Антигенов таких бактерии вирусы антитела работают вместе

Обновлено: 27.03.2024

Антигены и антитела. Серологические реакции между антигенами и антителами.

Антигены – генетически чужеродные вещества, которые при введении в организм животного или человека вызывают специфический иммунный ответ — синтез антител, формирование сенсибилизированных Т-лимфоцитов, иммунологической памяти или толерантности. Под чужеродными веществами понимаются химические структуры, которых нет в организме. Инородными для организма человека являются вирусы, микроорганизмы, а также клетки, ткани, органы животных и других людей. Антигены имеют несколько рецепторов для связи с антителами и способны вступать в реакцию с ними как в организме животного или человека (in vivo), так и вне организма – в пробирке (in vitro).

Антитела - высокомолекулярные белки глобулиновой фракции сыворотки крови. Антитела синтезируются под влиянием антигена и способны специфично реагировать (соединяться) с соответствующим антигеном. Все антитела имеют характерную структуру иммуноглобулинов; отличаются по иммунологическим, биологическим и физическим свойствам; и делятся на 5 классов – ІgG , ІgА, ІgМ, ІgD и ІgЕ.

Иммуноглобулины

Серологические реакции

В лабораторной практике используют серологические реакции — лабораторные реакции между антигенами и антителами, которые приводят к регистрируемым изменениям в исследуемой системе. Эти реакции получили название серологических, так как для их постановки используют сыворотку (serum), содержащую антитела.

Серологические исследования, выполняемые для обнаружения специфических антител и антигена возбудителя при инфекционных заболеваниях, — более доступные методы лабораторной диагностики, чем бактериологическое выявление возбудителя. В ряде случаев серологические исследования остаются единственным методом диагностики инфекционных заболеваний.

Некоторые методы определения антител, используемые в лабораторной практике

1. Реакция связывания комплемента

Комплемент - это система белков плазмы крови, которая включает в себя 9 компонентов указанных буквой С (С1, С2, С3. С9), фактор В, фактор D и ряд регуляторных белков. Некоторые из этих компонентов состоят из 2 - 3 белков, например С1 - это комплекс из трех белков. Эти белки циркулируют в кровеносном русле и присутствуют на мембранах клеток. Комплемент является важнейшей системой как врождённого, так и приобретённого иммунитета. Эта система предназначена для защиты организма от действия чужеродных агентов и участвует в реализации иммунного ответа организма. Комплемент был открыт в конце 19-го столетия бельгийским ученым Ж. Борде.

Реакция связывания комплемента (РСК) – серологическая реакция, используемая для количественного определения комплементсвязывающих антител и антигенов. Впервые описана Борде и Жангу (Bordet - Gengou) в 1901 году. РСК основана на том, что комплекс "антиген - антитело" способен поглощать комплемент, который добавляют в реакционную смесь. При соответствии друг другу антигенов и антител они образуют иммунный комплекс, к которому присоединяется комплемент. Специфический иммунный комплекс адсорбирует комплемент, добавленный в систему, т.е. происходит связывание комплемента комплексом антиген - антитело. Чем больше антител, тем больше фиксируется комплемента. Если же комплекс "антиген - антитело" не образуется, то комплемент остается свободным.

Сложность РСК состоит в том, что реакция образования комплекса "антиген - антитело – комплемент" невидимая. Для выявления компонентов реакции используют дополнительную индикаторную гемолитическую систему. С помощью реакции гемолиза проводится количественное определение остатка комплемента после окончания реакции антигена с антисывороткой.

Реакцию связывания комплемента (РСК) используют для выявления антител на определенный антиген или определяют тип антигена по известному антителу. В этой сложной серологической реакции участвуют две системы и комплемент. Первая система - бактериологическая (основная), состоит из антигена и антитела. Вторая система - гемолитическая (индикаторная). В нее входят эритроциты барана (антиген) и соответствующая им гемолитическая сыворотка (антитело).

РСК ставят в два приема: вначале соединяют антиген с испытуемой сывороткой крови, в которой отыскивают антитела, а затем добавляют комплемент. Если антиген и антитело соответствуют друг другу, то образуется иммунный комплекс, который связывает комплемент. При отсутствии в сыворотке антител иммунный комплекс не образуется и комплемент остается свободным. Поскольку процесс адсорбции комплемента комплексом визуально невидимый, то для выявления этого процесса добавляют гемсистему.

В связи с высокой чувствительностью реакция связывания комплемента (РСК) применяется как для серологической диагностики бактериальных и вирусных инфекций, аллергических состояний, так и для идентификации антигенов (выделенной бактериальной культуры).

2. Реакция преципитации

Реакция преципитации

Реакция преципитации (РП) (от лат. praecipitatio – выпадение осадка, падение вниз) основана на выпадении в осадок специфического иммунного комплекса, состоящего из растворимого антигена и специфического антитела в присутствии электролита. В результате реакции образуется мутное кольцо или рыхлый осадок – преципитат. Реакция преципитации происходит между водорастворимым антигеном и антителом, получаются крупные комплексы, которые выпадают в осадок

3. Реакция флоккуляции

Реакция флоккуляции (по Рамону) (от лат floccus - хлопья шерсти, flocculi – клочья, хлопья; flocculation – образование рыхлых хлопьевидных агрегатов (флокул) из мелких частиц дисперсной фазы) - появление опалесценции или хлопьевидной массы (иммунопреципитации) в пробирке при реакции токсин - антитоксин или анатоксин – антитоксин. Ее применяют для определения активности антитоксической сыворотки или анатоксина.

4. Реакция агглютинации

Агглютинация (от лат. agglutinatio — склеивание) – это реакция взаимодействия антигена со специфическим антителом, которая проявляется в виде склеивания. При этом антигены в виде частиц-корпускул (микробные клетки, эритроциты и др.) склеиваются антителами и выпадают в осадок (агглютинат) в виде хлопьев. Агглютинаты обычно видны невооруженным глазом. Для появления реакции необходимо присутствие электролитов (например, изотонического раствора хлорида натрия), ускоряющих процесс агглютинации.

С помощью реакции агглютинации (РА), reactio agglutinationis (англ. agglutination test) выявляют антитела или корпускулярные антигены. В зависимости от вида используемого иммунодиагностикума различают реакцию микробной агглютинации, гемагглютинации, латексагглютинации, коаглютинации и т.д.

5. Название антител, участвующих в осадочных реакциях

Антитела, участвующие в осадочные реакциях, получили традиционное название по своему взаимодействию с антигеном:

агглютинины – вызывают склеивание корпускулярного антигена – агглютиногена и осаждение комплекса антиген - антитела (агглютината);

В лизирующих реакциях участвуют бактериолизины (вызывают лизис бактерий) и гемолизины (вызывают лизис эритроцитов).


Обзор

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Антитела как лекарства

В фармакологии используются два основных понятия: лекарство и мишень. Мишень — это структура организма, связанная с определенной функцией, нарушение которой приводит к заболеванию. В случае болезни на мишень можно оказать определенное воздействие, которое должно привести к лечебному эффекту. Лекарством называется вещество, специфически взаимодействующее с мишенью и влияющее на состояние клетки, ткани, организма [1]. В качестве мишени может выступать рецептор на поверхности клеточной мембраны, фермент или канал, проводящий в клетку различные соединения. Однако путь к потребителю для любого лекарства долог: после подтверждения его функциональной активности следуют стадии доклинических и клинических испытаний, на которых малые молекулы подстерегает опасность так никогда и не стать лекарством. Под действием ферментных систем пациента они могут стать ядовитыми, или их изомеры окажутся токсичными. Низкомолекулярное вещество может выводиться слишком быстро или, напротив, накапливаться в организме, отравляя его. Поэтому в последние годы всё бóльшую долю на рынке лекарственных средств занимают макромолекулы, и среди них важнейшую роль играют антитела — защитные белки организма (рис. 1).

Структура антитела

Рисунок 1. Структура антитела. Антитело состоит из двух тяжелых (HC) и двух легких (LC) аминокислотных цепей, соединенных между собой. Каждая из этих цепей имеет вариабельный домен (VH или VL), который ответственен за связывание антигена. Вариабельным он называется именно потому, что эти участки наиболее сильно отличаются у разных антител, то есть представлены множеством вариантов. Участок, который отщепляется ферментом папаином, называется Fab-фрагментом.

От структуры антитéла зависят такие важные свойства, как связывание им антигена, прочность этого связывания и стабильность молекулы. Однако природа создания антител в организме очень сложна, и никто не может гарантировать, что в ответ даже на идентичные антигены образуются одинаковые по структуре антитела. Если же для создания лекарства или диагностического набора используются антитела к одному и тому же антигену, но обладающие разной структурой, то из-за разницы в стабильности и специфичности о стандартизации и воспроизводимости результатов работы можно будет забыть. Это означает, что такие антитела никак не могут стать диагностическими или лекарственными. Отсюда вывод: нужны антитела с идентичной структурой.

Получение антител для нужд человека, как правило, начинается с иммунизации животных. Проводится несколько инъекций антигена, и в сыворотке крови накапливаются специфические антитела. Эти антитела, полученные напрямую из сыворотки иммунизированного животного, произведены разными плазматическими клетками, то есть они поликлональны. Для получения совершенно идентичных — моноклональных — антител в семидесятых годах прошлого века учеными Георгом Кёлером и Сéсаром Мильштейном был разработан метод гибридóм [3]. Он основан на слиянии плазматических лимфоцитов (продуцируют антитела, но не живут в культуре) и клеток миеломы (это опухолевые клетки, которые ничего не продуцируют, но зато замечательно культивируются), в результате чего такая гибридная клетка от В-лимфоцита наследует способность выделять нужные исследователям антитела, а от опухолевой — бессмертие (практически бесконечное деление).

Библиотека в пробирке

Метод, который был назван фаговым дисплеем, основан на способности бактериофагов (вирусов, поражающих бактерии) выставлять на своей поверхности случайные пептидные последовательности в составе поверхностных белков [5]. Бактериофаг представляет собой ДНК, окруженную белковой оболочкой — капсидом, — и способен размножаться только внутри клетки-хозяина. Проникая туда, он беззастенчиво пользуется ферментными системами несчастной бактерии, предоставляя ей свою ДНК для синтеза необходимых для его размножения белков [6]. Инфицированная фагом бактериальная клетка послушно воспроизводит всё, что закодировано в геноме вируса, чтобы его потомство собрало свою оболочку из готовых строительных блоков. Если в геном фага-прародителя исследователем внедрена нуклеотидная последовательность, кодирующая нужный пептид, у его потомства на поверхности вирусной частицы появляется несколько копий гибридного капсидного белка, состоящего из собственной полипептидной цепи и фрагмента антитела. Множество бактериофагов, на поверхности которых представлены случайные фрагменты антител, называется фаговой библиотекой (рис. 2).

Создание библиотек антител

Рисунок 2. Создание синтетических и природных библиотек антител. За основу библиотеки берутся нуклеотидные последовательности вариабельных доменов антител (иммуноглобулинов, Ig), природные или синтетические. Далее их случайным образом комбинируют, и в результате образуется множество фрагментов антител, на основе которых можно создать фаговую библиотеку [8].

Схема селекции

Рисунок 3. Схема селекции. Создание фаговой библиотеки из синтетического или природного источника предполагает образование структур, объединяющих в себе как нуклеотидные, так и аминокислотные последовательности фрагмента антитела (генотип-фенотип-структура). Затем обеспечивается контакт с антигеном (привязанным к пластику дисплейной библиотеки), который специфически связывается с определенными фрагментами антител, экспонированными на фаговой частице.

Обычно проводится 3–4 раунда селекции, в результате чего отбирается ДНК уже сравнительно небольшого количества фагов, и на ее основе в бактериальных клетках нарабатываются фрагменты антител для дальнейшего анализа. По источнику материала дисплейные библиотеки можно разделить на три группы.

  1. Библиотеки на основе ДНК иммунных клеток здоровых людей называются наивными. Раз люди-доноры здоровы, значит, их иммунным клеткам не доводилось сражаться с по-настоящему опасными антигенами. Как любого, кто не решал серьезных жизненных проблем, их называют наивными.
  2. Сфокусированные библиотеки создаются из клеток иммунизированного животного. В этом случае иммунной системе животного приходится потрудиться, ведь в течение нескольких недель ее регулярно атакуют, заставляя вырабатывать поликлональные антитела. Антиген, который вводят исследователи, оказывается в фокусе внимания иммунной системы животного, что увеличивает число вариантов антител к нужному антигену.
  3. Синтетические библиотеки состоят из генов, синтезированных искусственно [8].

Каждый из перечисленных видов библиотек имеет свои достоинства и недостатки. Например, синтетические библиотеки базируются на небольшом количестве структур вариабельных доменов антител, поэтому работать с ними гораздо проще, чем с природными, которые содержат разнообразные по термодинамическим и экспрессионным характеристикам последовательности. Зато при использовании вариантов из природных библиотек ниже вероятность развития иммунного ответа [9].

Полученные таким способом молекулы можно подвергнуть изменениям, совершенствуя их свойства. Кроме того, из одного и того же фрагмента антитела можно создать целый ряд терапевтических агентов. В зависимости от цели терапии его можно связать с токсином (например, для борьбы с опухолью), с цитокином (для адресной доставки к больному месту) или с другим фрагментом-помощником, даже с радионуклидом.

Успех современной фармакологии во многом зависит от развития таких областей науки, как молекулярная биология, биоинформатика и генная инженерия. Благодаря этим дисциплинам стало возможным синтезировать нужные последовательности ДНК, комбинировать и изменять их, а также получать животные белки в бактериальных системах. Несомненным достоинством современных технологий является то, что с их помощью можно не только получать аналоги уже существующих антител, но и создавать совершенно новые [7].

Рано праздновать победу!

Несмотря на все преимущества антител перед малыми молекулами, с их применением возникли проблемы. В 2004 году было обнаружено, что в нескольких случаях прием инфликсимаба (ремикейда, Remicade) — противовоспалительных моноклональных антител — сопровождался развитием у пациентов лимфом. В мае 2006 года в журнале Американской медицинской ассоциации (JAMA) опубликовали данные, что ремикейд усиливает риск развития рака в три раза [10]. В июне 2008 года FDA сообщило о возможной связи развития лимфом и других видов опухолей у детей и подростков с приемом ремикейда.

Установлено увеличение риска смертельного исхода у онкологических больных при приеме авастина (2,5%) — блокатора фактора роста эндотелия (VEGF) — по сравнению с использованием только химиотерапии (1,7%). Дело в том, что сам по себе Avastin (бевацизумаб) не взаимодействует с раковыми клетками. Он блокирует фактор роста эндотелия (клеток выстилки сосудов), который выделяет опухоль, чтобы создать вокруг себя больше кровеносных сосудов для интенсивного питания. Опухоль выделяет такой же VEGF, как и другие, здоровые части организма, поэтому блокирование роста определенной доли нужных организму сосудов (например, сосудов для питания сердца) оказывается неизбежным. Таким образом, в случае применения авастина повышение смертности пациентов связано не с основным заболеванием, а с сердечной недостаточностью [10].

Современные протоколы уже основаны на комбинированном подходе к лечению, включая вакцины, химиотерапию и моноклональные антитела. Исследователям еще предстоит разработать такие препараты и схемы терапии, которые обеспечат эффективное и безопасное лечение пациентов.


Обзор

Биспецифические антитела могут бить по различным биологическим мишеням одновременно

иллюстрация Дарьи Боголюбовой-Кузнецовой

Автор
Редакторы

Терапевтические антитела — прекрасный пример реализации принципа таргетной терапии: к мишени — молекуле, играющей важную роль в развитии заболевания, — разрабатывается антитело, способное специфически связываться с ней. Но биотехнологии пошли дальше. Сейчас ведут активные разработки биспецифических антител, взаимодействующих одновременно с двумя молекулярными мишенями. Биспецифичность позволяет проявлять необычные биологические эффекты, связывая друг с другом молекулы, процессы и клетки. Подробнее о том, как поразить сразу две мишени и как именно их выбрать, читайте в этой статье — первой в цикле, посвященном биспецифическим антителам.


Биспецифические антитела

Спецпроект о биспецифических антителах, особенностях их строения, свойств, получения и применения в современной медицине.

Партнер спецпроекта — компания Cytiva, занимающаяся оснащением научно-исследовательских лабораторий, фармацевтических и биотехнологических производств приборами, расходными материалами и реактивами.

Моноспецифические антитела: черпаем идеи у природы

Как устроено антитело

Строение Y-образного антитела

Рисунок 1. Строение Y-образного антитела. Оно состоит из двух зеркальных половин, соединенных дисульфидным мостиком.

Разделение антитела на функциональные части позволило со временем разрешить вопрос о том, как сочетается почти идентичное строение антител с их невероятной специфичностью. Действительно, бóльшую часть антитела занимают константные участки — консервативные по своей структуре домены, сходные друг с другом. Fc-фрагмент и часть Fab-фрагмента полностью состоят из таких доменов. Специфичность же антителу придают небольшие N-концевые участки в составе Fab-фрагмента (рис. 1).

Как работает антитело

Главными функциями Fab-фрагмента являются распознавание и связывание антитела с антигеном (рис. 2). В этом случае антитело способно напрямую воздействовать на клетку, провоцируя гибель по механизму апоптоза, или же действовать опосредованно, например, как при блокировании PD-L1. PD-L1 — молекула на поверхности опухолевой клетки, которая при взаимодействии с рецептором PD-1 на поверхности цитотоксических Т-клеток вызывает снижение их активности. Таким образом, блокируя путь, снижающий активность Т-клеток, мы стимулируем их к борьбе с опухолевыми клетками.

Fc-фрагмент выполняет не менее интересные функции (рис. 2) [4], [5].

Процессы, опосредованные Fc-фрагментом

Рисунок 2. Процессы, опосредованные Fc-фрагментом. Антитела могут служить для привлечения иммунных клеток, убивающих клетки-мишени, а также для активации системы комплемента.

Так, с помощью Fc-фрагмента реализуется процесс антитело-зависимой клеточной цитотоксичности (antibody-dependent cell-mediated cytotoxicity, ADCC). Антитело с помощью Fab-фрагмента связывается с антигеном на поверхности, например, опухолевой или пораженной вирусом клетки, а с оставшимся свободным Fc-фрагментом взаимодействует NK-клетка (естественный, или натуральный, киллер). Вследствие этого NK-клетка оказывается в непосредственной близости от неугодной организму клетки, активируется и уничтожает ее.

Классические природные антитела — моноспецифические, однако при длительной пассивной иммунизации, а также при ряде заболеваний отмечено образование и биспецифических антител. Роль таких антител в природе до сих пор не ясна и активно изучается. Так, при аутоиммунном тиреоидите у части больных появляется биспецифическое антитело, которое связывается одновременно с тиреоглобулином и тиреоидной пероксидазой и выполняет, вероятнее всего, защитные функции, снижая активность системного воспаления [8].

По структуре биспецифические антитела принципиально разделяют на два типа (рис. 3): первые напоминают полноразмерные антитела (так называемые Y-образные биспецифические антитела), вторые же состоят, как правило, из одних только вариабельных участков, сшитых линкером [9]. Важным отличием Y-образных антител является наличие Fc-фрагмента, который способен привлекать различные иммунные клетки или активировать систему комплемента, таким образом осуществляя рассмотренные выше механизмы иммунитета (ADCC, ADCP и CDC).

Два типа биспецифических антител

Рисунок 3. Два типа биспецифических антител: Y-образное и состоящее только из двух вариабельных доменов.

Принцип рекрутирования иммунных клеток

Мультиэпитопное таргетирование и мультитаргетирование

Рисунок 5. Мультиэпитопное таргетирование и мультитаргетирование с применением биспецифических антител. Биспецифическое антитело связывается с двумя эпитопами одного антигена (слева), либо с двумя мишенями на поверхности одной клетки (справа).

Существуют подходы, в которых используют исключительно антигенсвязывающие свойства антител. Биспецифические антитела могут применять для того, чтобы пространственно сблизить нужные клетки или факторы. Так, биспецифическое антитело анти-IXa—анти-X (эмицизумаб) способно димеризовать эти факторы, выступая в качестве искусственного лиганда при отсутствии природного (фактора VIII) у больных с гемофилией А (рис. 6) [11], [12].

Эмицизумаб

Рисунок 6. Биспецифическое антитело эмицизумаб имитирует фактор VIIIа, что используется при лечении гемофилии А. I — у здоровых людей фактор VIIIa участвует в димеризации факторов IXa и X, что необходимо для функционирования так называемого внутреннего пути свертывания крови. II — у больных гемофилией А наблюдается дефект фактора VIIIа. Биспецифическое антитело имитирует фактор VIIIа, связывая друг с другом факторы IXa и X.

Гемофилия

Гемофилия — редкое наследственное заболевание, связанное с дефектом плазменного звена гемостаза — нарушением коагуляции. Существует три типа гемофилии:

Биспецифические антитела также используют в качестве транспортных агентов, с помощью которых можно преодолевать, например, труднодоступный для лекарственных препаратов гемато-энцефалический барьер (ГЭБ) (рис. 7) [13], [14].

Биспецифические антитела и гемато-энцефалический барьер

Рисунок 7. Биспецифические антитела, способные преодолевать гемато-энцефалический барьер. Биспецифическое антитело за счет одного своего вариабельного участка связывается с рецепторами, обеспечивающими преодоление ГЭБ, а за счет другого взаимодействует с мишенью на поверхности нейрона.

Все эти преимущества одновременного распознавания двух мишеней могут быть использованы в медицине.

Биспецифические антитела в клинической практике

Сейчас на разных этапах разработки находится более 60 биспецифических антител [15]. Как и для прочих биотерапевтических препаратов, процесс этот крайне непрост, недешев и трудоёмок . Поэтому рассказы об иммунологических конструкторах с невероятными биологическими свойствами могут так и остаться рассказами без убедительных примеров успешных препаратов, добравшихся до реального клинического использования.

О том, как устроены современные клинические испытания, рассказывает наш одноименный спецпроект.

Катумаксомаб — гроза EpCAM-позитивных карцином

Катумаксомаб

Рисунок 8. Строение и принцип действия катумаксомаба. Катумаксомаб — Y-образное биспецифическое антитело, привлекающее лимфоциты на EpCAM-экспрессирующие клетки карциномы. Противоопухолевый ответ усиливается за счет привлечения NK-клеток и макрофагов за счет Fc-фрагмента.

Катумаксомаб применяется для лечения EpCAM-позитивных карцином [17]. Комплексный механизм действия приводит к достаточно эффективному уничтожению раковых клеток; вместе с тем, наблюдается развитие большого количества побочных эффектов, так или иначе связанных с избыточным воспалительным фоном. Для снижения серьезных побочных эффектов помимо классического внутривенного введения, разработаны подходы по введению антител в брюшную полость при соответствующей локализации опухоли.

Блинатумомаб — новое слово в лечении В-клеточных лейкозов и лимфом

Блинатумомаб — биспецифическое анти-CD3—анти-CD19 антитело, рекрутирующее Т-клетки на В-клетки (рис. 9); препарат зарекомендовал себя при лечении рецидивов и рефрактерных форм В-клеточных злокачественных заболеваний, таких как В-клеточный острый лимфобластный лейкоз и неходжкинская лимфома [18].

Принцип действия блинатумомаба

Терапия с помощью лимфоцитов, несущих анти-CD19 химерный рецептор (CD19 CAR-Т лимфоциты)

Помимо блинатумомаба, для лечении В-клеточных злокачественных заболеваний в настоящее время используется еще один вид таргетной иммунотерапии — клеточная терапия с помощью CD19 CAR-Т-лимфоцитов (рис. 10) [27].

Принцип действия блинатумомаба и CD19 CAR-T-лимфоцитов

Рисунок 10. Принцип действия блинатумомаба и CD19 CAR-T-лимфоцитов.

CD19 CAR-T — Т-лимфоцит с химерным рецептором, распознающим CD19. Принцип подхода заключается в использовании собственных (аутологичных) Т-клеток пациента, экспрессирующих генно-инженерный рецептор, сочетающий в себе scFv-часть от моноклонального антитела с заданной специфичностью и внутриклеточную сигнальную часть от Т-клеточного рецептора, его CD3ζ-цепи. В использующихся сегодня CD19 CAR-T-клетках в структуре внутриклеточного домена также используют дополнительный костимуляторный домен, заимствованный от физиологических костимуляторных молекул CD28 или 4-1BB, для полной активации CAR-T-клеток при взаимодействии с клеткой-мишенью. И блинатумомаб, и CD19 CAR-T в качестве мишени используют рецептор CD19 на поверхности В-клетки; и в том, и в другом случаях используют аутологичные Т-лимфоциты. Создание CAR-T-клеток — довольно трудоемкий процесс, заключающийся в отборе Т-клеток из периферической крови, введении в них генетических конструкций, несущих химерный рецептор, проверке эффективности и безопасности и введении клеток обратно пациенту. Таким образом, терапия CAR-T-клетками является своего рода генной терапией ex vivo. В отличие от этого, блинатумомаб действует внутри организма, то есть in vivo.

CD19 CAR-T-клетки, также как блинатумомаб, показали впечатляющую эффективность при лечении В-клеточного острого лимфобластного лейкоза. Стоит отметить, что прямых исследований по сравнению эффективности блинатумомаба и CD19 CAR-T не существует.

Выбор мишеней при разработке биспецифических антител

Итак, первая задача. Важно, чтобы иммунные клетки обеспечивали цитолиз опухолевых клеток за счет естественных свойств, чтобы происходила активация и экспансия этих клеток, не лишней была бы и возможность образования пула клеток памяти. Предъявленным требованиям удовлетворяют лимфоциты CD8+. Для рекрутинга выбрали надежный, синтезирующийся на хорошем уровне поверхностный маркер CD3. CD3 является пан-Т-клеточным рецептором, то есть его производят все Т-лимфоциты, и при применении биспецифического антитела к опухолевым клеткам будут привлекаться различные субпопуляции Т-клеток. Однако большинство этих популяций не будут значительно влиять на исход терапии. Единственной популяцией CD3+ клеток, которая может доставить некоторые трудности, являются регуляторные T-клетки, обладающие иммуносупрессивными свойствами. Поэтому для эффективного применения блинатумомаба необходимо, чтобы содержание этих клеток перед началом курса не было выше определенного уровня [28].

Вторая задача — выбор маркера-мишени на поверхности опухолевой В-клетки. Выбор сделали в пользу рецептора CD19, который хорош тем, что устойчиво и равномерно синтезируется во всех клетках В-лимфоцитарного ряда (в том числе и опухолевых).

Существенным плюсом такого выбора является и то, что CD19 практически нигде, кроме В-клеток, не синтезируется и, соответственно, терапия специфична. Но есть и минус — антитело уничтожает все В-клетки, и на некоторое время организм оказывается без В-клеточной иммунной защиты. В клинической практике, однако, это не является неразрешимой задачей — врачи внутривенно вводят пациентам иммуноглобулин.

Технология Biacore

Технология Biacore основана на эффекте поверхностного плазмонного резонанса (surface plasmon resonance, SPR) (рис. 11).

Технология Biacore

Рисунок 11а. Принцип технологии Biacore, основанный на использовании поверхностного плазмонного резонанса. Процесс ассоциации.

Технология Biacore

Рисунок 11б. Принцип технологии Biacore, основанный на использовании поверхностного плазмонного резонанса. Процесс диссоциации.

Технология Biacore

Рисунок 11в. Принцип технологии Biacore, основанный на использовании поверхностного плазмонного резонанса. Детекция ассоциации и диссоциации.

Принцип метода заключается в том, что на поверхности металлов при возбуждении источником света под определенным углом возникает плазмон — электромагнитная волна, распространяющаяся вдоль поверхности [30]. Угол, при котором он возникает, зависит от преломляющих свойств среды вблизи поверхности металлической пластинки. На пластинке можно иммобилизовать различные молекулы и пропускать над пластинкой раствор с другими молекулами. Связывание (ассоциация) и обратный процесс (диссоциация) приводят к изменению свойств среды и детектируются датчиком.

В отличие от других методов, позволяющих изучать связывание молекул, иммобилизованных на твердой основе (например, ИФА), Biacore дает возможность наблюдать за процессами в режиме реального времени с возможностью изменения как качественных, так и количественных характеристик. Методика позволяет изучать как краткосрочные, так и длительные процессы, изучать связывание друг с другом широкого спектра молекул: антител, белков и пептидов, нуклеиновых кислот, вирусов. Полученная информация может использоваться для исследования аффинности, кинетики, специфичности взаимодействия, использоваться в качестве скрининга. Технология Biacore широко применяется для оценки характеристик взаимодействия в комплексе антиген-антитело как при фундаментальных исследованиях, так и в фармацевтических разработках.

Материал предоставлен партнёром — компанией Cytiva

Новые терапевтические биспецифические антитела

Обороты терапевтических моноклональных антител составляют около 60 миллиардов долларов в год. По данным за 2017 год, продажи биспецифического антитела блинатумомаба составили 175 млн долларов. Согласно оценкам, за ближайшие пять лет они вырастут более чем в три раза и к 2023 году составят 544 млн долларов.

Подбирая различные пары мишеней, регулируя аффинность и взаимное расположение вариабельных участков, а также способ их связывания, можно сконструировать множество биспецифических антител. Но пусть читатель не соблазняется кажущейся простотой: разработка биспецифического антитела — очень сложная задача. О том, как осуществляются биоинженерия и наработка таких антител, будет рассказано в следующих статьях нашего спецпроекта.

Cytiva — спонсор спецпроекта

Cytiva — компания, которая входит в число лидеров в оснащении научно-исследовательских лабораторий, фармацевтических и биотехнологических производств как крупными приборами, так и небольшими устройствами для научных исследований, расходными материалами и реактивами. Компания обеспечивает распространение экспертизы, технологий и сервисов для широкого спектра областей медико-биологической науки и производства, включая не только базовые исследования клеток и белков, разработку новых препаратов, но и технологии для поддержки крупных производителей вакцин, биофармацевтических лекарств и препаратов клеточной терапии.

Одними из ключевых направлений Cytiva являются клеточные и молекулярные исследования. Компания предлагает инструменты и технологии, которые используются в фундаментальной и прикладной науках, а также биотехнологическими и фармацевтическими компаниями для поиска новых лекарств и путей использования клеточной терапии. Компания работает над созданием систем, программного обеспечения и расходных материалов, позволяющих производить полный спектр научных исследований от молекулы до клетки. Передовые инструменты клеточного анализа дают возможность получать высококачественные изображения клеток, что открывает путь к пониманию биологических функций элементов, вовлеченных в болезнь.


Как организм понимает, какие антитела вырабатывать?

Как антитела вырабатываются при вакцинации?


Продолжительность вакцинного иммунитета тоже зависит от иммунологической памяти и может отличаться от естественного иммунитета, возникшего после болезни. Когда иммунитет угасает, нужно вакцинироваться снова. Для вакцин от разных инфекций есть свои графики повторной вакцинации, их частота зависит от времени хранения иммунологической памяти.

Вакцины, полученные по различной технологии, могут отличаться по времени действия вакцинного иммунитета. Обычно эти различия не слишком велики, так как продолжительность иммунитета в гораздо большей степени зависит от вида самого возбудителя, чем от конкретной вакцины.

На формирование защитного иммунитета также влияет состояние самого организма. Например, при тяжелых заболеваниях иммунной системы (наследственные иммунодефициты, злокачественные новообразования) иммунный ответ на вакцину может быть снижен или не формироваться вообще. Как показывает многолетний опыт использования разных вакцин, в случае ВИЧ-инфекции иммунный ответ на вакцины, как правило, ничем не отличается от иммунного ответа у ВИЧ-негативных людей. Поэтому графики вакцинации и дозы вакцины для ВИЧ-позитивных пациентов не будут иметь никаких особенностей.

по теме


Лечение

Безумно дорогое лекарство, которое спасет мир от пандемии

Некоторые лекарства, например глюкокортикоиды и иммунодепрессанты, могут подавлять формирование вакцинного иммунитета. В таких случаях тактику вакцинации нужно обсудить с врачом.

Для вакцин от новой коронавирусной инфекции время действия вакцинного иммунитета остается одним из главных вопросов. Предсказать продолжительность защиты той или иной вакцины очень трудно. Обычно это выясняют на практике, регистрируя частоту инфекций у привитых во время массовой вакцинации людей спустя разное количество времени, а также измеряя титр защитных антител.

Титр? Какой еще титр?

Так как антитела — это сложные белки, определять их химическими методами крайне трудно. Поэтому для определения антител используют иммунологические реакции. Конкретных методов очень много, но в самом общем виде суть этих реакций очень простая. Мы берем раствор нужного антигена (например, того самого шиповидного белка коронавируса) и смешиваем его с сывороткой, в которой ищем антитела. Если антитела в сыворотке есть, то они связываются с антигеном и их соединение выпадает в виде осадка или раствор мутнеет. На практике проведение такой реакции выглядит сложнее, часто используют специальные гелевые среды и разные способы детектирования, но суть от этого не меняется.

Проблема в том, что такой подход отвечает нам только на вопрос, есть антитела в сыворотке или их нет, но ничего не говорит о количестве самих антител. Как в таком случае сравнить между собой две разные сыворотки? По количеству выпавшего осадка — не вариант, слишком большая погрешность. Но есть другой способ — можно разводить исследуемую сыворотку до тех пор, пока реакция (осадок) все еще будет обнаруживаться. И вот последнее, самое сильное разведение, при котором мы еще можем наблюдать реакцию сыворотки с раствором антигена, и называют титром этой сыворотки. То есть титр 1:50 говорит нам о том, что эту сыворотку можно развести в 50 раз и она еще будет давать реакцию с антигеном. Соответственно, чем больше вторая цифра в обозначении титра, тем выше концентрация антител в сыворотке.

Недостаток титра в том, что он указывает на относительное содержание антител. Если у нас есть две сыворотки с титрами 1:50 и 1:100, мы можем с уверенностью сказать, что во второй сыворотке антител в 2 раза больше, чем в первой. Но какая именно концентрация антител в каждой из этих сывороток, мы не знаем. На практике это часто бывает и не нужно: нам достаточно знать, с каким титром антител человек еще защищен от инфекции, а с каким — уже нет. Это легко выяснить, измеряя титр антител у вакцинированных людей, которые все же заразились.

В результатах лабораторных анализов обычно указывают концентрацию антител в международных единицах (МЕ) или относительных единицах (ОЕ). Результаты, полученные в МЕ, можно сравнивать между собой — значение не будет зависеть от лаборатории, тест-системы и условий анализа (для коронавируса таких пока нет). Результаты, выраженные в ОЕ, можно сравнивать между собой только для тестов одной марки, при этом сама лаборатория и время анализа роли не играют, то есть можно отслеживать динамику изменения уровня антител у одного человека.

Чтобы понять, нужна ли вакцина и подействовала ли она, достаточно измерить уровень антител? Какой нужен для ковида?

К сожалению, все немного сложнее. Антитела отвечают за гуморальный иммунитет — и это только лишь часть нашей иммунной системы. Помимо гуморального, есть еще клеточный иммунитет, работа которого не зависит от уровня антител. При защите от разных инфекций разные звенья иммунитета играют неодинаковые роли. В каких-то случаях ведущую роль имеет гуморальный иммунитет и антитела (например, в случае гепатита В, гриппа, столбняка и многих других инфекций). В других случаях — ведущая роль у клеточного иммунитета, например, при туберкулезе. По новой коронавирусной инфекции пока слишком мало данных, чтобы делать выводы о важности каждого из звеньев иммунитета и необходимом уровне антител. То есть даже если вы сделаете тест на антитела, эта информация практически ничего не даст по ряду причин.

Если вы еще не вакцинировались и тест на антитела будет положительным, что говорит о перенесенной инфекции в бессимптомной форме, это все равно не является противопоказанием к вакцинации. Мы не знаем, какова продолжительность естественного иммунитета, так что вакцина может продлить или усилить защиту.

Если вы делаете тест на антитела после вакцинации, сейчас нет надежных данных, с которыми можно было бы соотнести полученные результаты и сделать вывод о том, подействовала ли вакцина. Другими словами, пока никто не знает, сколько должно быть антител после вакцинации, чтобы гарантировать надежный уровень защиты. Плюс уровень антител ничего не говорит о состоянии клеточного иммунитета, а он тоже может быть очень важен для защиты.

Если вы наблюдаете за динамикой концентрации антител после вакцинации и видите ее снижение, это еще не говорит о снижении уровня защиты. Как мы выяснили выше, падение концентрации антител в крови с течением времени — это нормальное явление, а долговременную защиту обеспечивает иммунологическая память, которая с концентрацией антител не связана.

Не все антитела одинаково полезны

Для характеристики антител важно понимать их класс, тип и с каким антигеном они связываются.

Антитела бывают разных классов (A, M, G, E и др.). Основной класс защитных антител — G, в лабораторных исследованиях и тестах их обычно обозначают IgG. Наличие этих антител в крови говорит о наличие иммунитета после вакцинации или перенесенного заболевания. IgM — тоже защитные антитела, которые начинают вырабатываться первыми, раньше, чем IgG. Обычно IgM менее эффективны, чем IgG, и почти полностью исчезают к концу заболевания. Наличие этих антител обычно указывает на еще протекающее, или совсем недавно перенесенное заболевание, или на хроническую инфекцию. То есть, если нас интересует устойчивый иммунитет, в тестах ищем IgG.

И, наконец, антиген. Как мы разбирали выше, антитела обладают очень высокой специфичностью и связываются только с определенными белками. Когда иммунная система, столкнувшись с инфекцией, подбирает нужное антитело, она чаще всего начинает синтезировать сразу несколько разных видов, нацеленных на разные белки возбудителя. Ведь клетки, синтезирующие антитела, получают для анализа разные кусочки полупереваренного микроба — и поверхностные, и внутренние белки — и для каждого из них ищут антитело. Для эффективной защиты важны именно те антитела, которые связываются с белками на поверхности вируса или бактерии. Ведь антитела — это крупные молекулы, которые не могут поникать внутрь вирусных частиц или бактерий, для них доступны только поверхностные белки. Именно поэтому защитный иммунитет в первую очередь обеспечивают антитела к поверхностным антигенам. Например, в случае коронавирусной инфекции вырабатывается как минимум 2 вида антител — к S-белку (который на поверхности вирусной частицы) и к N-белку (он же нуклеокапсидный белок, который находится внутри вирусной частицы). Так как до N-белка антитела добраться не могут, защиту будут обеспечивать именно антитела к S-белку. То есть, если вы все же хотите определить уровень защитных антител после прививки от ковида, нужно искать тест на нейтрализующие IgG к S-белку.


Антитела совершенно точно не являются плохим показателем. Но эксперты в области иммунологии и вирусологии, с которыми я беседовал, согласны с ВОЗ: наличия антител к COVID-19 недостаточно для заявления, что человек к нему больше не восприимчив. Потому что мы до сих пор до конца не знаем, как работает иммунитет к данному вирусу.

Но все это не значит, что тесты на антитела бесполезны. Они могут сыграть важную роль в понимании того, как победить нынешнюю пандемию.

Положительные результаты тестов на антитела, безусловно, указывают на возможное присутствие иммунитета, но не показывают полной картины. А вот, что покажет.

3D-модель коронавируса студии Visual.

Большинство тестов на антитела указывают на наличие антител, но не на их качество

В идеале врачи ищут у тех, кто переболел COVID-19, нейтрализующие антитела. Но на практике это не так просто.

по теме


Лечение

Второй тест называется реакцией сывороточной нейтрализации. Он гораздо сложнее, на его выполнение уходит несколько дней, и он реже используется. С его помощью можно не только обнаружить антитела, но и подвергнуть их воздействию вируса в клеточной структуре, чтобы понять, насколько эффективно антитела с ним борются.

В лучшем случае ученые соотнесут данные двух тестов и выяснят, какие концентрации антител обеспечивают наиболее высокий уровень иммунной защиты. Но исследования продолжаются, и пока неизвестно, какие уровни антител необходимы для продолжительной иммунной защиты, — говорит Меначери. Ученые также до сих пор пытаются выяснить, является ли наличие антител признаком того, что вы не можете передать вирус другому человеку.

Наблюдение за иммунитетом необходимо вести в течение длительного времени

Наблюдение за такими пациентами в течение долгого времени может помочь лучше понять, какое сочетание антител необходимо для развития устойчивого иммунитета.


Еще один вопрос, требующий ответа: как долго действует иммунитет?

По причинам, которые ученым до конца неясны, к некоторым инфекциям формируется пожизненный иммунитет. Например, люди с иммунитетом к оспе больше не могут ей заразиться. Антитела, защищающие организм от оспы, обнаруживались даже через восемьдесят восемь лет после вакцинации.

Оптимизма не добавляет и недавно опубликованное предварительное исследование ученых из Колумбийского университета, показавшее, что некоторые люди заражаются коронавирусом (тем, что вызывает обычную простуду) повторно в течение года.

Однако даже если антитела у вас пропадут, это вовсе не значит, что вы снова станете полностью восприимчивы к вирусу. Да, все не так просто.

Ученые провели несколько экспериментов, когда добровольцев подвергали воздействию штамма коронавируса, вызывающего обычную простуду. Результаты показали, что, как правило, уровень антител к данным штаммам снижается через год или около того.

Читайте также: