including 21 Enterobacter spp., 4 Klebsiella spp., 3 Escherichia coli, and 1 Proteus spp. This study indicated that traditionally produced poultry eggs were highly contaminated by Enterobacteriaceae. Moreover, the chicken eggs were contaminated by Salmonella Enteritidis; therefore, non-commercial chicken eggs can be considered as an important threat for public health.

Salmonellosis is one of the most prevalent foodborne diseases worldwide. Food animals have been identified as reservoirs for nontyphoid Salmonellainfections. in poultry, host-specific Salmonellainfections cause fowl typhoid and pullorum diseases that produce economic losses in different parts of the world. Several measures have been used to prevent and control Salmonellainfections in poultry, and vaccination is the most practical measure because it avoids contamination of poultry products and by-products and prevents disease in humans. Salmonella vaccines can decrease public health risk by reducing colonization and organ invasion, including invasion of reproductive tissues, and by diminishing fecal shedding and environmental contamination. We review available information on the host-specific and non-host-specific Salmonella serotypes found in poultry and the improved understanding of the pathogenesis of and immune responses to infection. We also include some approaches based on updated publications regarding killed and live attenuated vaccines and their immune mechanisms of protection.

The effectiveness of various pasteurization procedures in destroying Listeria monocytogenes and Salmonella enteritidis in liquid egg products was evaluated. Survivor studies were performed on individual strains of L. monocytogenes and L. innocua in commercially broken raw egg yolk samples after heating at 61.1, 63.3, and 64.4°C using submerged vials, and on Salmonella spp. at 60.0, 61.1, and 62.2°C. Surviving bacteria were enumerated on TSA and results expressed as D-values. The influence of aw-lowering ingredients such as salt and sugar on thermal resistance in yolk was investigated using a five-strain mixture of L. monocytogenes or a mixture of Salmonella spp. (four strains of S. enteritidis, one sttain each of S. senftenberg and S. typhimurium) at 61.1°C to 66.7°C. At 61.1°C (present minimum temperature for pasteurization of plain egg yolk), a 7-log-unit reduction of Salmonella took 1.4 to 2.4 min, whereas a 7-log-unit reduction of L. monocytogenes took 4.9 to 16.1 min. The D-value for L. monocytogenes at 64.4°C increased from 0.44 min in plain yolk to 8.26 min after a 21.5-min lag (total time to achieve 1-log-unit reduction was 30.7 min) in yolk with 10% salt and 5% sugar, and 27.3 min after a 10.5-min lag (total time 37.8 min for 1-log-unit reduction) in yolk with 20% salt. The D-value for Salmonella in egg yolk at 64.4°C was < 0.2 min, but when 10% salt was added, the D-value was 6.4 min. Aw-lowering solutes in liquid egg yolk increased the thermal resistance of Salmonella and L. monocytogenes.

THE number of salmonellae present in egg material has a specific bearing on the margin of safety achieved by a pasteurization process. Previously published results on salmonella contamination of egg products generally report only the percentage of samples analyzed that contain viable salmonellae. For example, of 1,629 samples of frozen eggs examined in England in 1963, 17.0 percent were positive (Hobbs, 1964). This value is similar to the incidence reported many years ago by Solowey et al. (1946). Such results although suggesting a low level of contamination are not quantitative and cannot be used to calculate the margin of safety afforded by any proposed pasteurization process. For such calculations the initial level of contamination must be known. The purpose of this report is to provide information on the numbers of salmonellae found in freshly broken out eggs prepared under present commercial conditions in the United States. Results from samples of material processed during a twelve-month period were consolidated with the recent results obtained by Bergquist and Klusmeyer1 and by Patterson and Brant2

THE addition of sugar or salt to a medium has an influence on the heat resistance of bacteria. Hansen and Riemann (1963), in reviewing factors affecting the heat resistance of nonsporing organisms, mentioned that salt exerts a protective action against heat. Such action was dependent on the kind of salt, the concentration, the suspending media used, and the test organisms. They further noted that high concentrations of soluble carbohydrate result in increased heat resistance of yeasts and bacteria. Stumbo (1963) reported that heat resistance of many organisms was increased progressively by salt concentrations up to four percent. Above four percent the heat resistance tended to decrease. High sugar concentrations tended to increase resistance. Cotterill and Glauert (1967) previously reported that the addition of sugar or salt increased the temperatures required to destroy Salmonella oranienburg in egg yolk. Salted egg yolk required a much higher temperature than sugared egg yolk. Frazier . . .

The etiologic agents and food vehicles associated with the 7458 outbreaks (involving 237,545 cases) of foodborne disease reported to the Centers for Disease Control between 1973 and 1987 were examined. Bacterial pathogens accounted for 66% of outbreaks and 87% of cases, viruses 5 and 9%, parasites 5 and

Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study demonstrates that PDA could effectively be used as a wash treatment to reduce Salmonella Enteritidis on shell eggs. Sensory and quality studies of PDA-washed eggs need to be conducted before recommending their use.

Similar articles

Upadhyaya I, Yin HB, Surendran Nair M, Chen CH, Lang R, Darre MJ, Venkitanarayanan K. Upadhyaya I, et al. Poult Sci. 2016 Sep 1;95(9):2106-11. doi: 10.3382/ps/pew152. Epub 2016 Jun 1. Poult Sci. 2016. PMID: 27252373

Upadhyaya I, Yin HB, Nair MS, Chen CH, Upadhyay A, Darre MJ, Venkitanarayanan K. Upadhyaya I, et al. Poult Sci. 2015 Jul;94(7):1685-90. doi: 10.3382/ps/pev126. Epub 2015 May 25. Poult Sci. 2015. PMID: 26009758 Clinical Trial.

Venkitanarayanan K, Kollanoor-Johny A, Darre MJ, Donoghue AM, Donoghue DJ. Venkitanarayanan K, et al. Poult Sci. 2013 Feb;92(2):493-501. doi: 10.3382/ps.2012-02764. Poult Sci. 2013. PMID: 23300319 Review.

Gast RK, Beard CW. Gast RK, et al. Poult Sci. 1993 Jun;72(6):1157-63. doi: 10.3382/ps.0721157. Poult Sci. 1993. PMID: 8321820 Review.

Cited by 4 articles

El-Saadony MT, Salem HM, El-Tahan AM, Abd El-Mageed TA, Soliman SM, Khafaga AF, Swelum AA, Ahmed AE, Alshammari FA, Abd El-Hack ME. El-Saadony MT, et al. Poult Sci. 2022 Apr;101(4):101716. doi: 10.1016/j.psj.2022.101716. Epub 2022 Jan 12. Poult Sci. 2022. PMID: 35176704 Free PMC article. Review.

Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Abd El-Hack ME, et al. Poult Sci. 2022 Feb;101(2):101584. doi: 10.1016/j.psj.2021.101584. Epub 2021 Nov 8. Poult Sci. 2022. PMID: 34942519 Free PMC article. Review.

Yang Y, Ashworth AJ, Willett C, Cook K, Upadhyay A, Owens PR, Ricke SC, DeBruyn JM, Moore PA Jr. Yang Y, et al. Front Microbiol. 2019 Nov 15;10:2639. doi: 10.3389/fmicb.2019.02639. eCollection 2019. Front Microbiol. 2019. PMID: 31803164 Free PMC article. Review.

Maktabi S, Zarei M, Rashnavady R. Maktabi S, et al. Iran J Vet Res. 2018 Spring;19(2):113-117. Iran J Vet Res. 2018. PMID: 30046322 Free PMC article.

Beginning in the 1970s, the incidence of Salmonella enterica serotype Enteritidis (SE) infection and the number of related outbreaks in the United States has increased dramatically. By 1994, SE was the most commonly reported Salmonella serotype, with an incidence of >10 laboratory-confirmed infections per 100,000 population in the Northeast. Intensive epidemiologic and laboratory investigations identified shell eggs as the major vehicle for SE infection in humans, and that the eggs had been internally contaminated by transovarian transmission of SE in the laying hen. Three key interventions aimed at preventing the contamination and growth of SE in eggs have included farm-based programs to prevent SE from being introduced into egg-laying flocks, early and sustained refrigeration of shell eggs, and education of consumers and food workers about the risk of consuming raw or undercooked eggs. Since 1996, the incidence of SE infection in humans has decreased greatly, although many cases and outbreaks due to SE contaminated eggs continue to occur.

Similar articles

Centers for Disease Control and Prevention (CDC). Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep. 2003 Jan 3;51(51-52):1149-52. MMWR Morb Mortal Wkly Rep. 2003. PMID: 12553566

Centers for Disease Control and Prevention (CDC). Centers for Disease Control and Prevention (CDC). MMWR Morb Mortal Wkly Rep. 2000 Feb 4;49(4):73-9. MMWR Morb Mortal Wkly Rep. 2000. PMID: 10706440

Yamane Y, Leonard JD, Kobatake R, Awamura N, Toyota Y, Ohta H, Otsuki K, Inoue T. Yamane Y, et al. Avian Dis. 2000 Jul-Sep;44(3):519-26. Avian Dis. 2000. PMID: 11006998

Hogue A, White P, Guard-Petter J, Schlosser W, Gast R, Ebel E, Farrar J, Gomez T, Madden J, Madison M, McNamara AM, Morales R, Parham D, Sparling P, Sutherlin W, Swerdlow D. Hogue A, et al. Rev Sci Tech. 1997 Aug;16(2):542-53. doi: 10.20506/rst.16.2.1045. Rev Sci Tech. 1997. PMID: 9501367 Review.

Cited by 96 articles

El-Saadony MT, Salem HM, El-Tahan AM, Abd El-Mageed TA, Soliman SM, Khafaga AF, Swelum AA, Ahmed AE, Alshammari FA, Abd El-Hack ME. El-Saadony MT, et al. Poult Sci. 2022 Apr;101(4):101716. doi: 10.1016/j.psj.2022.101716. Epub 2022 Jan 12. Poult Sci. 2022. PMID: 35176704 Free PMC article. Review.

Murray CE, Varga C, Ouckama R, Guerin MT. Murray CE, et al. Pathogens. 2021 Dec 22;11(1):9. doi: 10.3390/pathogens11010009. Pathogens. 2021. PMID: 35055957 Free PMC article.

Zakaria Z, Hassan L, Sharif Z, Ahmad N, Mohd Ali R, Amir Husin S, Mohamed Sohaimi N, Abu Bakar S, Garba B. Zakaria Z, et al. Animals (Basel). 2022 Jan 1;12(1):97. doi: 10.3390/ani12010097. Animals (Basel). 2022. PMID: 35011203 Free PMC article.

Medina-Santana JL, Ortega-Paredes D, de Janon S, Burnett E, Ishida M, Sauders B, Stevens M, Vinueza-Burgos C. Medina-Santana JL, et al. Poult Sci. 2022 Feb;101(2):101611. doi: 10.1016/j.psj.2021.101611. Epub 2021 Nov 20. Poult Sci. 2022. PMID: 34953378 Free PMC article.

Holt PS. Holt PS. Poult Sci. 2021 Dec;100(12):101436. doi: 10.1016/j.psj.2021.101436. Epub 2021 Aug 20. Poult Sci. 2021. PMID: 34768045 Free PMC article. Review.


Сальмонеллез - это инфекционное заболевание, которое вызывается различными бактериями рода Сальмонелла, характеризуется разнообразными клиническими проявлениями: от бессимптомного носительства, до тяжелых форм. В большинстве случаев протекает с преимущественным поражением органов пищеварительного тракта.
Что представляет собой возбудитель сальмонеллеза?

Мелкие подвижные грамотрицательные палочки относительно устойчивые во внешней среде: в воде открытых водоемов сохраняются от 11 до 120 дней, в почве – до 140 дней, в комнатной пыли – до 90 дней; в мясе и колбасных изделиях -


то 60 до 130 дней (в замороженном мясе – от 6 до 13 мес.); в молоке при комнатной температуре - до 10 дней, в холодильнике – до 20 дней; в сливочном масле – 52-128 дней; в яйцах – до 13 мес., на яичной скорлупе – от 17 до 24 дней.
Кто является источником заболевания?
Резервуаром и источниками инфекции являются многие виды сельскохозяйственных и диких животных (крупный и мелкий рогатый скот, свиньи) и птиц (куры, утки, гуси); однако определенное значение играет и человек (больной, носитель) как дополнительный источник. При употреблении в пищу обсемененных продуктов сальмонеллез у человека не всегда проявляется клинически. При небольшой концентрации
возбудителя, слабой его вирулентности и при хорошей резистентности организма зараженный человек, оставаясь клинически здоровым, может продолжительное время являться сальмонеллоносителем. Заразиться сальмонеллезом можно и через загрязненную воду ‑ при ее питье или купании.
Как возбудитель заболевания попадает в организм человека?
В последние годы отмечается преобладание заболеваемости сальмонеллезом, связанным с распространением возбудителя Salmonella enteritidis, который чаще всего передается через мясо птицы и яйца, а также продуктов, приготовленных из них (полусырые бифштексы, яйца сырые и всмятку, яичница‑глазунья). Меньшее значение имеют рыбные и растительные продукты. Водный путь передачи играет роль в заражении животных в животноводческих комплексах и на птицефабриках.
Механизм передачи - фекально-оральный. Основной путь заражения при сальмонеллезе пищевой, чаще всего при употреблении мяса животных и птиц, а также яиц.
Причины загрязнения пищевых продуктов сальмонеллами различны. На предприятия общественного питания или на ваш стол могут поступать продукты, уже обсемененные сальмонеллами (первичное обсеменение) К таким продуктам относят мясо, молоко, птицу, яйца, рыбу. Чаще всего вызывают сальмонеллез мясо и мясопродукты. Заражение мяса может происходить при жизни животного. Заражение возможно и во время убоя, и при разделке туш путем загрязнения мяса содержимым кишечника. Яйца птицы, особенно утиные и гусиные, инфицируются при формировании и снесении, молоко — во время дойки и обработки.
Сальмонеллез может возникнуть в результате вторичного обсеменения пищи сальмонеллами в случае нарушения санитарных правил ее приготовления и хранения.
Каковы симптомы (признаки) сальмонеллеза у человека?
Инкубационный период при пищевом пути заражения колеблется от 6 часов до 3 сут. (чаще 12—24 ч). При контактно-бытовом пути передачи инфекции, инкубация удлиняется до 7 дней. Обычно заболевание начинается остро, повышается температура тела (при тяжелых формах до 39°С и выше), появляются общая слабость, головная боль, озноб, тошнота, рвота, боли в эпигастральной и пупочной областях, позднее присоединяется расстройство стула. Наиболее выражены они к концу первых и на вторые и третьи сутки от начала заболевания. При легкой форме сальмонеллеза температура тела 37-38оС, рвота однократная, стул жидкий, водянистый до 5 раз в сутки. При тяжелом течении лихорадка (выше 39оС) длится 5 и более дней, выраженная интоксикация. Рвота многократная, наблюдается в течение нескольких дней. Стул более 10 раз в сутки, обильный, водянистый, зловонный, может быть с примесью слизи.
Можно ли вылечить сальмонеллез дома?
Лечение сальмонеллеза обязательно должно проходить под контролем врача. Сальмонеллез может протекать в тяжелой клинической форме, и больные люди нуждаются в обязательной госпитализации в инфекционный стационар. Следует отметить, что исчезновение признаков заболевания еще не говорит о полном выздоровлении. Нередко следствием сальмонеллеза бывают различные осложнения, например холецистит, гепатит, гастрит и др.
Немаловажное значение для предупреждения возникновения и распространения сальмонеллеза имеют такие мероприятия, как своевременное выявление и изоляция больных или бактерионосителей, вовремя начатое адекватное лечение заболевших, диспансерное наблюдение за переболевшими предупреждает риск развития бактерионосительства.
Какие существуют меры профилактики сальмонеллеза?
Основу профилактики сальмонеллёза среди людей составляют ветеринарно-санитарные мероприятия, направленные на обеспечение надлежащих условий в процессе убоя скота и птицы, технологии обработки туш, а также соблюдение санитарного режима на предприятиях пищевой промышленности и общественного питания.
Лица, впервые поступающие на работу в детские дошкольные учреждения, лечебно-профилактические учреждения, на предприятия пищевой промышленности и приравненные к ним учреждения подлежат обязательному бактериологическому обследованию. Бактериовыделители не допускаются на работу в пищевые и приравненные к ним предприятия.
В общественном питании и личной домашней практике следует строго соблюдать санитарно-гигиенические правила приготовления пищи:
1. Своевременно и тщательно мойте руки с мылом при возвращении домой, перед едой, приготовлением пищи, после посещения туалета, послу ухода за животными;
2. Не приобретайте продукты в местах не санкционированной торговли или с рук, сомнительного качества, с истекшим сроком реализации, требуйте у продавца сертификаты качества на продукцию;
3. Молоко, не упакованное в стерильную тару, нельзя пить некипяченым.
4. Избегайте контакта между сырыми и готовыми пищевыми продуктами. Правильно приготовленная пища может быть загрязнена путем
соприкосновения с сырыми продуктами;
5. Для разделки продуктов (сырых и вареных, овощей и мяса) используйте отдельные разделочные доски и ножи;
6. Мойте куриные яйца перед использованием, не употребляйте сырые и варите их не менее 5 минут после закипания.
7. Отнеситесь к приготовлению пищи серьезней. В процессе варки (жарки) сальмонеллы уничтожаются, но помните, что температура во всех частях пищевого продукта должна достигнуть 80° С и поддерживаться на этом уровне не менее 10 мин;
8. Скоропортящиеся продукты сохраняют в холодильниках в пределах допустимых сроков хранения;
9. Правильно храните пищевые продукты (в холодильнике), если приготовленные блюда остаются на следующий день, то перед употреблением их необходимо подвергнуть термической обработке;
10. Предохранять салаты, винегреты и другие холодные блюд от загрязнения руками в процессе их приготовления, хранение этих блюд в заправленном виде не более часа.
Позаботьтесь о себе и своих родных, соблюдайте элементарные правила гигиены и сальмонеллез вам будет не страшен!


(c) Управление Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по Республике Алтай, 2006—2015 г.

Все права на материалы, размещенные на сайте, охраняются в соответствии с законодательством РФ, в том числе об авторском праве и смежных правах.
При использовании материалов сайта необходима ссылка на источник

Адрес: 649002, Республика Алтай, г. Горно-Алтайск, проспект Коммунистический, 173


Эл. почта:

Читайте также: