Вич эукариот или прокариот

Обновлено: 24.04.2024

Формы жизни Выделяют две основные формы жизни: клеточные и неклеточные. Подавляющее большинство организмов относится к клеточным формам жизни, к неклеточным – только вирусы. Клеточные формы делятся на прокариот (доядерные) и эукариот (собственно ядерные). Прокариоты не имеют оформленного ядра, у эукариот ядро четко выражено. К прокариотам относятся бактерии и сине-зеленые водоросли, к эукариотам — растения, животные и грибы.

Вирусы Вирусы (от лат. virus — яд) не проявляют признаков жизни вне других организмов и являются внутриклеточными облигатными паразитами. Они поражают любые организмы. Вирусы — это самые мелкие организмы Земли: их молекулы видны только под электронным микроскопом. Вирусы бактерий имеют специальное название: бактериофаги или просто фаги. Изучением вирусов занимается вирусология. Вирусы были открыты в XIX в. Д. И. Ивановским: он обнаружил и описал вирус табачной мозаики. Этот вирус поражает табак, вызывая разрушение хлорофилла, из-за чего некоторые участки органов становятся более светлыми по сравнению со здоровыми. Внешне такой орган (чаще всего лист) действительно напоминает мозаику: темные участки чередуются со светлыми. Вирус — это генетический элемент, покрытый защитной белковой оболочкой. Отдельные вирусные частицы (вирионы) представляют собой симметричные тела, состоящие из повторяющихся элементов . В центре вируса находится генетический материал — ДНК (ДНК-содержащие вирусы) или РНК (РНК-содержащие вирусы). ДНК может быть двухцепочечной или одноцепочечной, кольцевой или линейной; РНК — одно- или двухцепочечной. Генетический материал вируса окружен капсидом — белковой оболочкой, выполняющей защитную функцию. Эта оболочка состоит из многократно повторяющихся полипептидных цепочек одного или нескольких белков. Снаружи от белковой оболочки может образовываться еще одна оболочка — внешняя.

Цикл вирусов. Сначала вирус прикрепляется к клетке хозяина, затем его генетический материал проникает внутрь клетки хозяина. Если вирус содержит ДНК, то она встраивается в ДНК клетки хозяина. Далее происходит образование и-РНК вируса, синтез его белков и образование новых вирусных частиц, т. е. клетка хозяина начинает работать на вирус. РНК-содержащие вирусы ведут себя немного по-другому. Если РНК вируса состоит из двух цепей, то на одной из них синтезируется и-РНК, затем происходит синтез белков вируса и т.д. У ретровирусов, также относящихся к РНК-содержащим (например, вирус иммунодефицита человека – ВИЧ), с помощью фермента обратной транскриптазы на РНК синтезируется сначала одна цепь ДНК, а затем и вторая. После этого ДНК вируса встраивается в ДНК клетки хозяина. Весь цикл может занимать несколько минут.

Вирусы вызывают различные заболевания человека: грипп, СПИД, гепатит, полиомиелит, оспу, корь, бешенство (водобоязнь), герпес, геморрагическую лихорадку.

Прокариоты К прокариотам относятся бактерии и цианобактерии, которые объединяются в царство Дробянки. У них отсутствует оформленное ядро и мембранные органоиды, генетический материал представлен нуклеоидом (молекулой хромосомной ДНК, замкнутой в кольцо) и плазмидами (небольшими внехромосомными ДНК). Характерны мелкие рибосомы (70S), расположенные в цитоплазме, и мезосомы (впячивание мембраны внутрь клетки), выполняющие функции митохондрий.

У бактерий – из муреина, у цианобактерий — из целлюлозы

У животных нет, у грибов из хитина, у растений из целлюлозы

Ядро и генетический материал

Ядра нет; кольцевая ДНК в цитоплазме, хромосом нет. Гистонов нет

Ядро есть; двуцепочечная ДНК находится в ядре, соединена с белками-гистонами и образует хромосомы


Обзор

У вирусов архей семейства Bicaudaviridae вирионы имеют крайне необычную морфологию: к одному или двум концам заостренного капсида прикрепляются белковые хвосты, длина которых может варьировать.

Автор
Редактор

Вирусы заражают все клеточные формы жизни, и археи — не исключение. Хотя сейчас известно гораздо меньше вирусов архей, чем вирусов бактерий и эукариот, разнообразие устройства их вирионов и используемых молекулярных механизмов поражает воображение: некоторые из них имеют вирионы в форме бутылки, у других генетический материал в вирионе хранится в форме А-ДНК, третьи обзавелись уникальным типом биологических мембран или используют для выхода из зараженной археи ранее неизвестные клеточные структуры. Наша статья посвящена этим пока еще малоизученным, но удивительно самобытным генетическим элементам.

Давно прошли те времена, когда археи считались обитателями исключительно тех мест, где никакая другая клеточная жизнь существовать не может, например, горячих источников. В действительности, архей можно найти везде, даже в желудочно-кишечном тракте человека, однако наиболее многочисленны они на глубоководьях морей и океанов. Так, показано, что археи, окисляющие ионы аммония до нитрата (они относятся к типу Thaumarchaeota) являются одной из самых многочисленных клеточных форм жизни в океанах. Неудивительно, что и вирусы архей также очень многочисленны: метагеномный анализ показал, что в некоторых зонах на долю вирусов архей приходится около 10% самых распространенных там вирусов. Объемы клеток архей, которые погибают из-за вирусов, тоже впечатляют: установлено, что в верхних 50 см океанического донного грунта клетки архей, лизированные вирусами, составляют до трети всей ежегодной биомассы погибших микробов, что соответствует 0,3–0,5 гигатоннам углерода ежегодно [1].

Все известные на данный момент вирусы архей имеют геномы, представленные ДНК: одноцепочечной или двухцепочечной, кольцевой или линейной. Недавно, однако, в горячих источниках Йеллоустонского национального парка, которые населены почти исключительно археей Sulfolobus solfataricus, с помощью метагеномики обнаружили вирусный РНК-геном, отдаленно напоминающий эукариотические РНК-вирусы, поэтому, возможно, существуют и РНК-содержащие вирусы архей.

Пока вирусы архей представлены 17 семействами. Стоит отметить, что вирусы архей, вообще-то, составляют две сильно различающиеся группы. К первой относят вирусы, которые структурно и генетически близки к вирусам бактерий и эукариот, а ко второй — вирусы, уникальные для архей и мало похожие на вирусы других клеточных форм. Практически все специфические для архей вирусы поражают представителей типа Crenarchaeota, а вирусы, близкие к бактериофагам и вирусам эукариот, чаще всего паразитируют на археях типа Euryarchaeota [1].

Строение вирусных частиц

Вирусы, специфичные для архей, нередко имеют вирионы необычной формы (рис. 1а).

Так, представители семейства Ampullaviridae имеют вирионы в виде бутылок из-под шампанского, причем поверх белков капсида они обтянуты липидной оболочкой. А у членов семейства Spiraviridae вирионы в виде спиралей. Столь необычная форма вирионов у вирусов этих двух семейств связана с особым способом упаковки генома при помощи белков капсида [1].

Морфология вирионов вирусов, специфичных для архей

Рисунок 1а. Морфология вирионов вирусов, специфичных для архей. Просвечивающая электронная микроскопия.

Морфология вирионов некоторых вирусов архей и бактерий

Рисунок 1б. Морфология вирионов некоторых вирусов архей и бактерий

Некоторые специфичные для архей вирусы имеют веретеновидные капсиды. Среди них у вирусов семейства Fuselloviridae на одном из заостренных концов капсида находится пучок белковых филаментов, а у членов семейства Bicaudaviridae на одном или двух концах капсида — одиночные придатки в виде хвостов. Не менее удивительна морфология вирионов Guttaviridae: у этих вирусов вирионы тоже похожи на веретено, однако один их конец закруглен и имеет каплевидную форму [1].

У многих специфичных для архей вирусов нитчатые вирионы, которые могут нести специальные придатки, предназначенные для распознавания клеток архей. Иногда, как у вирусов семейства Tristromaviridae, капсид сформирован не одним, а тремя типами белков [1].

Некоторые вирусы, специфичные для архей, имеют сферические вирионы, причем иногда поверх капсида находятся липидная мембрана и еще один слой белков, из-за чего частицы принимают икосаэдрическую форму [1].

Вирионы Pleolipoviridae по строению похожи на везикулы, которые образуют многие археи: голая геномная ДНК находится внутри мембранного пузырька, который пронизан белками двух типов. Такие пузырьки могут содержать как одноцепочечную, так и двухцепочечную ДНК линейной или кольцевой формы [1].

Морфология вирионов вирусов архей, родственных бактериофагам и вирусам эукариот

Рисунок 2. Морфология вирионов вирусов архей, родственных бактериофагам и вирусам эукариот. Просвечивающая электронная микроскопия.

Чем можно объяснить столь необычную морфологию вирусов архей? Вирионы некоторых из них удалось не только рассмотреть под электронным микроскопом, но и детально изучить с помощью криоэлектронной микроскопии. Так ученые выяснили, что геномы некоторых вирусов архей в капсидах находятся в А-форме! Это первый известный случай, когда А-форма ДНК присутствует в живых организмах в нормальных условиях. Один из вирусов с геномом в виде А-ДНК, AFV1, имеет очень тонкую липидную оболочку с необычным химическим составом — главным ее компонентом является липид глицеролдибифитанилглицеролтетраэфир (GDGT-0), имеющий необычную U-образную конфигурацию (рис. 3). В мембране, состоящей их таких липидов, их гидрофильные головки обращены наружу, а гидрофобные дуги — внутрь. Наряду с фосфолипидным бислоем и монослоем архей такое строение можно считать третьим из известных типов биологических мембран [1].

GDGT-0

Рисунок 3. Химическая структура GDGT-0 (вверху), его схематическое представление (внизу слева; красным цветом показаны гидрофильные головки) и модель (внизу справа) в U-образной конформации подпись

Геномы

Все выделенные на данный момент вирусы архей имеют ДНК-геномы (хотя, как отмечалось выше, в горячих источниках Йеллоустона с помощью метагеномики удалось найти РНК-геном возможного вируса архей). В большинстве случаев геном представлен двухцепочечной молекулой ДНК, и лишь у членов семейств Spiraviridae и Pleolipoviridae геномы состоят из одноцепочечной ДНК. Размеры геномов архейных вирусов варьируют от 5300 пар нуклеотидов (п.н.) у клававируса APBV1 (это один из мельчайших известных геномов ДНК-содержащих вирусов) до 143 800 п.н. у миовируса HGTV-1. Как правило, вирусы, специфичные для архей, имеют меньшие геномы, чем вирусы архей, родственные бактериофагам и вирусам эукариот [2].

Механизмы репликации геномов вирусов архей экспериментально изучены лишь для небольшого числа вирусов. Известно, что ДНК представителей порядка Caudovirales (которые, кстати, имеют самые большие геномы среди архейных вирусов) кодирует часть или даже все компоненты аппарата репликации ДНК: ДНК-полимеразы, белки скользящего зажима (PCNA), праймазы и хеликазы. Имеющие более скромные размеры геномов вирусы архей, как правило, кодируют белки, которые необходимы для привлечения аппарата репликации клетки-хозяина. Стоит, однако, отметить, что в геномах многих вирусов, специфичных для архей, не удалось найти белки, связанные с репликацией ДНК, так что они либо полностью зависимы от аппарата репликации клетки-хозяина, либо используют уникальные, пока еще не изученные механизмы репликации ДНК. Например, удалось показать, что и инициация, и терминация репликации генома липотриксвируса AFV1 связаны с рекомбинационными процессами [1].

Механизмы упаковки генома в капсид у вирусов архей детально не изучены. Тем не менее известно, что члены порядка Caudovirales имеют гомологи терминазы, которая упаковывает геномную ДНК в пустой капсид. Механизм формирования вирионов с использованием терминазы используют также вирусы бактерий и эукариот. Можно предположить, что упаковка генома в капсид у вирусов архей протекает так же, как и у бактериофагов и вирусов эукариот, а вот в плане репликации ДНК вирусы архей или целиком зависят от клетки-хозяина, либо используют уникальные, пока еще не изученные механизмы [1].

Взаимодействие с клеткой-хозяином

Выход зрелых вирионов из клетки архей во многих случаях напоминает отпочковывание от эукариотической клетки-хозяина у вируса гриппа, ВИЧ и вируса Эбола. Когда вирион покидает клетку археи, он забирает с собой фрагмент ее мембраны, который становится дополнительной оболочкой поверх капсида. У некоторых вирусов архей финальные стадии созревания вирионов происходят уже после выхода из клетки, когда капсид претерпевает морфологические перестройки [1].

У некоторых вирусов архей (а именно, представителей семейств Rudiviridae и Turriviridae) все стадии созревания вириона проходят в цитоплазме клетки. Новые вирусные частицы покидают клетку через специальные структуры с семиосевой симметрией на их поверхности, которые получили название вирусассоциированных пирамид (virus-associated pyramids, VAP). VAP образуются на внутренней поверхности мембраны зараженной клетки, проходят сквозь ее поверхностный S-слой и открываются на финальных этапах инфекции, давая возможность вирионам выйти из клетки (рис. 4) [1].

Вирусассоциированная пирамида

Рисунок 4. Вирусассоциированная пирамида. а и б — Пирамида на поверхности клетки археи Pyrobaculum oguniense в закрытой (а) и открытой (б) конформациях. в и г — Открытая пирамида вируса SIRV2 на поверхности Sulfolobus islandicus. а–в — Визуализация с помощью трансмиссионной электронной микроскопии. г — С помощью электронной криотомографии (CryoET).

Выход некоторых вирусов архей из клетки сопровождается ее лизисом. К их числу относятся вирусы семейства Tristromaviridae, которые, хотя и развиваются целиком в цитоплазме, каким-то образом ухитряются приобрести липидную оболочку. Примечательно, что сифовирус ψM2 кодирует фермент псевдомуреинэндоизопептидазу, который разрушает псевдомуреиновую клеточную стенку археи [1].

Эволюция и родственные связи

Вирусы, специфичные для архей, как правило, заражают только представителей типа Crenarchaeota. Они отличаются от всех других вирусов не только нестандартной морфологией вирионов, но и генетически: около 90% их генов не имеет гомологов в существующих базах данных. В геномах некоторых архейных вирусов не удалось найти ни одного белка, для которого существовал бы функционально охарактеризованный белок-гомолог.

Иногда, если гомологию не удается установить по нуклеотидным или аминокислотным последовательностям, на помощь приходят пространственные структуры. Действительно, для различных белков вирусов архей получили пространственные структуры, но ситуация от этого не стала яснее: оказалось, что во многих из них содержатся совершенно уникальные структурные мотивы. Более того, функции многих генов вирусов архей совершенно непонятны: так, оказалось, что фузелловирус SSV1 может спокойно обойтись без половины своих генов. Можно предположить, что такие неохарактеризованные гены-сироты кодируют белки, участвующие во взаимодействии вируса с клеткой архей, например, противодействующие системам CRISPR-Cas [1].

Впрочем, многие вирусы архей родственны некоторым бактериофагам и вирусам эукариот. Однако вирусы, специфичные для архей, стоят особняком среди всех ДНК-содержащих вирусов. Более того, различные группы вирусов, специфичных для архей, неродственны друг другу и эволюционируют независимо друг от друга. Высказывается предположение, что некоторые группы специфичных для архей вирусов появились на заре эволюции клеточной жизни и были впоследствии утрачены бактериями и эукариотами. Другие группы специфичных архейных вирусов могли появиться в момент обособления домена архей или даже позже, в отдельных группах архей [1].

Любопытно, что некоторые вирусы архей родственны лишенным капсидов мобильным генетическим элементам (например, плазмидам) . Эти вирусы, так же как и мобильные генетические элементы, имеют родственные гены основных белков репликативного аппарата [1], [2].

Несмотря на то, что мы только-только начинаем приподнимать завесу тайны над вирусами архей, многие уже известные особенности их морфологии или генетического аппарата поражают воображение. Несомненно, дальнейшее изучение вирусов архей при помощи метагеномики и других подходов подарит нам множество сюрпризов.


Обзор

cGAS и виперины — редкие примеры известных противовирусных систем прокариот, унаследованных эукариотами

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Что мы знаем об иммунитете прокариот?

Что объединяет грипп [1], оспу [2], бешенство [3], краснуху [4], геморрагическую лихорадку Эбола и COVID-19? Правильно, все эти заболевания человека вызываются вирусами. Есть названия и у некоторых вирусных инфекций других многоклеточных организмов: чума собак, паралич сверчка, табачная мозаика. Однако никто не придумал имена инфекционным заболеваниям прокариот. Между тем, вирусы и им изрядно досаждают. Разумеется, и прокариоты, и эукариоты обзавелись целым арсеналом средств для борьбы с паразитами, причем о защитных системах последних, а особенно об иммунной системе человека, науке известно куда больше, и информация о принципах работы врожденного и приобретенного иммунитетов давно вошла в школьный учебник.

А что у прокариот? Любой молекулярный биолог знает системы рестрикции-модификации и CRISPR-Cas, поскольку их компоненты нашли широкое применение в лабораторной практике [5], [6]. Однако это далеко не все антивирусные приспособления прокариот, известные ученым. Долгое время поиск был сосредоточен на Escherichia coli и еще нескольких модельных бактериях, но даже в такой узкой группе микроорганизмов удалось обнаружить несколько антивирусных систем с различными механизмами действия. Настоящую революцию в поиске новых антифаговых систем произвело обнаружение защитных островков (defence islands) — участков геномов прокариот, которые кодируют компоненты защитных систем [7]. Таким образом, если какой-то ген Х находится вблизи генов уже известных защитных систем в большом количестве прокариотических геномов, можно предположить, что Х тоже кодирует какой-то белок, участвующий в борьбе с вирусами. Поскольку количество прочитанных прокариотических геномов в последнее время растет как на дрожжах, этот подход позволяет ученым ежегодно находить новые гены, вовлеченные в защиту от вирусов . Так, в одной из статей 2018 года авторы описали сразу девять новых защитных систем [8], а в 2020 году одновременно две группы сообщили об обнаружении антифаговой активности у некоторых ретронов — крайне странных генетических элементов прокариот, казавшихся ранее абсолютно бесполезными [9], [10].

Еще в 2011 году обнаружили, что в защитных островках часто находятся гены, кодирующие белки-аргонавты , и с тех пор были получены убедительные свидетельства их роли в защите клеток от фагов [7], [15]. Эта находка интересна тем, что в отличие от остальных известных нам антивирусных систем прокариот, аргонавты широко распространены и среди эукариот. Странно, что до недавнего времени белки-аргонавты были единственным подобным примером. К счастью, два недавних открытия устранили это недоразумение.

cGAS — универсальный сигнальный компонент антивирусных систем

Узнавание вирусной нуклеиновой кислоты — важнейший этап активации врожденного антивирусного иммунитета у животных. Один из рецепторов, узнающих двунитевую ДНК в цитоплазме, получил название cGAS (cyclic GMP-AMP synthase), поскольку после связывания мишени начинает синтезировать циклический динуклеотид cGAMP (циклический гуанозинмонофосфат-аденозинмонофосфат, цГАМФ) из АТФ и ГТФ. cGAMP в свою очередь запускает сигнальный каскад, который активирует синтез интерферонов, необходимых в борьбе с вирусом [17].

Ученые из Weizmann Institute of Science в Израиле проанализировали 38 167 микробных геномов и обратили внимание, что из 637 прокариотических гомологов гена cGAS 417 (65,5%) находятся в защитных островках в составе оперона из 2–4 генов (рис. 1) [18]. Предположив, что такая локализация может указывать на антифаговую активность, они решили проверить, будет ли cGAS обеспечивать иммунитет штамму E. coli, в норме не содержащему такой системы. Для этого были выбраны два оперона: один из штамма E. coli TW11681, а другой из холерного вибриона Vibrio cholerae El Tor. Оказалось, что оба оперона повысили устойчивость лабораторного штамма E. coli к некоторым бактериофагам, то есть действительно функционируют как защитная система. Ученые дали этой системе название CBASS (cyclic-oligonucleotide-based antiphage signalling system).

Опероны, кодирующие cGAS

Рисунок 1. Опероны, кодирующие cGAS, находятся в защитных островках. Желтым показаны известные системы противофаговой защиты.

Теперь предстояло понять механизм действия CBASS. Первым делом исследователи проверили, появляется ли cGAMP в клетках с CBASS в ответ на фаговую инфекцию. Для этого они проанализировали состав клеточных лизатов методом масс-спектрометрии. Как и предполагалось, cGAMP обнаружился только в клетках, содержащих систему CBASS, и только после заражения фагом.

Интересно, что в обоих исследованных оперонах ген cGAS соседствовал с геном фосфолипазы CapV, которая активируется cGAMP’ом и расщепляет липиды клеточной мембраны. Выходит, что зараженная вирусом бактерия включает систему самоубийства.

Такое поведение — не редкость в мире прокариот: известен целый класс антифаговых систем под названием Abi (abortive infection), принцип действия которых заключается в том, что клетка, обнаружив фаговую инфекцию, совершает суицид до того, как фаг успеет размножиться. Таким образом, ценой жизни одной клетки достигается защита целой популяции.

Для доказательства функционирования CBASS по механизму абортивной инфекции клетки смешали с разными концентрациями фаговых частиц. В случае, когда на пять бактериальных клеток приходилась одна фаговая частица (multiplicity of infection, MOI = 0,2), то есть зараженной оказывалась лишь часть клеток, популяция бактерий, обладающих CBASS, успешно справлялась с инфекцией, а когда концентрация фаговых частиц вдвое превышала концентрацию бактерий (MOI = 2), то есть заражались сразу все клетки, лизис культуры произходил еще быстрее, чем в штамме без CBASS (рис. 2). Это означает, что суицидальная система CBASS в первом случае спасла популяцию от полного уничтожения, а во втором спровоцировала немедленную гибель всех клеток в культуре.

Графики роста культуры E. coli

Рисунок 2а. Графики роста культуры E. coli в зависимости от наличия CBASS и фаговой инфекции

Схема действия CBASS

Рисунок 2б. Схема действия CBASS: в ответ на заражение cGAS продуцирует cGAMP, который включает фосфолипазу, разрушающую клеточную мембрану

Хотя ученым и удалось обнаружить новую защитную систему прокариот, многое всё еще непонятно. Во-первых, остается загадкой, что является триггером для активации cGAS. Вряд ли это двунитевая ДНК, как у эукариот, ведь у прокариот ядра нет, и отличить геномную ДНК от вирусной не так-то просто. Во-вторых, неясно, во всех ли случаях CBASS ведет себя как система абортивной инфекции. Дело в том, что вместо фосфолипазы в состав CBASS могут входить другие белки с неизвестной активностью.

Так или иначе, cGAS заслужил место в ряду белков, вовлеченных в антивирусную защиту у представителей и прокариот, и эукариот.

Виперины — универсальная защита против вирусных РНК-полимераз

Виперин — один из белков, продуцируемый клетками животных в ответ на обработку интерферонами. Известно, что виперин подавляет репликацию многих вирусов за счет продукции ddhСTP (3′-deoxy-3′4′-didehydro-CTP, 3′-дезокси-3′4′-дидегидро-ЦТФ, ддгЦТФ) — производного одного из четырех нуклеотидов, из которых РНК-полимеразы строят РНК. ddhCTP узнается вирусными РНК-полимеразами и включается в состав РНК, но из-за отсутствия 3′-концевого гидроксила фермент не может продолжить синтез. Один из вирусов, с которым борется человеческий виперин — печально известный вирус Зика , [19].

Всё те же исследователи из Израиля заметили, что некоторые гомологи виперинов у прокариот кодируются генами, находящимися в защитных островках (рис. 3) [22]. Для подтверждения их участия в борьбе с вирусами ученые помещали гены 59 представителей прокариотических виперинов в лабораторный штамм E. coli и проверяли, придают ли они устойчивость к фаговым инфекциям. Около половины исследуемых белков показали хорошие результаты в защите от целого ряда фагов, что позволило заявить об открытии новой антивирусной системы прокариот.

Прокариотические виперины локализуются в защитных островках

Рисунок 3. Прокариотические виперины локализуются в защитных островках. Желтым выделены гены известных систем противофаговой защиты.

Для выяснения механизма работы виперинов ученые вновь прибегли к масс-спектрометрическому анализу клеточных лизатов после заражения фагом Т7. На этот раз искали ddhСTP, но нашли не только его: оказалось, что разные прокариотические виперины синтезируют производные разных нуклеотидов: ЦТФ, УТФ и ГТФ (рис. 4). Забавно, что среди продуктов виперинов не обнаружили производных АТФ. Сами авторы работы предполагают, что это связано с несовершенством системы детекции.

Филогенетическое дерево виперинов

Рисунок 4. Филогенетическое дерево виперинов. Обозначены человеческий виперин и исследованные в работе прокариотические виперины, а также их субстратная специфичность.

Чтобы проверить эффект виперинов на работу фаговой РНК-полимеразы, исследователи экспрессировали под контролем промотора фага Т7 ген зеленого флуоресцентного белка GFP в клетках E. coli, кодирующих РНК-полимеразу фага Т7, и наблюдали, что клетки флуоресцируют. Но если в таких клетках экспрессировать один из генов виперинов, GFP не синтезируется (рис. 5).

Виперины подавляют активность РНК-полимеразы Т7

Рисунок 5. Виперины подавляют активность РНК-полимеразы Т7 in vivo. МоаА — отрицательный контроль. В присутствии виперинов снижается экспрессия гена GFP, находящегося под контролем промотора Т7-РНК-полимеразы.

Полученные данные подтверждают, что прокариотические виперины борются с вирусами по тому же принципу, что и виперины животных. Хотя правильнее будет сказать, что виперины животных работают как прокариотические: филогенетический анализ свидетельствует о том, что эукариотические виперины — лишь небольшая веточка на разветвленном дереве этого белкового семейства (рис. 4).

Микробы — это модно

Людям свойственно интересоваться прежде всего собой, и уж если не видом Homo sapiens, то хотя бы животными или на худой конец растениями. Однако во все времена находились энтузиасты, исследующие необъятный мир микробов. Может, этим энтузиастам следует заняться какими-то действительно важными проблемами? Неужели мы уже все болезни научились лечить? Только вот без любителей микробов не было бы у нас ни эндонуклеаз рестрикции для клонирования, ни термофильных ДНК-полимераз для ПЦР, ни CRISPR-Cas для редактирования геномов. Если хорошенько поискать, то у прокариот непременно найдется еще много интересного и полезного! А искать сейчас удобно как никогда: информация о новых секвенированных геномах поступает непрерывным потоком, только успевай анализировать. Исследования в области прокариотических систем защиты от фагов — отличный пример такого поиска. Открытие новых антивирусных систем, общих для бактерий, архей и эукариот, показывает, что можно узнавать что-то новое про нас с вами, изучая захватывающе разнообразный мир микробов.

Все живущие на Земле организмы в зависимости от структуры их клеток относятся к одной из двух групп: прокариоты или эукариоты.

Организмы

Деление организмов на прокариотические и эукариотические сохранялось довольно долго (до 1990-х гг.), пока американский микробиолог К.Вёзе не обнаружил, что в среде прокариотов находится большая группа особей с существенными генетическими различиями.

В этой связи он предложил разделить прокариотов на бактерии и археи. В настоящий момент разделение живых организмов на эукариотов, бактерии и археи считается общепризнанным.

Прокариоты — это.

Прокариоты – это одноклеточные живые организмы без оформленного клеточного ядра. Они не развиваются, не переходят в многоклеточную форму и способны к автономному существованию.

Прокариоты – самая представительная форма жизни на Земле по количеству видов. Например, 1 грамм плодородной почвы может содержать порядка 10 млрд.бактериальных клеток.

Как уже отмечено выше, к прокариотам относятся бактерии (в том числе цианобактерии или сине-зелёные водоросли) и археи.

У прокариотов молекула органического вещества не отделена от цитоплазмы, а прикреплена к клеточной мембране. У них, как правило, бесполый способ размножения, а ДНК имеет кольцевую форму. У большинства прокариотов геном (что это?) представлен одиночной хромосомой.

Размножение

Прокариоты – это древнейшие и в то же время самые примитивные организмы на нашей планете. Они встречаются повсеместно: в воздухе, в воде, в почве, внутри живых организмов.

Их можно обнаружить в океанических глубинах, на горных вершинах, во льдах Антарктиды и Арктики. В атмосфере споры бактерий присутствуют на высоте до 15 км, а в грунт они проникают на глубину более 4 км.

По форме бактериальные клетки отличаются огромным разнообразием. Они могут быть в виде палочек (бациллы), округлыми (диплококи), шестиугольными, звездообразными, стебельковыми и т.д. Диплококки образуют пары, стрептококки – цепочки, стафилококки – скопления наподобие виноградных гроздей.

Строение бактериальной клетки в упрощённом виде выглядит следующим образом:

  1. клеточная оболочка (стенка);
  2. плазматическая мембрана;
  3. цитоплазма;
  4. хромосомная кольцевая ДНК (прикреплена к мембране);
  5. плазмиды (небольшие не прикреплённые к мембране кольцевые ДНК с небольшим набором генов);
  6. рибосомы;
  7. прокариотический жгутик(и).

Строение клетки бактерий

Подавляющее большинство прокариот размножается посредством простого бинарного деления, которое начинается с удвоения ДНК без образования хромосом.

Обе вновь образовавшиеся молекулы ДНК отделяются друг от друга плазматической мембраной, в результате чего клетка делится пополам. Таким образом, каждая дочерняя клетка содержит по одной равнозначной молекуле ДНК.

Процесс деления при благоприятных условиях происходит каждые 25-30 минут. Этот интервал может увеличиться под воздействием сдерживающих факторов, таких как нехватка пищи, солнечный свет, высокая температура и др.

По способу питания бактерии делятся на гетеротрофов (это как?) и автотрофов (это как?).

Первые представлены сапротрофами (питаются мёртвой органикой), паразитами (потребляют органику живых особей) и симбионтами (живут и питаются вмести с другими организмами). Вторые получают питание посредством фотосинтеза (путём преобразования солнечной энергии либо за счёт химического окисления неорганических веществ).

Эукариоты — это.

В отличие от прокариотов, эукариоты – это ядерные живые организмы (т.е. их клетки содержат ядро).

Они могут быть как одноклеточными, так и многоклеточными, однако строение клеток у них однотипное.

В группу эукариотов (они могут быть одно- или многоклеточными) входят растения, животные (в том числе человек) и грибы.

Клетки эукариот разделены системой мембран на отдельные отсеки, имеют схожий химический состав и однотипный обмен веществ.

Генетический материал сконцентрирован, главным образом, в хромосомах, которые образованы цепочками ДНК и белковыми молекулами. В цитоплазме располагаются мембранные органоиды.

Животные и растения

Непременным структурным элементом любой эукариотической клетки является ядро. В нём, а также в митохондриях животные клетки хранят наследственную информацию.

В растительных клетках эта информация находится не только в ядре и митохондриях, но ещё и в пластидах. Объёмное соотношение между ядром и цитоплазмой называется ядерно-цитоплазматическим индексом, с помощью которого можно оценить уровень метаболизма (это что?).

Почему грибы принадлежат к группе эукариот

У клеток грибов есть оформленное ядро, поэтому их относят к эукариотам.

Правда, изначально к эукариотам относили только растения и животных. В дальнейшем были выделены грибы как отдельное царство, так как они сочетают в себе растительные и животные признаки.

В частности, у них отсутствует хлорофилл, а питание происходит путём впитывания органических веществ из внешней среды (создавать собственную органику они не способны). Размножаются грибы как половым, так и бесполым способом.

В состав клетки эукариот входят следующие основные компоненты:

  1. ядро;
  2. ядерная мембрана;
  3. линейная ДНК;
  4. цитоплазма;
  5. митохондрии;
  6. плазматическая или клеточная мембрана;
  7. хромосомы;
  8. рибосомы;
  9. лизосомы (у животных клеток для переваривания клеточных микромолекул);
  10. хлоропласты (у растительных клеток для обеспечения фотосинтеза);
  11. эукариотический жгутик(и).

Состав клетки эукариот

Согласно самым распространённым научным гипотезам эукариоты появились порядка 1,5 млрд.лет тому назад. Многие учёные полагают, что они эволюционировали благодаря симбиогенезу, т.е. взаимодействию собственных клеток с клетками бактерий.

Отличие прокариотов от эукариотов

Главное, что отличает прокариотов от эукариотов, – отсутствие клеточного ядра.

А это значит, что ДНК прокариотической клетки не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены намного сложнее. Их ДНК упакована в хромосомы, которые располагаются как раз в ядре.

Основные отличия рассматриваемых биологических категорий сведены в таблицу:

ПрокариотыЭукариоты
Одноклеточные (за редким исключением)Одно- или многоклеточные
Не имеют сформировавшегося ядраИмеют чётко выраженное ядро (ядра) с собственной оболочкой
Наследственная информация содержится в кольцевой молекуле ДНКНаследственная информация хранится в линейной ДНК ядра, а также митохондриях и пластидах
Не имеют мембранных органоидовСодержат мембранные органоиды и немембранные структуры
Бинарное деление клеткиПрямое деление (амитоз), непрямое деление (митоз) или редукционное деление (мейоз)
Набор генов – гаплоидныйНабор генов, как правило, – диплоидный
Размножение вегетативное, споровое, почкованиемРазмножение половое с образованием гамет
Жгутик в виде белковых нитей вмонтирован в оболочку клеткиЖгутик представлен выростом клетки в виде микротрубки
Клетки имеют размер 0,1-10 мкмКлетки имеют размер 10-100 мкм

Эта статья относится к рубрикам:

Комментарии и отзывы (4)

Происхождение эукариотов является одной из самых больших тайн эволюции. Ученые до сих пор не знают, как возникло ядро и главное — почему? Есть мнение, что для качественного перехода прокариотам понадобилось войти в контакт с некими клетками или бактериями, которые либо уже существовали на планете, либо попали на Землю извне. В результате их симбиоза и возникли эукариоты.

Неприятно думать и вообще задумываться на эту тему, что нас окружают миллиарды микроскопических организмов. Хорошо, что глаз их никак не улавливает, иначе можно было бы свихнуться. А вообще, природа загадочна и удивительна!

На Марс недавно сел очередной планетоход, как раз в русло древней высохшей реки, было бы здорово, если бы этот марсоход обнаружил

там древних марсианских бактерий, пусть и мёртвых, всё равно это была бы сенсация.

Цианобактерии производят метан, а он в свою очередь усугубляет ситуацию с глобальным потеплением, поскольку этот газ создаёт парниковый эффект.


Обзор

Известны примеры, когда гены вирусов покидали вирусный мир и были отобраны для выполнения важных функций в организме хозяина. Таков оказался ген Arc, ставший ключевым игроком в обеспечении синаптической пластичности мозга млекопитающих.

коллаж автора статьи с использованием изображения с сайта Miray

Автор
Редакторы


Центр наук о жизни Сколтеха

BioVitrum

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Вездесущие убийцы

Вирусы являются самой распространенной формой жизни в окружающей среде.

В океанах вирусы составляют около 90% объектов, содержащих нуклеиновые кислоты [3]. Однако в связи с их размером, который на порядки уступает таковому у клеточных форм жизни, их вклад в биомассу океана оценивается всего пятью процентами. В то время как на прокариот, количественно составляющих около 10% объектов, содержащих нуклеиновые кислоты, приходится более 90% океанической биомассы (рис. 1). По оценкам, только в мировом океане содержится 10 30 вирусных частиц, которые непрерывно инфицируют самые разные клеточные формы жизни. Так, свыше 20% инфицированных микроорганизмов ежедневно погибает от вирусов [3].

Относительные биомасса и количество прокариот, протистов и вирусов в океанах

Рисунок 1. Относительные биомасса и количество прокариот, протистов и вирусов в океанах. Приведены усредненные данные по всей толще океанических вод.

Атмосфера Земли также полна вирусами. Показано, что в нижних слоях тропосферы сквозь квадратный метр проносятся несколько миллиардов вирусных частиц в течение суток (плотность потока колеблется в диапазоне от 0,26×10 9 до >7×10 9 шт. в м 2 за сутки). В то же время аналогичный показатель для бактерий на два порядка меньше [4]. По оценкам авторов, большинство вирусов и бактерий (~69% и ~97% соответственно) путешествуют в атмосфере, будучи прикрепленными к частицам пыли или органическим агрегатам. Этот способ глобального распространения вирусов через воздух объясняет тот факт, что идентичные или очень схожие последовательности вирусных нуклеиновых кислот были обнаружены в самых различных экосистемах планеты.

Кроме того, что вирусы являются самой распространенной формой жизни на Земле, они также обладают потрясающим генетическим разнообразием и различными механизмами репродукции в клетке хозяина. Жизненный цикл некоторых из них проходит через этап встраивания своих генов в геном клетки-хозяина. И иногда эти гены, передаваясь от поколения к поколению, остаются в нем на многие миллионы лет. Таковы некоторые ретровирусы — РНК-содержащие вирусы, чей жизненный цикл проходит через стадию интеграции своего генетического материала в геном хозяина.

Неупокоенное кладбище вирусных генов

Геномы эукариот, и в особенности многоклеточных организмов, таких как растения и животные, содержат большое количество генов, принадлежащих в прошлом ретровирусам, инфицировавшим зародышевые линии предковых видов и наследуемым вертикально от родителя к потомку. По всей видимости, обнаруженные в геномах эукариот ретротранспозоны, содержащие длинные концевые повторы (long terminal repeats, LTRs), произошли именно таким образом. LTR-ретротранспозоны включают в себя три семейства: Bel/Pao (Belpaoviridae), Ty3/gypsy (Metaviridae) и Ty1/copia (Pseudoviridae). Эти мобильные генетические элементы имеют явное сходство организации генов с таковым у ретровирусов. В общем случае они содержат ген gag, кодирующий белок (group-specific antigen, группоспецифический антиген), сходный с белком капсида ретровирусов; а также гены, необходимые для репликации и последующего встраивания ретротранспозона в новый сайт-мишень. Вдобавок у семейства Ty3/gypsy также обнаружен ген вирусной оболочки (env). Недавно, на основании накопленных филогенетических данных и схожести механизмов репликации Международным комитетом по таксономии вирусов все эти три семейства ретротранспозонов были объединены с семейством Retroviridae в один порядок Ortervirales [5].

Представленность различных мобильных генетических элементов в геномах млекопитающих и других позвоночных животных

Рисунок 2. Представленность различных мобильных генетических элементов в геномах млекопитающих и других позвоночных животных. По оси ординат указан размер генома в гигабазах (Гб) (10 9 млрд пар оснований). Красной рамкой в легенде выделены LTR-ретротранспозоны. Звездой обозначен вид Homo sapiens.

С одной стороны, сохранившие активность ретротранспозоны являются геномными паразитами, которые могут приводить к дестабилизации генома. Поэтому организмы выработали эпигенетические способы сдерживания подобных угроз, включая метилирование ДНК, модификацию гистонов и малые некодирующие РНК [11]. С другой стороны, активность LTR-ретротранспозонов приводит к дополнительной изменчивости в генофонде популяций, обеспечивая новый материал для отбора [12], [13]. Чаще речь идет об изменении регуляторных участков (промоторов и энхансеров, к примеру) эукариотических генов. Однако даже целые гены ретровирусов могут в процессе эволюции организма отбираться для выполнения определенной функции этого организма. Например, гены ретровирусной оболочки (env) способствовали возникновению класса млекопитающих (Mammalia) в том виде, в каком мы наблюдаем его сейчас . Закрепившаяся за ними функция состоит в обеспечении клеточного слияния, приводящего к формированию синцитиотрофобласта в развивающейся плаценте [14].

Другим удивительным примером вирусного гена, вставшего на службу животным, является ген Arc (другое название Arg 3.1). О нем и пойдет речь в статье.

В название этой главы легла цитата из заголовка обзорной статьи 2011 года, которую опубликовали Джейсон Шеферд и Марк Бэр на основании накопленных данных о роли Arc в обеспечении синаптической пластичности нервной системы млекопитающих [16]. Ген Arc был независимо открыт в середине 90-х годов прошлого века двумя группами ученых, одной из которых руководил Пол Уорли из США, другой — Дитмар Куль из Германии. Они обнаружили, что вскоре после судорожной активности или индукции долговременной потенциации (long-term potentiation (LTP) — устойчивого усиления синаптической передачи между двумя нейронами, возникающего после высокочастотной электрической стимуляции одного из них) происходит быстрое накопление продуктов экспрессии Arc в дендритах активированных нейронов [17], [18].

Динамика накопления мРНК Arc

Рисунок 3. Динамика накопления мРНК Arc в активированных дендритах нейронов зубчатой извилины крысы (Rattus norvegicus domestica). а — Животные, не получавшие стимуляции. б — Спустя 30 мин после стимуляции. в — 1 час после стимуляции. г — 2 часа после стимуляции. На рисунке видно, что с течением времени после стимуляции мРНК Arc распространяется от тел нейронов (темно-коричневая полоса) к их удаленным дендритам (светло-коричневая полоса). Условные обозначения: DG — зубчатая извилина; GCL — гранулярный клеточный слой; CA1 — анатомическая область гиппокампа (от лат. Cornu Ammonis 1).

Подобный характер экспрессии Arc позволил отнести его к так называемым немедленным ранним генам. Немедленные ранние гены (immediate early genes, IEGs) — разнородная группа генов, способных быстро и кратковременно активироваться в течение нескольких минут после воздействия различных экстраклеточных агентов, включая факторы роста, нейромедиаторы и деполяризацию клеточной мембраны .

Позже, на нокаутных по Arc мышам (ген инактивировали во всех клетках организма) было показано нарушение извлечения долговременной памяти в разнообразных поведенческих задачах, среди которых — водный лабиринт Морриса (задача на пространственное обучение и память), условно-рефлекторное замирание на обстановку, условно-рефлекторное замирание на звуковой сигнал, задача на распознавание новых объектов и обусловленная вкусовая аверсия. В последней из перечисленных задач животное учится ассоциировать вкус определенного вещества с последующим наступлением ухудшения самочувствия. Уровень предпочтения этого вещества после нескольких сеансов обучения говорит о сформированной памяти. В то же время, ни в одной из этих задач у нокаутных животных, по сравнению с животными дикого типа, не была нарушена кратковременная память [21]. С помощью введения в миндалевидное тело (структуру лимбической системы мозга, играющюю важную роль в формировании эмоций) антисмысловых олигонуклеотидов к мРНК Arc для ингибирования ее трансляции удалось показать нарушение извлечения долговременной памяти у мышей в задаче условно-рефлекторного замирания на звуковой сигнал. Опять же, кратковременная память нарушена не была [22].

Используя оптогенетическое ингибирование нейронов гиппокампа, экспреcсировавших Arc при обучении условно-рефлекторному замиранию на обстановку, ученые смогли блокировать извлечение сформированной памяти об этой обстановке в тестировании спустя две недели [23]. С другой стороны, локальное увеличение экспрессии Arc в зрительной коре мышей за счет введения Arc-содержащих лентивирусов, восстанавливало пластичность зрительной коры, характерную для ювенильных особей этого вида [24].

Эти и многие другие результаты с очевидностью говорят о ключевой роли гена Arc в процессе формирования долговременной памяти. А теперь вернемся к его эволюционной истории.

Arc: наследие древних ретровирусов

В 2006 году по результатам широкомасштабного анализа генома человека было выявлено 85 генов, кодирующих 103 белковые изоформы, схожие с ретровирусными белками Gag. К сожалению, на тот момент лишь немногие из этих белков были охарактеризованы и исследованы экспериментально, однако в число тех немногих входил Arc, к тому времени активно исследуемый в связи со своей ролью в синаптической пластичности мозга млекопитающих [27].

Лишь спустя без малого 10 лет это наблюдение привлекло внимание нейробиологов. Научный коллектив под руководством Пола Уорли, одного из первооткрывателей Arc, с помощью рентгеноструктурного анализа установил трехмерную структуру N- и C-доменов (относительно стабильных фрагментов третичной структуры белка, укладка которых проходит независимо от остальных частей этого белка) белка Arc. Выяснилось, что трехмерная структура этих доменов имеет значительное сходство с доменом капсидного белка Gag вируса иммунодефицита человека, принадлежащего к семейству Retroviridae (рис. 4). Ученые предположили, что Arc может происходить от Ty3/gypsy ретротранспозонов [28]. Кроме того, N-домен имеет функциональный сайт связывания субъединицы ɣ2 трансмембранного пептида, регулирующего AMPA-рецепторы (transmembrane AMPAR regulatory protein gamma subunit 2, TARPɣ2, или старгазин). Известно, что AMPA-рецепторы — самый распространенный тип рецепторов, передающих быстрые возбуждающие сигналы в синапсах нервной системы позвоночных. Таким образом, структура N-домена белка Arc может опосредовать его роль в приобретении долговременной памяти, о которой шла речь выше.

Трехмерная структура доменов белка Arc

Рисунок 4. Трехмерная структура доменов белка Arc. 3D-совмещение N- и C-доменов (синий (а) и оранжевый (б) соответственно) с соответствующими доменами капсида вируса иммунодефицита человека (HIV). Розовым цветом показана субъединица ɣ2 трансмембранного пептида, регулирующего AMPA-рецепторы.

В том же году появились первые указания на то, что рекомбинантный человеческий белок Arc, как и белки вирусных капсидов, способен к обратимой самоолигомеризации при физиологических условиях [29]. Но самое интересное ждало исследователей впереди. После того, как было открыто вирусное происхождение гена Arc, учитывая его важную роль в обеспечении синаптической пластичности, резонно было задаться вопросом: какими свойствами ретровирусов он может обладать?

Для начала авторы провели масштабный филогенетический анализ и обнаружили высоко консервативные ортологи мышиного гена Arc у всех исследованных наземных позвоночных, но не у рыб и других вторичноротых. Ортологи и паралоги гена Arc плодовой мушки Drosophila melanogaster, darc1 и darc2, были обнаружены у так называемых настоящих мух (секция Schizophora), но отсутствовали у других исследованных первичноротых (рис. 5) [30].

Филогененетическое дерево Arc

Рисунок 5. Филогененетическое дерево, отражающее эволюционные связи гена Arc наземных позвоночных (четвероногих), darc1 мух и gag, родственных Ty3/gypsy ретротранспозонам. Указаны следующие ретровирусные гены: группоспецифического антигена Gag (обозначен зеленым), белка капсида; полимеразы Pol (обозначен оранжевым), необходимой для репликации и последующего встраивания вирусной ДНК в геном хозяина; белка вирусной оболочки Env (обозначен голубым).

Интересно, что в этом же номере журнала вышла не менее потрясающая статья, в которой был описан механизм транс-синаптической передачи белка dArc1 и его мРНК в нейро-мышечном контакте у личинок плодовых мушек [31]. По всей видимости, наземные позвоночные, обладающие лишь одной копией гена Arc, приобрели его независимо от генов darc настоящих мух, у которых произошло несколько раундов дупликаций этого гена. Однако и тот, и другой имеют значительную гомологию в ретровирусном Gag-домене [30].

Капсидоподобные структуры, формируемые белком Arc

Взаимодействие Arc с РНК

Эндогенный Arc способствует переносу мРНК Arc от нейрона к нейрону

Однако самым удивительным в этой истории оказалось, что перенесенная мРНК Arc начинает транслироваться в дендритах нейронов при деполяризации их мембраны. Ранее было показано, что мРНК Arc транслируется при активации метаботропных глутаматных рецепторов mGluR1/5 (обеспечивающих медленную, опосредуемую метаболическими путями, реакцию на глутаматергические сигналы), например, их агонистом DHPG (3,5-дигидроксифенилглицином) [32]. Авторы повторили выше описанные эксперименты по переносу мРНК Arc в нейроны гиппокампа нокаутных по Arc мышей, но в этот раз добавили в культуральную среду DHPG, вызвав деполяризацию мембраны их дендритов. В итоге в дендритах этих нейронов количество белка Arc достоверно значимо увеличивалось (рис. 9). В свою очередь ингибитор трансляции циклогексимид (CHX) блокировал эффект увеличения количества белка Arc в дендритах, вызванный добавлением DHPG в культуральную среду.

Трансляция экзогенной мРНК Arc при деполяризации мембраны дендритов

Полученные результаты сложно переоценить: по сути, был открыт новый механизм коммуникации между нейронами, непосредственно связанный с их электрической активностью. И это открытие, как и любое другое в естественных науках, рождает множество новых вопросов, требующих дальнейших исследований.

Например, какие молекулярные механизмы опосредуют выход капсидоподобных структур Arc из нейрона-донора и их проникновение в нейрон-акцептор? Или, учитывая гомологию Arc млекопитающих и darc1 мух, является ли это результатом конвергентной эволюции? Если да, то какие эволюционные требования привели к отбору этих генов для обеспечения функций нервной системы в столь далеких друг от друга таксонах? Вне всяких сомнений в ближайшем будущем нас ждет еще немало удивительных открытий, связанных с геном Arc, потомком древних ретровирусов.

Подробнее эти и другие вопросы, связанные с геном Arc, обсуждаются в обзоре [33].

Читайте также: