Современные технологий в диагностике инфекций

Обновлено: 19.04.2024

Инфекции вызывают, в основном, следующие виды микроорганизмов: бактерии, вирусы, грибы, простейшие. Их обнаружение — достоверный признак инфекционного процесса.

Лаборатория располагает арсеналом методов, однако только 5 из них наиболее широко распространены:

Культуральный метод (метод посева)

Выявляет чистую культуру возбудителя. Метод сводится к тому, что полученный материал (мазок со слизистой оболочки, кровь, гной, кал и т.д) высевается на питательные среды. Среды могут содержать различные компоненты. Но суть сводится к следующему: микроорганизмы должны дать рост и колонии. Если есть рост патогенных микроорганизмов, то определяется их чувствительность к лекарствам: антибиотикам и бактериофагам.

Серологический метод (метод антител к возбудителю)

Тоже позволяет поставить диагноз. Метод основан на обнаружении в крови антигенов возбудителя или антител — специальных белков, которые образуются в организме в ответ на присутствие и размножение болезнетворных микроорганизмов. Антитела образуются постепенно, поэтому в крови их можно обнаружить только к концу первой недели инфицирования. Это главный недостаток метода.

Молекулярно-биологический метод (метод полимеразной цепной реакции (ПЦР), метод амплификации РНК (NASBA))

Определяет генетический материал возбудителя — ДНК или РНК в образцах (соскоб со слизистой, кровь, моча, кал и т.д). Чтобы уловить малые концентрации ДНК или РНК, необходимо увеличить количество копий. Для этого исследуемый образец помещают в прибор — амплификатор, который позволяет увеличить число копий ДНК в геометрической прогрессии. Для этого метода диагностики крайне важен правильный забор биоматериала.

Микроскопический метод (исследование под микроскопом)

Подразумевает приготовление препаратов на стекле. Материал: кровь, отделяемое слизистых оболочек и т.д. Стекла могут быть окрашенными или неокрашенными, в зависимости от типа инфекции. Врач исследует препарат под микроскопом и выдает результат на основании визуальной оценки: размер, форма, отношение к красителям и т.д.

Метод газовой хроматографии (ГХ-МС)

Выявляет возбудителей по продуктам их жизнедеятельности. Материал: кровь, моча, кал, отделяемое ран, слизистых оболочек.

Аллергические заболевания являются глобальной эпидемиологической проблемой во всем мире: 10–30% населения планеты имеют какие-либо проявления аллергических заболеваний. В этой связи крайне актуальны их ранняя диагностика и профилактика. Современная аллергодиагностика располагает широким спектром эффективных инструментов, позволяющих максимально персонализировать диагноз и спрогнозировать эффективность проводимого лечения. В развитии аллергических реакций принимают участие в основном иммуноглобулины класса Е (IgE), которые отвечают за проявление аллергии немедленного типа и выявляются при использовании различных диагностических инструментов.
Полисенсибилизация является важной клинической характеристикой, поскольку она затрагивает около 70–80% населения мира, страдающего аллергией; диагностический путь требует использования адекватной и тщательной методологии, основанной на демонстрации соответствия между историей болезни и документированной сенсибилизацией. Ведение пациентов с полисенсибилизацией должно быть основано на тщательном обследовании с использованием возможностей молекулярной аллергодиагностики. Мультиплексные системы, наиболее прорывной метод на сегодня, дает полное представление о профиле сенсибилизации, которая является ключевым аспектом при диагностике аллергических заболеваний.

Ключевые слова: аллергические заболевания, IgE, аллергодиагностика, полисенсибилизация, биочип, компонентная диагностика, молекулярная диагностика, АСИТ.

Для цитирования: Бала А.М., Клещенко А.Б., Чурсинова Ю.В. Современные возможности лабораторной аллергодиагностики. РМЖ. 2019;1(II):56-61.

Current possibilities of an allergy laboratory diagnosis

A.M. Bala, A.B. Kleschenko, Yu.V. Chursinova

Moscow Regional Scientific Research Clinical Institute named after M.F. Vladimirskiy

Allergic diseases are a global epidemiological problem: 10–30% of the planet population has any allergic diseases’ manifestations. In this regard, early diagnosis and prevention of allergic diseases are extremely relevant. Current allergy diagnosis is a wide range of effective tools that allow maximally personalizing the diagnosis and predicting treatment effectiveness. Mainly, IgE are involved in allergic reactions development, as they are responsible for the manifestation of immediate-type allergy and are detected by using various diagnostic tools.
Polysensitization is an important clinical characteristic, as it affects about 70–80% of the world’s allergic population. The diagnostic pathway requires an adequate and detailed methodology based on the compliance demonstration of medical history with documented sensitization. The patient management with polysensitization should rely on a careful examination, mainly, based on the possibilities of allergy molecular diagnostics. Multiplex systems are the most breakthrough method, which gives a complete sensitization profile picture (a key aspect of the allergic diseases’ diagnosis).

Keywords: allergic diseases, IgE, allergy diagnosis, polysensitization, biochip, component diagnosis, molecular diagnostics, ACIT.
For citation: Bala A.M., Kleschenko A.B., Chursinova Yu.V. Current possibilities of an allergy laboratory diagnosis. RMJ. 2019;1(II):56–61.

Статья посвящена современным возможностям лабораторной аллергодиагностики. Рассмотрено применение мультиплексных систем, дающих полное представление о профиле сенсибилизации, которая является ключевым аспектом при диагностике аллергических заболеваний.

Современные возможности лабораторной аллергодиагностики

Введение

Преимущества и недостатки лабораторных методов аллергодиагностики

При выборе способа обследования пациентов к преимуществам лабораторных методик по сравнению с кожным тестированием можно отнести следующие факты: исследование можно проводить в период обострения заболевания и во всех возрастных группах; отсутствует непосредственный контакт пациента с аллергеном, в связи с чем исключена опасность развития тяжелых аллергических реакций при проведении теста; нет необходимости отменять противоаллергические препараты на период проведения исследования; есть возможность выявления сенсибилизации сразу к большому количеству аллергенов.
Недостатками тестов in vitro являются несколько обстоятельств: обнаружение специфического IgE (sIgE) к какому-либо аллергену или антигену не доказывает, что именно этот аллерген ответственен за клиническую симптоматику; окончательное заключение и интерпретация лабораторных данных должны быть сделаны только после сопоставления с клинической картиной и результатами развернутого аллергологического анамнеза; титр sIgE не всегда коррелирует с тяжестью симптомов аллергического заболевания; отсутствие sIgE в сыворотке периферической крови не исключает возможности IgE-зависимого механизма, т. к. местный синтез sIgE и сенсибилизация тучных клеток могут происходить и при отсутствии sIgE в кровотоке (например, аллергический ринит); исключительно высокие концентрации общего IgЕ, например у отдельных больных атопическим дерматитом, могут за счет неспецифического связывания с аллергеном давать ложноположительные результаты; идентичные результаты для разных аллергенов не означают их одинакового клинического значения, т. к. способность к связыванию с sIgЕ у разных аллергенов может быть различной.

Методы диагностики

Молекулярная аллергодиагностика

Заключение

Новые правила предиктивной и персонализированной медицины, которые помогают получить максимальный результат от специфических и высокоперсонализированных методов лечения, в полной мере применимы в аллергологии. Внедрение сложных методик, основанных на использовании аллергокомпонентов, — достойное персонализированной медицины решение для лечения пациентов с аллергией.
Будущее аллергологии принадлежит компонентной диагностике, позволяющей расшифровать профиль сенсибилизации на молекулярном уровне, прогнозировать ургентные аллергические реакции, оценить тяжесть состояния, обусловленную аутоаллергией, определить объективные показания и противопоказания к назначению АСИТ, а также максимально индивидуализировать лечение и используемые рекомендации [1].

1. Мокроносова М.А. Алгоритм аллергодиагностики с позиции доказательной медицины. Астма и аллергия. 2015;2:3–5. [Mokronosova M.A. Algorithm of allergy diagnostics from the standpoint of evidence-based medicine. Asthma and allergy J. 2015;2:3–5 (in Russ.)].
2. Рубина А.Ю., Фейзханова Г.У., Филиппова М.А. и др. Мультиплексный анализ аллерген-специфических и общих иммуноглобулинов Е и G в формате биочипа. Доклады академии наук, журнал. 2012;447(4):461–465. [Rubina A. Yu., Feyzkhanova G.U., Filippova M.A. et al. Multiplex assay of allergen-specific and total immunoglobulins E and G in biochip format. Academy of Sciences Rep J. 2012;447(4):461–465 (in Russ.)].
3. Пампура А.Н. Диагностика пищевой аллергии у детей: проблемы и пути решения. Рос. вестник перинатологии и педиатрии. 2009;4:73–74. [Pampura A.N. Diagnosis of food allergy in children: problems and ways of their solution. Russian Bulletin of Perinatology and Pediatrics. 2009;4:73–74 (in Russ.)].
4. Ferrer M., Sanz M.L., Sastre J. et al. Molecular diagnosis in allergology: application of the microarray technique. J Investig Allergol Clin Immunol. 2009;19(Suppl 1):19–24.
5. Злобина Ж.М., Мокроносова М.А. Клинический случай пищевой анафилаксии у ребенка: выявление основных аллергенных триггеров методом молекулярной компонентной диагностики. Педиатрическая фармакология. 2014;11(6):73–75. [Zlobina Z.M., Mokronosova M.A. Clinical Case of Food Anaphylaxis in a Child: Detection of the Main Allergenic Triggers by Means of Molecular Component Analysis. Pediatric pharmacology. 2014;11(6):73–75 (in Russ.)].
6. Балаболкин И.И. Пищевая аллергия у детей: современные аспекты патогенеза и подходы к терапии и профилактике. Иммунопатология, Аллергология, Инфектология. 2013;3:36–46. [Balabolkin I.I. Food allergy in children: modern aspects of pathogenesis and approaches to therapy and prophylaxis. Immunopathology, Allergology, Infectology. 2013;3:36–46 (in Russ.)].
7. Bégin P., Nadeau K.C. Diagnosis of food allergy. Pediatr Ann. 2013;42(6):102–109.
8. Salkie ML. The Phadiatop test allows adequate screening for atopy with a marked reduction in cost. J Clin Lab Anal. 1991;5(3):226–227.
9. Колхир П.В. Доказательная аллергология-иммунология. М.: Бином; 2010. [Kolkhir P.V. Evidence-based allergology-immunology. M.: Binom; 2010 (in Russ.)].
10. Шабанов Д.В., Федоскова Т.Г., Мартынов А.И. и др. Особенности диагностики аллергии на яд перепончатокрылых. Рос. аллергологический журнал. 2018;15(2):37–41. [Shabanov D.V., Fedoskova T.G., Martinov A.I. et al. Features the diagnosis of Hymenoptera Venom Allergy. Russian Journal of Allergy. 2018;15(2):37–41 (in Russ.)].
11. Ciprandi G., Incorvaia C., Frati F. et al. Management of polysensitized patient: from molecular diagnostics to biomolecular immunotherapy. Expert Rev Clin Immunol. 2015;11(9):973–976.
12. Sastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010;40(10):1442–1460.
13. Riccio A.M., De Ferrari L., Chiappori A. et al. Molecular diagnosis and precision medicine in allergy management. Clin Chem Lab Med. 2016;54(11):1705–1714.
14. Canonica G.W., Ansotegui I.J., Pawankar R. et al. A WAO — ARIA — GALEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6(1):17.
15. Gadisseur R., Chapelle J.P., Cavalier E. A new tool in the field of in-vitro diagnosis of allergy: preliminary results in the comparison of ImmunoCAP 250 with the ImmunoCAP ISAC. Clin Chem Lab Med. 2011;49(2):277–280.
16. Bousquet J., Anto J., Auffray C. et al. MeDAL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine. Allergy. 2011;66(5):596–604.
17. Hochwallner H., Alm J., Lupinek C. et al. J Allergy Clin Immunol. 2014;134(5):1213–1214.
18. Anto J.M., Bousquet J., Akdis M. et al. Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139(2):388–399.
19. Lupinek C., Wollmann E., Baar A. et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: the MeDALL allergen-chip. Methods. 2014;66(1):1–13.
20. Heffler E., Puggioni F., Peveri S. et al. Extended IgE profile based on an allergen macroarray: a novel tool for precision medicine in allergy diagnosis. World Allergy Organization J. 2018;11(1):7.
21. Valenta R., Gattinger P., Flicker S. et al. Molecular aspects of allergens and allergy. Adv Immunol. 2018;138:195–256.

Авторы: Денисова А.Р. 1 , Максимов М.Л. 2, 3, 4
1 ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), Москва
2 ФГБОУ ДПО РМАНПО Минздрава России, Москва, Россия
3 КГМА — филиал ФГБОУ ДПО РМАНПО Минздрава России, Казань, Россия
4 РНИМУ им. Н.И. Пирогова Минздрава России, Москва

В Российской Федерации ежегодно болеют гриппом и острыми респираторными вирусными инфекциями (ОРВИ) другой этиологии около 30 млн человек. Масштабы заболеваемости ОРВИ делают актуальным поиск новых способов профилактики и лечения ОРВИ, адекватного контроля эпидемий и пандемий гриппа. Средства этиотропной терапии направлены против возбудителя заболевания, в данном случае против респираторных вирусов. Специфические противовирусные препараты воздействуют непосредственно на возбудителя инфекции, препятствуя его размножению в организме. Один из подходов к терапии ОРВИ и гриппа заключается в применении препаратов, имеющих несколько точек приложения и обладающих комбинированным действием, которые сочетают в себе прямое противовирусное, иммуномодулирующее и симптоматическое действие. В ситуациях с неуточненным возбудителем и лабораторно подтвержденной вирусной микст-инфекцией следует отдавать предпочтение противовирусным препаратам широкого спектра действия. Большое значение в терапии ОРВИ и гриппа имеют препараты, способные оказывать воздействие как на возбудителя инфекции (уточненного или неуточненного), так и на проявления интоксикационно-воспалительного синдрома (лихорадка, озноб, боль, отек, катаральные явления), например препарат Нобазит ® .

Ключевые слова: острые респираторные вирусные инфекции, ОРВИ, вирус гриппа, профилактика, противовирусные препараты.

Для цитирования: Денисова А.Р., Максимов М.Л. Острые респираторные вирусные инфекции: этиология, диагностика, современный взгляд на лечение. РМЖ. Медицинское обозрение. 2018;26(1(II)):99-103.

Denisova A.R. 1 , Maksimov M.L. 2

1 Sechenov University, Moscow
2 Kazan State Medical Academy

Each year about 30 million Russian people suffer from influenza and acute respiratory viral infections (ARVI) of another etiology. That’s why it is necessary to search for the new ways to prevent and treat ARVI and evaluate the efficacy of existing drugs, to study the new combined drugs for the adequate control of epidemics and pandemics of influenza. Means of etiotropic therapy affect the causative agent of the disease, i.e. respiratory viruses. Specific antiviral drugs affect directly on the pathogen, preventing its reproduction
in the body. One of the approaches to the treatment of acute respiratory viral infections and influenza is the use of drugs with several application points and synergistic action. In cases with an unspecified pathogen in a suspected or laboratory-confirmed viral mixed infection, antiviral drugs with a broad spectrum of action should be preferred. Acute respiratory viral infections and influenza can be treated with the use of the drugs that affect both the causative agent of infection (specified or unspecified) and the manifestations
of intoxication-inflammatory syndrome (fever, chills, pain, edema, catarrhal phenomena), for example, the drug Nobazit ® .

Key words: acute respiratory viral infections, ARVI, influenza virus, prevention, antiviral drugs.
For citation: Denisova A.R., Maksimov M.L. Acute respiratory viral infections: etiology, diagnosis, modern view of treatment //
RMJ. Medical Review. 2018. № 1(II). P. 99–103.

Статья посвящена этиологии, диагностике и лечению острых респираторных вирусных инфекций. Рассмотрена возможность применения препарата Нобазит.

Острые респираторные вирусные инфекции (ОРВИ) разной этиологии и грипп, по данным ВОЗ, как и прежде, занимают одно из первых мест среди всех инфекционных заболеваний. На долю этих нозологий приходится около 90–95% всех случаев инфекционных заболеваний. В Российской Федерации ежегодно болеют гриппом и ОРВИ другой этиологии около 30 млн человек, а ежегодный экономический ущерб оценивается в сумму около 40 млрд рублей [1]. Научное сообщество ученых мира озабочено малой эффективностью вакцинации и возрастающей резистентностью патогенных микроорганизмов к противовирусным препаратам, имеющимся в настоящее время в арсенале практикующих врачей. В данной ситуации актуальны поиск новых способов профилактики и лечения ОРВИ, адекватного контроля эпидемий и пандемий гриппа, оценка эффективности применяемых препаратов. Вклад отечественных ученых в создание противовирусных препаратов достаточно весом.
В настоящее время известно более 200 видов вирусов, вызывающих ОРВИ. Интенсивность, частота и доминирование тех или иных респираторных вирусов зависят от времени года и климатических особенностей.
Наиболее распространены вирусы гриппа, парагриппа, аденовирусы, коронавирусы, метапневмовирус человека, респираторно-синцитиальный вирус, риновирусы человека, бокавирусы. Кроме того, в последние годы причиной ОРВИ чаще стали выступать энтеровирусы (ЕСНО, Коксаки), реовирусы, вирус Эпштейна — Барр и др. — они могут сами вызывать поражение респираторного тракта или выступать дополнительными патогенами при наиболее распространенных вирусах [2–3].
Независимо от возбудителя входными воротами и местом локализации для инфекции являются верхние дыхательные пути, где происходит наиболее интенсивное размножение вирусов в эпителиальных клетках. Возбудители ОРВИ распространяются воздушно-капельным путем — при кашле, чихании, разговоре и посредством контаминированных предметов обихода. Длительность выживания респираторных вирусов во внешней среде составляет от 7 до 12 дней.

Вирусы

Возбудители гриппа — РНК-содержащие вирусы семейства Orthomyxoviridae. Выделяют 3 рода Influenzavirus, каждый из которых включает по одному виду вируса гриппа — А, В и С.
Вирус гриппа А обладает способностью к изменению своей поверхностной структуры посредством изменчивости поверхностных белков гемагглютинина (Н) и нейраминидазы (N). В результате могут происходить как точечные изменения в этих белках (дрейф), так и полная замена одного из поверхностных белков на новый (шифт). Это приводит к тому, что наша иммунная система не успевает достаточно быстро адаптироваться к изменчивому вирусу и выработать дифференцированный иммунный ответ. В результате отмечаются высокая восприимчивость, повсеместное распространение, короткие интервалы между эпидемиями и вовлечение всех групп населения, в т. ч. детей, подростков и пожилых людей [4, 5]. Эпидемический сезон гриппа и ОРВИ 2015–2016 гг. в РФ характеризовался доминированием вируса гриппа А(Н1N1) pdm 09, сезон 2016–2017 гг. — доминированием вируса гриппа А (Н3N2) [6].
Вирус гриппа В

выделяют только у человека. Он уступает вирусу гриппа А по уровню вирулентности, контагиозности и эпидемиологической значимости, характеризуется более плавной и медленной изменчивостью. Эпидемии, вызванные гриппом В, менее интенсивны и менее длительны, их продолжительность 3–4 нед.
Вирус гриппа С чаще всего выявляют у людей. Он в большинстве случаев протекает в легкой и бессимптомной форме [2–3].
За последние годы на территории РФ и в мире наблюдается сочетанная циркуляция вирусов типа А и В [6].
Вирусы парагриппа. Выделяют вирусы парагриппа человека пяти типов. Они, в отличие от вирусов гриппа, не обладают способностью к изменчивости. Каждой группе вируса парагриппа присущи определенные особенности. Несмотря на то что основная группа этих вирусов размножается в эпителии слизистой оболочки верхних дыхательных путей, особенно носа и гортани, эти вирусы поражают нижние дыхательные пути и вызывают бронхиолиты и бронхопневмонии. Вирусы парагриппа-1 и парагриппа-2 вызывают круп у детей [3].
Аденовирусы. Это ДНК-содержащие вирусы, которые объединяют 47 серотипов человека и 80 серотипов млекопитающих. Классификация ВОЗ подразделяет аденовирусы на 7 подгрупп (A, B, C, D, E, F, G), каждая из них, в свою очередь, включает до 19 различных серотипов. В зависимости от места локализации в организме человека они могут вызывать заболевания респираторного тракта, энтериты и конъюнктивиты. Источником инфекции служат больные люди и здоровые вирусоносители. Пути передачи аденовирусов — воздушно-капельный, фекально-оральный и контактный. Они устойчивы во внешней среде и активны при комнатной температуре до 14 дней. Все эти особенности обусловливают риск инфицирования в течение всего года с максимальными показателями в осенне-зимний период. Во время вспышек среди организованных детей заболевают от 30 до 80% дошкольников и до 40% школьников [5, 7].
Респираторно-синцитиальный вирус (РСВ). Его отличие заключается в отсутствии нейраминидазы и гемагглютинина, тропности к поверхностному эпителию слизистой нижних дыхательных путей, что делает его причиной бронхитов и бронхиолитов. Основной путь передачи — воздушно-капельный, но описаны и случаи передачи через предметы личного обихода. При комнатной температуре вирус сохраняется в течение 6 часов.
РСВ поражает людей всех возрастных групп, вызывая и спорадические заболевания, и вспышки респираторных инфекций, наиболее ярко выраженные в популяциях детей младшего возраста и пожилых людей. С РСВ связано до 70% случаев бронхитов и бронхиолитов, до 58,2% пневмоний. Перенесенный в первые годы жизни бронхиолит способствует формированию бронхиальной астмы [8].
Риновирусы. В настоящее время выделено 113 серологических типов риновирусов человека. Это РНК-содержащие вирусы, которые тропны к эпителию верхних дыхательных путей и вызывают обильные водянистые выделения из носа (профузный насморк). Основной путь передачи этих возбудителей — воздушно-капельный, однако не исключено инфицирование и через контаминированные предметы личного обихода. Из-за широкой циркуляции разнообразных серотипов вирусов и формирования кратковременного иммунитета продолжительность эпидемии может варьировать от нескольких месяцев до нескольких лет (редко встречающиеся разновидности).
Коронавирусы. Распространены повсеместно среди всех групп населения. Коронавирусная инфекция характеризуется сезонными подъемами заболеваемости и эпидемическими вспышками с интервалом в 2–3 года. В основном коронавирус участвует в инфекционных процессах, вызванных другими вирусами. Чаще всего он ассоциируется в патологических процессах, вызванных вирусами гриппа А, парагриппа, риновирусами, РСВ и аденовирусами [5].
Смешанные формы инфекции достигают 70–85% общего объема заболеваемости. Смешанные формы инфекции с участием коронавирусов отличаются тяжелым течением [3].
Метапневмовирусная инфекция. Метапневмовирус человека (МПВЧ) — первый человеческий представитель рода Metapneumovirus подсемейства Pneumovirinae в семействе Paramyxoviridae. Выделяют два генотипа МПВЧ — А и В, которые могут циркулировать параллельно во время эпидемии, но чаще один из них доминирует.
МПВЧ распространен по всему миру и имеет сезонную циркуляцию, сравнимую с таковой у вирусов гриппа и РСВ. У взрослых и детей инфекция может протекать бессимптомно, но в иных случаях вызывает клинические проявления от легких форм инфекций верхних дыхательных путей до тяжелой пневмонии [3].

Диагностика гриппа и ОРВИ

К основным методам лабораторной диагностики,
рекомендованным на территории РФ, относятся следующие:
полимеразно-цепная реакция — основана на обнаружении РНК или ДНК вирусов;
иммунофлюоресцентный и иммуноферментный анализ мазков из полости носа или с задней стенки глотки;
иммунохроматографический тест для экспресс-диагностики гриппа непосредственно при осмотре пациента [9–10];
вирусологический метод (получение культуры возбудителя);
серологическая диагностика (определение титра специфических антител в парных сыворотках).
Этиологическая диагностика гриппа и ОРВИ должна проводиться в случаях:
госпитализации больного по поводу острой инфекции дыхательных путей;
заболевания лиц с высоким риском неблагоприятного исхода — детей до 1 года, беременных, лиц с хроническими заболеваниями;
регистрации очагов ОРВИ с множественными случаями заболеваний в организованных коллективах детей и взрослых с круглосуточным пребыванием [11].
Клиническая картина ОРВИ существенно варьирует в зависимости от этиологии возбудителя, состояния иммунной системы, возраста пациента и наличия сопутствующей патологии. Но в подавляющем большинстве при гриппе и ОРВИ можно выделить три основных синдрома — интоксикационный, катаральный и геморрагический [12]. Симптомы, которые возникают в первые дни и часы заболевания, обусловлены развитием локальной воспалительной реакции в воротах инфекции. Дальнейшее развитие симптоматики зависит от активности факторов врожденного иммунитета и скорости запуска высокоспецифичных иммунных реакций, направленных на полную элиминацию вируса. Иногда возникает чрезмерная локальная воспалительная реакция, которая приводит к массивной гибели окружающих тканей и вирусемии, вследствие чего развиваются такие грозные осложнения, как отек легких, инфекционно-токсический шок, острый респираторный дистресс-синдром, полиорганная недостаточность. Таким образом, даже при наличии обычных симптомов ОРВИ с первых часов целесообразно назначение сочетания противовирусных и патогенетических препаратов (противовоспалительных и антиоксидантных).

Лечение

Заключение

На сегодняшний день не существует универсального противовирусного препарата, способного защитить от всех патогенов, ответственных за возникновение гриппа и других ОРВИ, т. к. вирусы, в силу своей изменчивости, со временем вырабатывают резистентность. Этим и обусловлена потребность в препаратах, действующих не на конкретный белок вируса, а обладающих комплексным действием на клеточные и гуморальные иммунные механизмы противовирусной защиты.

Диагностика инфекций (infectio – перевод с латинского – заражение). Инфекционные заболевания человека представляют собой группу болезней, вызываемых специфическими болезнетворными возбудителями, которые могут передаваться от зараженного человека здоровому. Нередки и случаи передачи патогенных агентов человеку от носителей инфекций или заболевших животных (зоонозные заболевания). Следует отметить, что большинство зоонозных инфекционных заболеваний не передается от человека к человеку. У человека и животных (домашних и диких плотоядных) насчитывают более 300 общих инфекционных возбудителей, из которых более 80 заболеваний вызываются бактериями, свыше 100 – вирусами, около 20 - грибами, 80 заболеваний связано с заражением гельминтами и около 20 - простейшими.

Известны инфекционные болезни, вызываемые, так называемыми арбовирусами – вирусами, передающимися людям через укусы насекомых, например клещей, комаров, блох и др., которые инфицируются от домашних или диких животных. Самая распространенная известная арбовирусная инфекция – клещевой энцефалит. Вирус геморрагической лихорадки также передается клещами. Как известно, клещи являются переносчиками и бактериальных инфекций, например клещевого боррелиоза (болезнь Лайма) или туляремии, хотя туляремию относят к зоонозным заболеваниям, передающимся человеку при непосредственном контакте с больными животными (грызунами), а также при употреблении зараженных продуктов или воды (алиментарный путь заражения). Таким образом, для каждой инфекции у человека характерен свой возбудитель и определенный путь передачи. Возбудителями инфекций могут быть бактерии, вирусы, риккетсии (микроорганизмы, сочетающие в себе особенности бактерий и вирусов), спирохеты, грибки, протозойные (паразитирующие простейшие, одноклеточные), глисты, которые выводятся из организма больного человека или животного при выдохе, мочеиспускании, дефекации, кашле, рвоте, и когда при определенных условиях этот биологический патологический материал становится источником заражения здорового человека.

Согласно литературным данным в настоящее время известно 1415 возбудителей инфекционных и паразитарных болезней. Наиболее обширную группу составляют болезни, вызываемые бактериями и риккетсиями (538 нозологий). Второе место принадлежит паразитарным болезням - 353 нозологии. Вирусные инфекции составляют 217 нозологий. Постоянно возникают новые или впервые выявленные инфекционные заболевания. Так, начиная, с 1970-х голов ежегодно регистрируется, по крайней мере, одно инфекционное заболевание. За последние годы стали известны более 30 инфекционных заболевании, это и ВИЧ, легионеллез, эпидемический ротавирусный гастроэнтерит и ряд африканских лихорадок (например лихорадка Эбола).

В настоящее время существенную роль в распространении инфекционных болезней играет развитие туризма, а также миграционные процессы.

Классификация инфекционных заболеваний

Что касается классификации основных инфекционных болезней человека, то существуют разные системы группировки инфекционных заболеваний. В нашей стране одной из наиболее распространенных является классификация Л.В. Громашевского, построенная в зависимости от локализации возбудителя в организме и механизме его передачи, таких групп насчитывается 5:

  • кишечные инфекции;
  • инфекции дыхательных путей;
  • кровяные инфекции;
  • инфекции наружных покровов;
  • инфекции с различными механизмами передачи, например передающиеся половым путем, воздушно-капельным путем (один из самых распространенных), фекально-оральный, контактный, трансмиссионный, вертикальный от матери к плоду, от матери к новорожденному в родовом акте, внесенные при операциях, инъекциях и т.п.)

Кроме того в РФ принята также международная более многоступенчатая классификация инфекционных заболеваний:

  • кишечные инфекции;
  • туберкулез;
  • бактериальные зоонозы;
  • другие бактериальные заболевания;
  • полиомиелит и энтеровирусные болезни центрально нервной системы;
  • вирусные заболевания, сопровождающиеся высыпаниями;
  • вирусные заболевания,которые передаются членистоногими;
  • другие вирусные заболевания;
  • риккетсиозы и другие инфекции, передаваемые членистоногими;
  • сифилис и другие венерические инфекции;
  • заболевания. которые вызываются спирохетами;
  • грибковые заболевания (микозы);
  • гельминтозы;
  • другие инфекции и паразитарные заболевания.

Инфекционные заболевания вызывают у пациента значительные изменения в картине крови, при многих инфекционных болезнях изменяется функция различных внутренних органов – печени, сердца, легких, мозга, почек, кишечника, практически все инфекционные заболевания протекают с изменениями широкого спектра биохимических параметров, отражающих различные стороны патогенеза. Установлено также, что, к примеру, вирусы краснухи, герпеса, коксаки, полиомиелита, цитомегаловирус и эховирусы (род энтеровирусов) могут вызывать серьезные нарушения в развитии плода и новорожденного. Кроме того в настоящее время есть основания считать, что некоторые группы вирусов могут быть виновниками возникновения диабета первого типа, к ним относят вирус Коксаки, вирус краснухи, реовирус 3 типа, вирус энцефаломиокардита, вирус эпидемического паротита, цитомегаловирус, вирус гепатита А.

Диагностика инфекций

Диагноз инфекционного заболевания основывается на анамнезе больного, эпидемиологическом анамнезе, включает инструментальные методы обследования и, как правило, диагностика инфекционных заболеваний не обходится без использования комплекса лабораторных методов. Диагностика инфекционного заболевания начинается с базовых лабораторных методов исследования: это – клинический анализ крови. Известно, например, что в клиническом анализе крови лейкоцитоз чаще всего выявляется в результате инфекционного заболевания, что многие вирусные, бактериальные и рикетсиозные болезни приводят к нейтропении (снижение нейтрофилов), а частой причиной лимфоцитоза и/или моноцитоза является инфекционный мононуклеоз.

Такой показатель крови, как скорость оседания эритрорцитотв (СОЭ), не являясь самостоятельным диагностическим показателем в силу своей неспецифичности, является индикатором общего неблагополучия и продолжает активно использоваться в медицинской практике для выявления и мониторирования инфекционных и воспалительных заболеваний различного происхождения.

Общий анализ мочи является лабораторным тестом, который часто используется при исследования инфекционных заболеваний не только почек, но и инфекций другой локализации.

Так некоторые инфекционные заболевания сопровождаются протеинурией нефротического типа (количество белка в моче не менее 3г/л). Например хронические инфекционные заболевания могут стать причиной нефротического синдрома. Развитие протеинурии нефротического типа могут вызвать, например, бактериальный эндокардит, туберкулез, сифилис, лепра, гепатит В и С, мононуклеоз, цитомегаловирусная инфекция, ветряная оспа, малярия, токсоплазмоз, шистосомиаз. Появление в моче бактерий и возникновение воспаления указывает на наличие инфекционного заболевания мочеполовой системы.

Достаточно эффективным при инфекционных заболеваниях является использование комплекса биохимических тестов, поскольку количественные и качественные изменения биохимических показателей в крови происходящие во время болезни, отражают происходящие при заболевании биохимические нарушения и позволяют следить за динамикой патологического процесса и адекватностью лечения.

К таким эффективным биохимическим параметрам, которые исследуются при инфекционных и воспалительных заболеваниях другого происхождения, например, относится – спектр белков сыворотки крови (белки острой фазы), ферменты и некоторые другие биохимические показатели. Использованием специфических лабораторных методов, например, при диагностике причин лихорадки неясного генеза, хронических инфекций выполняют ис.

В практической медицине часто требуется более глубокое лабораторное исследование с следования мазков из горла, посевы крови, мочи и других жидкостей и выделений организма для выявления бактерий, грибков, иногда, при изменениях характера стула, назначают исследования кала на яйца глист.

В настоящее время в лабораторной диагностике для выявления инфекционных возбудителей широко используются следующие специфические лабораторные методы:

  • микроскопические методы, позволяющие идентифицировать инфекционного возбудителя в биологическом патологическом материале с помощью разнообразных типов микроскопов после приготовления окрашенных или нативных мазков. , который заключается в выделении чистой культуры возбудителя из патологического материала, с дальнейшей его идентификацией по морфологическим, культуральным, биохимическим, антигенным, токсикогенным (применяя специфические методы) свойствам и определение его чувствительности к антибиотикам и другим химиотерапевтическим препаратам. Эти исследования часто проводят при подозрении на гнойно-воспалительные заболевания. , в основе которых лежит специфическое взаимодействие антигена и направленных к нему антител. Эти исследования позволяют с диагностической целью определять (качественно и количественно) как антигены так и антитела к ним. Использование в лабораторной практике таких серологических методов как: ИФА(иммунофементный анализ), иммунофлюоресцентный, иммунофлюоресцентныф анализ - позволяет определять в крови больного антитела, относящиеся к различным классам иммуноглобулинов (ИГ А, ИГ М, ИГ Ж). Существование определенной закономерности в динамике выработки специфических антител различных классов при инфекционном заболевании позволяет судить как о стадии так и об интенсивности инфекционного процесса.
  • Молекулярно-биологические методы, к которым относится полимеразная цепная реакция (ПЦР-метод).

В основе ПЦР-диагностики лежит молекулярно-биологический метод амплификации (многократное копирование) малых фрагментов нуклеиновых кислот бактерий, вирусов, хламидий, микоплазменных и др. с помощью фермента ДНК- полимереразы. ПЦР-диагностика позволяет провести прямую идентификацию нуклеиновых кислот(РНК или ДНК), то есть генетического материала, инфекционного агента в различном биологическом материале.

Диагностика инфекционных заболеваний является одной из самых сложных проблем в клинической медицине. Лабораторные методы исследования при ряде нозологических форм играют ведущую, а в целом ряде клинических ситуаций решающую роль не только в диагностике, но и в определении конечного исхода заболевания.

Диагностика инфекционных заболеваний почти всегда предусматривает использование комплекса лабораторных методов.

  • бактериологические;
  • серологические;
  • метод полимеразной цепной реакции (ПЦР) для обнаружения ДНК или РНК возбудителя инфекционного заболевания в исследуемом материале.

У одних пациентов для диагностики этиологии инфекционно-воспалительного процесса достаточно провести бактериологическое исследование, в других клинических ситуациях решающее значение имеют данные серологических исследований, в третьих, предоставить полезную информацию может только метод ПЦР. Однако наиболее часто в клинической практике врачу-клиницисту необходимо использовать данные различных методов лабораторных исследований.

Бактериологические методы исследования

Бактериологические исследования наиболее часто проводят при подозрении на гнойно-воспалительные заболевания (составляют 40-60% в структуре хирургических заболеваний) с целью их диагностики, изучения этиологической структуры, определения чувствительности возбудителей к антибактериальным препаратам. Результаты бактериологических анализов способствуют выбору наиболее эффективного препарата для антибактериальной терапии, своевременному проведению мероприятий для профилактики внутрибольничных инфекций.

Возбудителями гнойно-воспалительных заболеваний являются истинно-патогенные бактерии, но наиболее часто условно-патогенные микроорганизмы, входящие в состав естественной микрофлоры человека или попадающие в организм извне. Истинно-патогенные бактерии в большинстве случаев способствуют развитию инфекционного заболевания у любого здорового человека. Условно-патогенные микроорганизмы вызывают заболевания преимущественно у людей с нарушенным иммунитетом.

Бактериологические исследования при заболеваниях, вызываемых условно-патогенными микроорганизмами, направлены на выделение всех микроорганизмов, находящихся в патологическом материале, что существенно отличает их от аналогичных исследований при заболеваниях, вызванных истинно патогенными микроорганизмами, когда проводится поиск определенного возбудителя.

Для получения адекватных результатов бактериологического исследования при гнойно-воспалительных заболеваниях особенно важно соблюдать ряд требований при взятии биоматериала для анализа, его транспортировки в лабораторию, проведения исследования и оценки его результатов.

  • микроскопическое исследование мазка (бактериоскопия) из доставленного биоматериала;
  • выращивание культуры микроорганизмов (культивирование);
  • идентификацию бактерий;
  • определение чувствительности к антимикробным препаратам и оценку результатов исследования.

Доставленный в бактериологическую лабораторию биоматериал первоначально подвергается микроскопическому исследованию.

Микроскопическое исследование мазка (бактериоскопия), окрашенного по Граму или другими красителями, проводят при исследовании мокроты, гноя, отделяемого из ран, слизистых оболочек (мазок из цервикального канала, зева, носа, глаза). Результаты микроскопии позволяют ориентировочно судить о характере микрофлоры, ее количественном содержании и соотношении различных видов микроорганизмов в биологическом материале, а также дают предварительную информации об обнаружении этиологически значимого инфекционного агента в данном биоматериале, что позволяет врачу сразу начать лечение (эмпирическое). Иногда микроскопия позволяет выявить микроорганизмы, плохо растущие на питательных средах. На основании данных микроскопии проводят выбор питательных сред для выращивания микробов, обнаруженных в мазке.

Культивирование микроорганизмов. Посев исследуемого биоматериала на питательные среды производят с целью выделения чистых культур микроорганизмов, установления их вида и определения чувствительности к антибактериальным препаратам. Для этих целей используют различные питательные среды, позволяющие выделить наибольшее количество видов микроорганизмов. Оптимальными являются питательные среды, содержащие кровь животного или человека, а также сахарный бульон, среды для анаэробов. Одновременно производят посев на дифференциально-диагностические и селективные (предназначенные для определенного вида микроорганизмов) среды. Посев осуществляют на стерильные чашки Петри, в которые предварительно заливают питательную среду для роста микроорганизмов.

Микроскопия мазков, окрашенных по Граму

1 - стрептококки; 2 - стафилококки; 3 - диплобактерии Фридленда; 4 - пневмококки

Колонии отсевают на плотные, жидкие, полужидкие питательные среды, оптимальные для культивирования определенного вида бактерий.

Выделенные чистые культуры микроорганизмов подвергают дальнейшему изучению в диагностических тестах, основанных на морфологических, ферментативных, биологических свойствах и антигенных особенностях, характеризующих бактерий соответствующего вида или варианта.

Определение чувствительности к антибактериальным препаратам. Чувствительность к антимикробным препаратам изучают у выделенных чистых культур микроорганизмов, имеющих этиологическое значение для данного заболевания. Поэтому в направлении на бактериологические анализы требуется указать диагноз заболевания у больного. Определение чувствительности бактерий к спектру антибиотиков помогает лечащему врачу правильно выбрать препарат для лечения больного.

Оценка результатов исследования. Принадлежность условно-патогенных микроорганизмов к естественной микрофлоре организма человека создает ряд трудностей при оценке их этиологической роли в развитии гнойно-воспалительных заболеваний. Условно-патогенные микроорганизмы могут представлять нормальную микрофлору исследуемых жидкостей и тканей или контаминировать их из окружающей среды. Поэтому для правильной оценки результатов бактериологических исследований необходимо знать состав естественной микрофлоры изучаемого образца. В тех случаях, когда исследуемый биоматериал в норме стерилен, как, например, спинномозговая жидкость, экссудаты, все выделенные из него микроорганизмы могут считаться возбудителями заболевания. В тех случаях, когда исследуемый материал имеет собственную микрофлору, как, например, отделяемое влагалища, кал, мокрота, нужно учитывать изменения ее качественного и количественного состава, появление несвойственных ему видов бактерий, количественную обсемененность биоматериала. Так, например, при бактериологическом исследовании мочи степень бактериурии (число бактерий в 1 мл мочи), равная и выше 10 5 , свидетельствует об инфекции мочевых путей. Более низкая степень бактериурии встречается у здоровых людей и является следствием загрязнения мочи естественной микрофлорой мочевых путей.

Установить этиологическую роль условно-патогенной микрофлоры помогают также нарастание количества и повторность выделения бактерий одного вида от больного в процессе заболевания.

Врач-клиницист должен знать, что положительный результат бактериологического исследования в отношении биологического материала, полученного из в норме стерильного очага (кровь, плевральная жидкость, спинномозговая жидкость, пунктат органа или ткани), всегда тревожный результат, требующий немедленных действий по оказанию медицинской помощи.

Серологические методы исследования

В основе всех серологических реакций лежит взаимодействие антигена и антитела. Серологические реакции используются в двух направлениях.

2. Установление родовой и видовой принадлежности микроба или вируса. В этом случае неизвестным компонентом реакции является антиген. Такое исследование требует постановки реакции с заведомо известными иммунными сыворотками.

Серологические исследования не обладают 100%-й чувствительностью и специфичностью в отношении диагностики инфекционных заболеваний, могут давать перекрестные реакции с антителами, направленными к антигенам других возбудителей. В связи с этим оценивать результаты серологических исследований необходимо с большой осторожностью и учетом клинической картины заболевания. Именно этим обусловлено использование для диагностики одной инфекции множества тестов, а также применение метода Western-blot для подтверждения результатов скрининговых методов.

В последние годы прогресс в области серологических исследований связан с разработкой тест-систем для определения авидности специфических антител к возбудителям различных инфекционных заболеваний.

Авидность - характеристика прочности связи специфических антител с соответствующими антигенами. В ходе иммунного ответа организма на проникновение инфекционного агента стимулированный клон лимфоцитов начинает вырабатывать сначала специфические IgM-антитела, а несколько позже и специфические IgG-антитела. IgG-антитела обладают поначалу низкой авидностью, то есть достаточно слабо связывают антиген.

Затем развитие иммунного процесса постепенно (это могут быть недели или месяцы) идет в сторону синтеза лимфоцитами высокоспецифичных (высокоавидных) IgG-антител, более прочно связывающихся с соответствующими антигенами. На основании этих закономерностей иммунного ответа организма в настоящее время разработаны тест-системы для определения авидности специфических IgG-антител при различных инфекционных заболеваниях.

Высокая авидность специфических IgG-антител позволяет исключить недавнее первичное инфицирование и тем самым с помощью серологических методов установить период инфицирования пациента. В клинической практике наиболее широкое распространение нашло определение авидности антител класса IgG при токсоплазмозе и цитомегаловирусной инфекции, что дает дополнительную информацию, полезную в диагностическом и прогностическом плане при подозрении на эти инфекции, в особенности при беременности или планировании беременности.

Метод полимеразной цепной реакции

Полимеразная цепная реакция (ПЦР), являющаяся одним из методов ДНК-диагностики, позволяет увеличить число копий детектируемого участка генома (ДНК) бактерий или вирусов в миллионы раз с использованием фермента ДНК-полимеразы. Тестируемый специфический для данного генома отрезок нуклеиновой кислоты многократно умножается (амплифицируется), что позволяет его идентифицировать.

Сначала молекула ДНК бактерий или вирусов нагреванием разделяется на 2 цепи, затем в присутствии синтезированных ДНК-праймеров (последовательность нуклеотидов специфична для определяемого генома) происходит связывание их с комплементарными участками ДНК, синтезируется вторая цепь нуклеиновой кислоты вслед за каждым праймером в присутствии термостабильной ДНК-полимеразы. Получается две молекулы ДНК. Процесс многократно повторяется. Для диагностики достаточно одной молекулы ДНК, то есть одной бактерии или вирусной частицы.

Введение в реакцию дополнительного этапа - синтеза ДНК на молекуле РНК при помощи фермента обратной транскриптазы - позволило тестировать РНК-вирусы, например, вирус гепатита С. ПЦР - это трехступенчатый процесс, повторяющийся циклично: денатурация, отжиг праймеров, синтез ДНК (полимеризация). Синтезированное количество ДНК идентифицируют методом иммуноферментного анализа или электрофореза.

В ПЦР может быть использован различный биологический материал - сыворотка или плазма крови, соскоб из уретры, биоптат, плевральная или спинномозговая жидкость и т.д. В первую очередь ЦПР применяют для диагностики инфекционных болезней, таких как вирусные гепатиты В, С, D, цитомегаловирусная инфекция, инфекционные заболевания, передающиеся половым путем (гонорея, хламидийная, микоплазменная, уреаплазменная инфекции), туберкулез, ВИЧ-инфекция и т.д.

Читайте также: