Бактериофаги это 1 вирусы 2 эукариоты 3 прокариоты

Обновлено: 18.04.2024

2. Имеются две формы существования вируса: репродуцирующаяся и ..

3. Вирус имеет хвост и ….

4. Белковая капсула, покрывающая головку вируса, называется…

5. Генетический аппарат вируса содержится в…

6. Вирусы, паразитирующие на бактериях, называются…

7. К прокариотам относятся….

8. Клеточную стенку бактерий образует сложный углевод…

9. Генетический аппарат бактерий называется…

10. Генетический аппарат бактерий представлен кольцевой молекулой…

11. Зелёный пигмент бактерий называется….

12. Поселяющиеся в живых организмах и питающиеся за их счёт бактерии называются….

13. Половой процесс у бактерий называется…

14. Покоящиеся стадии бактерий называются….

15. Бактерии, вызывающие порчу продуктов называются…

Тесты с одним ответом

1. Из характерных признаков живого вирусу присущ(а, и):

1) самостоятельный обмен веществ;

3) наследственность и изменчивость;

4) самостоятельный рост и размножение.

2. Вирусы являются:

1) автотрофными организмами;

2) облигатными организмами;

3) факультативными паразитами;

4) симбионтными организмами.

3. полностью сформированная вирусная частица называется:

1) вироидом; 2) капсидом; 3) вирионом; 4) профагом.

4. Геном вируса представлен:

1) ДНК или РНК; 2) хромосомой; 3) нуклеотидом; 4) мезосомой.

5. Вокруг капсида некоторых вирусов (герпеса) образуется оболочка, состоящая из:

1) полисахаридов; 2) липопротеинов; 3) нуклепротеинов; 4) белков.

1) группа вирусов, порожающих бактерии;

2) низкомолекулярные одноцепочные вирусные РНК;

3) организмы, паразитирующие на вирусах;

4) комплексы вирусной РНК и капсомеров.

7. Бактериофаг имеет:

1) цитоплазму и кариоплазму; 2) генетический аппарат;

3) клеточную стенку; 4) жгутики или реснички.

8. Бактериофаг, нуклеиновая кислота которого включена в ДНК клетки хозяина и образует с ней клетки хозяина и образует с ней молекулу, способную к репликации, не вызывая гибель клетки, называется:

1) вироидом; 2) вирулентным фагом; 3) профагом; 4) цианофагом.

9. Бактериофаги, приводящие к разрушению заражённой клетки, называются:

1) вироидами; 2) фагосомами; 3) умеренными фагами; 4) вирулентными фагами.

10. Вирулентность вируса – это:

1) степень формирования вируса; 2) степень патогенности вируса;

3) процесс проникновения вируса в бактерию; 4) способ передачи вируса.

11. Вирус иммунодефицита человека (ВИЧ) избирательно поражает:

1) эритроциты; 2) лимфоциты; 3) нервные клетки; 4) гипоталамус.

12. Геном вируса иммунодефицита человека представлен:

1) двумя идентичными молекулами ДНК; 2) двухцепочечной ДНК;

3) двумя молекулами РНК; 4) одноцепочечной ДНК.

13. В состав клеточной стенки бактерий входит сложный углевод:

1) пектин; 2) лигнин; 3) муреин; 4) хитин.

14. Генетический аппарат бактерий представлен молекулами:

1) белков и углеводов; 2) кольцевой ДНК, не связанной с белками гистонами;

3) линейной иРНК; 4) липидов и иРНК.

15. В цитоплазме бактерий находятся органоиды:

1) митохондрии; 2) рибосомы; 3) жгутики; 4) нуклеоид.

16. у бактерий отсутствуют органоиды:

1) митохондрии; 2) рибосомы; 3) жгутиеи; 4) нуклеоид.

17. По типу ассимиляции подразделяются на:

1) авто и гетеротрофы; 2) миксотрофные; 3) аэробные; 4) анаэробные.

18. К фотосинтезирующим бактериям относятся:

1) анаэробные и гетеротрофные; 2) клубеньковые и нитрофицирующие

3) пурпурные и цианобактерии; 4) гнилостные и болезнетворные.

19. Хемосинтезирующими являются бактерии:

1) анаэробные и гетеротрофные; 2) клубеньковые и нитрофицирующие

3) пурпурные и цианобактерии; 4) гнилостные и болезнетворные.

20. Азотфиксация представляет собой процесс:

1) разложения органических веществ бактериями с выделением аммиака;

2) биологического превращения бактериями аммонийных солей в нитраты;

3) превращение бактериями аммиака в в аммонийные соли и нитраты;

4) связывание азота воздуха и перевод его в соединения, усваиваемые растениями.

21. По типу диссимиляции бактерии делятся на:

1) автотрофные; 2) гетеротрофные; 3) миксотрофные; 4) аэробные м анаэробные.

22. К гетеротрофным бактериям относятся:

1) клубеньковые нитрифицирующиеся; 2) железобактерии и анаэробные;

3) пурпурные и цианобактерии; 4) гнилостные и болезнетворные.

23. Поступление питательных веществ в бактериальную клетку происходит путём:

1) диффузии; 2) заглатывания; 3) фагоцитоза; 4) пиноцитоза.

24. Бактерии размножаются:

1) простым бинарным делением; 2) спорами; 3) конъюгацией; 4) копуляцией.

25. При засолке огурцы не портятся, так как:

1) соль убивает все бактерии; 2) аэробные бактерии поглощают весь кислород;


Обзор

Джамбо-фаги вызывают образование внутри бактериальной клетки структуры из специального вирусного белка, похожей на клеточное ядро. Внутри такого псевдоядра находится вирусная ДНК, которую белковая оболочка надежно оберегает от защитных систем CRISPR/Cas и эндонуклеаз рестрикции.

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Загадочные джамбо-фаги

По состоянию на 2020 год в базе GenBank хранятся геномы более чем 150 джамбо-фагов. Большая часть из них относится к семейству Myoviridae и имеет длинные белковые хвосты, способные к сокращениям, а остальные принадлежат к семейству Siphoviridae, и хвосты у них не сокращаются. Стоит отметить, что джамбо-фаги довольно широко распространены в природе, однако долгое время они ускользали от внимания вирусологов из-за слишком большого размера вирусных частиц, который не позволял изолировать их с помощью стандартных протоколов для работы с бактериофагами [1].

В геномах джамбо-фагов наряду с генами, кодирующими структурные белки капсида и белки, необходимые для репликации генома, содержится множество генов, гомологи которых в других организмах на данный момент не известны. Например, в геноме фага φKZ, поражающего синегнойную палочку Pseudomonas aeruginosa, из более чем 300 идентифицированных генов лишь для 35 удалось найти родственников в геномах других организмов. Кроме того, даже у джамбо-фагов, поражающих одну и ту же бактерию, зачастую сходство по последовательностям минимально [1].

В больших, по меркам вирусов прокариот, геномах джамбо-фагов закодирован впечатляющий арсенал белков и РНК, необходимых для репликации, транскрипции и трансляции, что делает их в значительной мере независимыми от клеточных белков. Например, джамбо-фаг XacN1, инфицирующий бактерию Xanthomonas citri, кодирует 56 собственных тРНК, соответствующих всем 20 аминокислотам — абсолютный рекорд по количеству тРНК среди вирусов! Поскольку потребности джамбо-фагов в клеточных белках минимальны, спектр бактерий, заражаемых джамбо-фагами, весьма широк по сравнению с фагами, имеющими геномы меньшего размера [1].

Бактериофаги, у которых есть цитоскелет

Удивительно, но в геномах джамбо-фагов закодированы собственные цитоскелетные белки! Цитоскелет, состоящий из микротрубочек, актиновых и промежуточных филаментов, долгое время считался уникальной чертой эукариот, пока в 1991 году у кишечной палочки не описали гомолог тубулина (основного компонента микротрубочек), известный как FtsZ. Как и тубулин у эукариот, бактериальный тубулин участвует в процессе деления клетки. В 2012 году гомологи тубулина нашли у фага C-st, поражающего бактерию Clostridium botulinum (по размеру генома, однако, этот фаг до джамбо-фагов не дотягивает: длина его генома составляет около 186 т.п.о.). Чуть позже другой гомолог тубулина, получивший название PhuZ, был описан у упомянутого ранее джамбо-фага 201φ2-1, который инфицирует бактерию Pseudomonas chlororaphis. Белок PhuZ оказался весьма консервативным среди джамбо-фагов [2]. Но зачем бактериофагам так нужен белок цитоскелета, если у них и собственных клеток нет? Ответ оказался весьма неожиданным.

Исследования структуры PhuZ показали, что этот белок формирует трехцепочечные правозакрученные филаменты весьма сложного строения (рис. 1).

Белок PhuZ джамбо-фага 201φ2-1

Рисунок 1. Белок PhuZ джамбо-фага 201φ2-1 в мономерной форме (а) и в виде филамента (б). Каждый филамент состоит из трех цепей (протофиламентов), окрашенных разными цветами.

При полимеризации PhuZ, как и в случае эукариотического тубулина, важную роль играет ГТФ: мономеры присоединяются к растущему филаменту в комплексе с ГТФ, после чего ГТФ гидролизуется до ГДФ. Наблюдение за поведением PhuZ, сшитого с зеленым флуоресцентным белком (GFP), в клетках бактерии Pseudomonas chlororaphis, инфицированных фагом 201φ2-1, показало, что для филаментов PhuZ характерны многие свойства, присущие эукариотическим микротрубочкам. Подобно микротрубочкам и некоторым бактериальным белкам цитоскелета, филаменты PhuZ полярны: растущие концы (плюс-концы), к которым присоединяются новые мономеры, обращены к центру клетки, в то время как не меняющиеся минус-концы закреплены у полюсов клеток. Кроме того, филаменты PhuZ стали первыми известными прокариотическими элементами цитоскелета, для которых характерна присущая микротрубочкам динамическая нестабильность: филаменты быстро переключаются с полимеризации на деполимеризацию, и наоборот. Ученые предполагают, что, как и в случае с микротрубочками, динамическую нестабильность филаментов PhuZ обеспечивает гидролиз ГТФ, который происходит при присоединении очередного мономера. Кроме того, как и у микротрубочек, на концах длинных филаментов PhuZ находятся ГТФ-кэпы, стабилизирующие филаменты и способствующие их росту [1].

Коробочка с сюрпризом: где джамбо-фаги хранят свою ДНК

И все же, зачем бактериофагам мог понадобиться свой собственный аналог тубулина? Ответить на этот вопрос помогла покадровая съемка бактериальных клеток Pseudomonas chlororaphis, чья плазмида кодирует флуоресцентно-меченный PhuZ, до и после инфицирования джамбо-фагом 201φ2-1 [3]. До момента заражения в цитоплазме клеток обнаруживались филаменты PhuZ, которые, хотя и демонстрировали динамическую нестабильность, были разбросаны по клетке случайным образом. После инфицирования фагом картина изменилась кардинальным образом: ранее неупорядоченные филаменты собрались в двухполюсную структуру, похожую на веретено деления, где минус-концы филаментов были заякорены у полюсов клетки, а растущие обращены в ее центр. В то же время окрашивание вирусной ДНК помогло показать, что после впрыскивания фагом своего генома в клетку у одного из ее полюсов, флуоресцентный сигнал от этой ДНК постепенно усиливался, видимо, из-за ее репликации. Параллельно с репликацией вирусная ДНК перемещалась в центр клетки за счет веретена из PhuZ, где в конце концов оформилась в большую структуру, первоначально названную инфекционным нуклеоидом, а сейчас более известную как фаговое ядро. При этом бактериальная ДНК оказывалась оттесненной фаговым ядром на периферию клетки, где постепенно разрушалась. Именно веретено из филаментов PhuZ сначала перемещает вирусную ДНК в центр клетки, а затем стабилизирует ее центральное положение до самого конца — до момента лизиса клетки. Эксперименты с мутантным PhuZ, лишенным способности к гидролизу ГТФ, показали, что в отсутствие веретена вирусная ДНК не достигает центра клетки, из-за чего эффективность производства новых вирусных частиц сокращается почти вдвое [1].

Локализация белка gp105 джамбо-фага 201φ2-1 в клетках бактерии

Рисунок 2. Локализация белка gp105 джамбо-фага 201φ2-1 в клетках бактерии Pseudomonas chlororaphis до инфицирования фагом (сверху) и после (снизу). gp105 сшит с GFP (зеленый цвет) и синтезируется с плазмидного вектора. ДНК окрашена синим, клеточная мембрана — красным. В присутствии вирусной ДНК gp105 образует вокруг нее сферическую оболочку. Вирусное псевдоядро локализовано строго в центре бактериальной клетки за счет биполярного веретена из белка PhuZ.

Однако в отличие от ядерной оболочки, которая представляет собой двуслойную мембрану, оболочка вирусного псевдоядра состоит из белка gp105 — самого обильно синтезируемого белка фага 201φ2-1. Внутри вирусного псевдоядра, помимо генетического материала фага, находятся белки, участвующие в репликации и транскрипции. Примечательно, что, когда вирусная ДНК фага достигает центра клетки, ее белковая оболочка начинает вращаться вокруг центральной оси — по-видимому, это обеспечивается за счет динамической нестабильности филаментов PhuZ, контактирующих с псевдоядром. Сменяющие друг друга рост и укорочение филаментов, взаимодействующих с белковой оболочкой, и заставляют псевдоядро вращаться (рис. 3) [1].

PhuZ перемещают созревающее псевдоядро

Рисунок 3. При инфицировании клетки джамбо-фагом филаменты PhuZ (красный) постепенно перемещают созревающее псевдоядро (зеленый, отмечено желтой стрелкой) в центр клетки (два левых столбца). Как видно по снимкам в правом столбце, центрально локализованное псевдоядро вращается под действием филаментов PhuZ. mpi — минуты после инфицирования.

На данный момент псевдоядра описаны у трех джамбо-фагов, поражающих бактерий рода Pseudomonas — 201φ2-1, φKZ и φPA3, а также у джамбо-фага PCH45, инфицирующего бактерии рода Serratia и филогенетически далекого от джамбо-фагов, поражающих псевдомонад. У всех этих вирусов имеется белок, образующий оболочку вокруг их геномной ДНК в цитоплазме бактерии, и белок, аналогичный тубулину. По-видимому, способность к образованию фагового ядра и специального веретена, обеспечивающего его центральную локализацию, является консервативной стратегией размножения джамбо-фагов [1].

В свежем исследовании ученых с биологического факультета МГУ им. М.В. Ломоносова показано, что фаговый генетический материал отделен от бактериального в период всего инфекционного цикла. На примере фага φKZ продемонстрировано, что после впрыскивания генетического материала в бактерию вирусная ДНК попадает в особые круглые компартменты, располагающиеся вблизи клеточной стенки бактерии. Число круглых компартментов соответствует количеству фагов, одновременно атаковавших одну и ту же клетку (рис. 4) [5].

Pseudomonas aeruginosa, инфицированная джамбо-фагом φKZ

Рисунок 4. Микрофотография клетки Pseudomonas aeruginosa, инфицированной джамбо-фагом φKZ, через 40 минут после инфицирования. Черные стрелки указывают на округлые компартменты, белая — на остатки бактериальной ДНК, голубая — на псевдоядро, красная — на собранные капсиды.

Почти одновременно с появлением круглых компартментов бактериальный нуклеоид перемещается из центра клетки к полюсу, противоположному точке впрыскивания фаговой ДНК, и так и остается на периферии клетки, при этом геномная ДНК бактерии постепенно разрушается. Точный механизм перемещения бактериальной ДНК пока детально не исследовался. Стоит отметить, что, по некоторым данным, полного разрушения бактериального генома не происходит, поскольку хозяйская ДНК покрывается специальными белками, защищающими ее от ДНКаз. Круглый компартмент же постепенно перемещается в центр клетки и, в конце концов, становится зрелым псевдоядром [5]. К заполненным капсидам в цитоплазме присоединяются хвосты, в результате чего образуются зрелые вирионы, которые выходят наружу после лизиса клетки (рис. 5).

Жизненный цикл джамбо-фага

Рисунок 5. Жизненный цикл джамбо-фага. После впрыскивания в клетку геном джамбо-фага оказывается внутри круглого компартмента, который за счет филаментов PhuZ постепенно перемещается в центр и становится псевдоядром. Центральное положение псевдоядра поддерживается филаментами PhuZ. Внутри псевдоядра происходит репликация вирусных геномов и транскрипция, причем вирусные мРНК каким-то образом выходят из ядра в цитоплазму, где бактериальные рибосомы синтезируют вирусные белки. Собранные вблизи клеточной мембраны капсиды пришвартовываются к вращающемуся ядру и наполняются генетическим материалом фага. После этого в цитоплазме к капсидам присоединяются хвосты — так формируются зрелые вирионы джамбо-фагов. Выход новых вирионов наружу происходит после лизиса клетки.

В той же работе с помощью электронной томографии было исследовано содержимое фагового псевдоядра. Оказалось, что фаговая ДНК в нем находится в виде филаментов, состоящих из одной-двух двойных спиралей ДНК. Авторам исследования также удалось рассмотреть глобулярные домены, связанные с фаговой ДНК. Возможно, эти глобулы образованы белками, аналогичными гистонам эукариот (рис. 6) [5].

Pseudomonas aeruginosa

Рисунок 6. Внутреннее содержимое инфицированной клетки Pseudomonas aeruginosa, визуализированное с помощью электронной томографии. P-N — сеть филаментов псевдоядра; на вставке (б) — ее 3D-реконструкция. Белая стрелка указывает на филамент из фаговой ДНК, белые треугольники — на белковые глобулы в составе филаментов псевдоядра.

Фаговое ядро как защитная стратегия

Бактерии обладают внушительным арсеналом средств защиты от бактериофагов и других мобильных генетических элементов: системы рестрикции-модификации, разнообразные системы CRISPR/Cas, система BREX и многие другие системы, список которых постоянно пополняется . Но и фаги не лыком шиты. В частности, многие из них продуцируют особые белки анти-CRISPR, подавляющие работу CRISPR/Cas на разных этапах.

Подробнее о защитных системах бактерий и способах их преодоления бактериофагами читайте в статьях [6–9].

Однако джамбо-фаги и тут не остались в стороне. В начале 2020 года две исследовательские группы почти одновременно сообщили, что джамбо-фаги устойчивы почти ко всем системам CRISPR/Cas, хотя не имеют белков анти-CRISPR. Выяснилось, что псевдоядро джамбо-фагов служит универсальным защитным механизмом против систем CRISPR/Cas, нацеленных на разрушение ДНК: его белковая оболочка просто не пропускает нуклеазы Cas внутрь! Кроме того, по крайней мере в случае фага φKZ, белковая оболочка вокруг вирусной геномной ДНК обеспечивает защиту еще и от эндонуклеаз рестрикции [10]. Казалось бы, эти фаги просто непобедимы!

Устойчивость джамбо-фагов

Рисунок 7. Благодаря наличию псевдоядра, не подпускающего защитные бактериальные белки к фаговой ДНК, джамбо-фаги устойчивы к действию систем CRISPR/Cas и эндонуклеаз рестрикции, разрушающих ДНК. Однако рестриктазе EcoRI, сшитой с фаговым внутренним белком псевдоядра ORF152, все же удается проходить через защитную белковую оболочку. Системы CRISPR/Cas, действующие на уровне РНК, эффективно подавляют размножение джамбо-фагов: нуклеаза Cas13 разрушает вирусные мРНК, вышедшие из псевдоядра в цитоплазму, и тем самым блокирует синтез вирусных белков.

Системы CRISPR/Cas VI типа эффективны не только против фагов, инфицирующих Pseudomonas, но и против джамбо-фага, поражающего Serratia. Вероятно, наличие мощной неспецифической защиты от систем CRISPR/Cas, кроме систем VI типа, действующих на уровне РНК, является общей чертой джамбо-фагов [10], [12].

Несмотря на уже полученные интереснейшие результаты, многие аспекты биологии джамбо-фагов остаются неизвестными. Как регулируется транспорт белков в псевдоядре? Каким образом фаговые мРНК выходят из псевдоядра в цитоплазму? Все ли джамбо-фаги способны к образованию псевдоядра? На эти и многие другие вопросы ответа пока нет. Однако новые публикации, раскрывающие всё новые и новые особенности биологии джамбо-фагов, выходят все чаще, и можно не сомневаться, что в ближайшие годы мы узнаем об этих таинственных вирусах еще много неожиданного.

Выберите один ответ из четырёх предложенных.

А1. Основная и наименьшая единица классификации – это:

1) царство; 2) род; 3) семейство; 4) вид.

А2. К неклеточным формам жизни относятся:

1) бактерии; 2) вирусы; 3) простейшие; 4) дрожжи.

А3. Ядро отсутствует в клетках:

1) растений; 2) простейших; 3) грибов; 4) бактерий.

А 4. Бактериями, содержащими хлорофилл, являются:

1) клубеньковые; 3) почвенные;

2) цианобактерии; 4) молочнокислые.

А5.Растениями, тело которых не расчленено на органы, являются:

1) мхи; 2) папоротники; 3) водоросли; 4) голосеменные.

А6. На каком рисунке изображено простейшее животное?

1) 3)

2) 4)

А7. К беспозвоночным животным относится:

1) жук; 2) лягушка; 3) антилопа; 4) жаворонок.

А8. Тело гриба представлено:

1) тканями; 2) микоризой; 3) мицелием; 4) корнями.

А9. По типу питания гриб-трутовик является:

1) сапротрофом; 2) симбионтам; 3) паразитом; 4) хищником.

А10. Из гриба и водоросли состоят:

1) лишайники; 3) вирусы;

2) бактерии; 4) простейшие.

А11. Красный мухомор поедают:

1) белки и лоси; 2) лягушки; 3) люди; 4) змеи.

А12.Между позициями первого и второго столбцов приведённой ниже таблицы имеется

Целое

Часть

Какое понятие следует вписать на место пропуска в этой таблице?

1) слоевище; 2) побег; 3) корни; 4) гифы.

Часть В

В1. Какие организмы относятся к эукариотам? Выберите три верных ответа.

1) бактерии; 2) грибы; 3) растения; 4) цианобактерии; 5) вирусы 6) животные.

В2. Установите соответствие между особенностью строения клетки и её видом. Для этого к каждому из первого столбца подберите элемент второго столбца. Впишите в таблицу

ОСОБЕННОСТЬ СТРОЕНИЯ КЛЕТКИ ВИД

А) Внутри клетки находится густая

неподвижная цитоплазма без вакуолей. 1) Бактериальная

Б) Не имеет оформленного ядра.

В) Цитоплазма клетки постоянно движется. 2) Растительная

Г) Имеет хлоропласты и крупные вакуоли.

Д) Имеет оформленное ядро.

А

Б

В

Г

Д

В3. Установите соответствие между признаками и чертами сходства грибов с представите

лями других царств. Для этого к каждому из первого столбца подберите элемент второ

ПРИЗНАКИ ЧЕРТЫ СХОДСТВА

Б) Постоянный рост. 1) Черты сходства с растениями.

В) Гетеротрофное питание. 2) Черты сходства с животными.

Г) Отсутствие хлорофилла.

А

Б

В

Г

Д

Д) Клеточная стенка состоит из хитина.

Часть С

С1. Почему без деятельности бактерий жизнь на Земле была бы невозможна?

С2. Существует старое поверье, что в ночь на 7 июля, накануне религиозного праздника Ивана Купалы, происходит цветение папоротника. Цветок у папоротника ярко-красного цвета, обладает волшебной силой и приносит людям счастье. Возможно ли найти этот цветок?

Вариант II

Часть А

Выберите один ответ из четырёх предложенных.

А1. Самой крупной единицей классификации является:

1) вид; 2) царство; 3) семейство; 4) род.

А2. Бактериофаги – вирусы, уничтожающие:

1) растения; 2) грибы; 3) бактерии; 4) животных.

А3. К прокариотам относятся:

1) бактерии; 2) растения; 3) грибы; 4) вирусы.

А4. Зелёный пимент хлорофилл находится в клетках:

1) амёб; 2) растений; 3) грибов; 4) крокодилов.

А5. Высшие споровые растения, не имеющие корней:

1) папоротники; 2) хвощи; 3) мхи; 4) плауны.

А6. На каком рисунке изображена водоросль?

1) 3)

2) 4)

А7. К одноклеточным животным относится:

1) амёба; 2) осьминог; 3) пчела; 4) гидра.

А8.Симбиоз гриба и растения носит название:

1) слоевище; 2) микориза; 3) лишайник; 4) грибница.

А9. По типу питания шампиньон является:

1) паразитом; 2) хищником; 3) сапротрофом; 4) симбионтом.

А10. Тело лишайника представлено:

1) мицелием; 2) грибницей; 3) плодовым телом; 4) слоевищем.

А11. Шёлк получают из нитей, образованных гусеницами бабочки:

1) тутовый шелкопряд; 2) дубовый шелкопряд;

3) непарный шелкопряд; 4) сосновый шелкопряд.

А12.Между позициями первого и второго столбцов приведённой ниже таблицы имеется

Целое

Часть

Какое понятие следует вписать на место пропуска в этой таблице?

1) ядро; 2) хлоропласты; 3) ядерное вещество; 4) вакуоль.

Часть В

В1. Какие организмы относятся к прокариотам? Выберите три верных ответа.

2) туберкулёзная палочка;

6) холерный вибрион.

В2. Установите соответствие между характеристикой и бактериями, которым она соответ-

ствует. Для этого к каждому из первого столбца подберите элемент второго столбца.

А) Вступают в симбиоз с корнями

Б) Содержат хлорофилл, являются 1) Цианобактерии

В) Создают органические вещества. 2) Клубеньковые бактерии

Г) Выделяют кислород в

Д) Потребляют готовые органические

А

Б

В

Г

Д

вещества, то есть являются гетеротрофами.

В3. Установите соответствие между признаками и чертами сходства грибов с представи-

телями царств растений и животных. Для этого к каждому из первого столбца под

ПРИЗНАКИ ЧЕРТЫ СХОДСТВА

А) Питание готовыми органическим

веществами. 1) Черты сходства с растениями

Б) Наличие клеточной стенки.

В) Запасной углевод – гликоген. 2) Черты сходства с животными.

Г) Поглощение пищи путём

Д) Образование мочевины.

А

Б

В

Г

Д

Часть С

С1. Почему жизнь грибов, животных и человека без зелёных растений на нашей планете невозможна?

С2. Грибникам хорошо известно, что подосиновики растут под осиной, подберёзовики в берёзовом лесу, а маслята под соснами и лиственницами. Как можно объяснить связь этих грибов и деревьев?

Ответы:

Вариант I

Часть А

А1.4

А2.2

А3.4

А4.1

А5.3

А6.4

А7.1

А8.3

А9.3

А10.1

А11.1

А12.4

Часть В

В1. 2,3,6

В2.

А

Б

В

Г

Д

1

1

2

2

2

В3.

А

Б

В

Г

Д

1

1

2

2

2

Часть С

С1. Бактерии играют важную роль на Земле. Они – важное звено круговорота веществ. Они участвуют в том же круговороте веществ в природе, формируя структуру и плодородие почвы (вызывают гниение погибших растений и животных). Участвуют в различных процессах: разложение сложных веществ до более простых (например, азотфиксирующие бактерии), гниение, в разрушении полезных ископаемых. Также используются в пищевой, микробиологической промышленности.

С2. Считают, что в лесу в эту ночь беснуется нечистая сила, охраняя волшебный цветок папоротника. Он распускается на минуту, полыхая ярко-красным огнем и как-будто наделяет своего хозяина волшебными способностями. Если сумеешь его сорвать, то клады сами будут идти в руки. Кроме того, ты научишься понимать язык зверей и птиц, сможешь приворожить любого, обретешь дар невидимости и узнаешь все тайны. Но цветок папоротника нужно добывать очень осторожно.

Ответы:

Вариант II

Часть А

А1.2

А2.3

А3.1

А4.2

А5.3

А6.3

А7.1

А8.3

А9.3

А10.4

А11.1

А12.3

Часть В

В1.2,4,5,6

В2.

А

Б

В

Г

Д

2

1

1

1

1

В3.

А

Б

В

Г

Д

1

1

2

1

2

Часть С

С1. Грибы и животные являются гетеротрофами, поэтому им для питания нужны готовые органические вещества, а их производят зеленые растения в процессе фотосинтеза.

С2. Действительно, мицелий определённых видов грибов устанавливает сожительство с корнями определённых видов древесных пород – симбиоз. Корни деревьев получают от гриба воду с растворёнными солями, а гриб от деревьев – органические вещества, необходимые для питания и образования плодовых тел. Гифы грибницы переплетаются с корнями деревьев, образуя микоризу (грибокорень).

ВложениеРазмер
test_mnogoobrazie_zhivyh_organizmov.docx 124.15 КБ

Предварительный просмотр:

Выберите один ответ из четырёх предложенных .

А1. Основная и наименьшая единица классификации – это:

1) царство; 2) род; 3) семейство; 4) вид.

А2. К неклеточным формам жизни относятся:

1) бактерии; 2) вирусы; 3) простейшие; 4) дрожжи.

А3. Ядро отсутствует в клетках:

1) растений; 2) простейших; 3) грибов; 4) бактерий.

А 4. Бактериями, содержащими хлорофилл, являются:

1) клубеньковые; 3) почвенные;

2) цианобактерии; 4) молочнокислые.

А5. Растениями, тело которых не расчленено на органы, являются:

1) мхи; 2) папоротники; 3) водоросли; 4) голосеменные.

А6. На каком рисунке изображено простейшее животное?

А7. К беспозвоночным животным относится:

1) жук; 2) лягушка; 3) антилопа; 4) жаворонок.

А8. Тело гриба представлено:

1) тканями; 2) микоризой; 3) мицелием; 4) корнями.

А9. По типу питания гриб-трутовик является:

1) сапротрофом; 2) симбионтам; 3) паразитом; 4) хищником.

А10. Из гриба и водоросли состоят:

1) лишайники; 3) вирусы;

2) бактерии; 4) простейшие.

А11. Красный мухомор поедают:

1) белки и лоси; 2) лягушки; 3) люди; 4) змеи.

А12. Между позициями первого и второго столбцов приведённой ниже таблицы имеется

Какое понятие следует вписать на место пропуска в этой таблице?

1) слоевище; 2) побег; 3) корни; 4) гифы.

В1 . Какие организмы относятся к эукариотам? Выберите три верных ответа.

1) бактерии; 2) грибы; 3) растения; 4) цианобактерии; 5) вирусы 6) животные.

В2. Установите соответствие между особенностью строения клетки и её видом. Для этого к каждому из первого столбца подберите элемент второго столбца. Впишите в таблицу

Бактериофаги (греч. phagos - пожирающий, лат. bacteriophaga -разрушающий бактерии) - это вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и при выходе потомства вызывать в большинстве случаев разрушение (лизис) бактерий.

ВложениеРазмер
Лекционный материал "Прокариоты и эукариоты" 716.89 КБ
Дополнительный материал "Прокариоты и эукариоты" 14.67 КБ
Дополнительный материал "Эукариоты и прокариоты" 274.32 КБ
Презентация на тему " Эукариоты и прокариоты" 1.53 МБ
Презентация " Прокариоты и эукариоты" 1.48 МБ
Лекционный материал " Неклеточные формы жизни" 973.18 КБ
Дополнительный материал "Вирусы" 321.57 КБ
Презентация" Бактерии и бактериофаги" 1.94 МБ

Предварительный просмотр:

Все живущие на Земле организмы в зависимости от структуры их клеток относятся к одной из двух групп: прокариоты или эукариоты.

Организмы

Деление организмов на прокариотические и эукариотические сохранялось довольно долго (до 1990-х гг.), пока американский микробиолог К.Вёзе не обнаружил, что в среде прокариотов находится большая группа особей с существенными генетическими различиями.

В этой связи он предложил разделить прокариотов на бактерии и археи. В настоящий момент разделение живых организмов на эукариотов, бактерии и археи считается общепризнанным.

Прокариоты – это одноклеточные живые организмы без оформленного клеточного ядра. Они не развиваются, не переходят в многоклеточную форму и способны к автономному существованию.

Прокариоты – самая представительная форма жизни на Земле по количеству видов. Например, 1 грамм плодородной почвы может содержать порядка 10 млрд.бактериальных клеток.

Как уже отмечено выше, к прокариотам относятся бактерии (в том числе цианобактерии или сине-зелёные водоросли) и археи .

У прокариотов молекула органического вещества не отделена от цитоплазмы, а прикреплена к клеточной мембране. У них, как правило, бесполый способ размножения, а ДНК имеет кольцевую форму. У большинства прокариотов геном (что это?) представлен одиночной хромосомой.


Размножение
Размножение

Прокариоты – это древнейшие и в то же время самые примитивные организмы на нашей планете. Они встречаются повсеместно : в воздухе, в воде, в почве, внутри живых организмов.

Их можно обнаружить в океанических глубинах, на горных вершинах, во льдах Антарктиды и Арктики. В атмосфере споры бактерий присутствуют на высоте до 15 км, а в грунт они проникают на глубину более 4 км.

По форме бактериальные клетки отличаются огромным разнообразием. Они могут быть в виде палочек (бациллы), округлыми (диплококи), шестиугольными, звездообразными, стебельковыми и т.д. Диплококки образуют пары, стрептококки – цепочки, стафилококки – скопления наподобие виноградных гроздей.

Строение бактериальной клетки в упрощённом виде выглядит следующим образом:

  1. клеточная оболочка (стенка);
  2. плазматическая мембрана;
  3. цитоплазма;
  4. хромосомная кольцевая ДНК (прикреплена к мембране);
  5. плазмиды (небольшие не прикреплённые к мембране кольцевые ДНК с небольшим набором генов);
  6. рибосомы;
  7. прокариотический жгутик(и).

Строение клетки бактерий

Подавляющее большинство прокариот размножается посредством простого бинарного деления , которое начинается с удвоения ДНК без образования хромосом.

Обе вновь образовавшиеся молекулы ДНК отделяются друг от друга плазматической мембраной, в результате чего клетка делится пополам. Таким образом, каждая дочерняя клетка содержит по одной равнозначной молекуле ДНК.

Процесс деления при благоприятных условиях происходит каждые 25-30 минут . Этот интервал может увеличиться под воздействием сдерживающих факторов, таких как нехватка пищи, солнечный свет, высокая температура и др.

По способу питания бактерии делятся на гетеротрофов (это как?) и автотрофов (это как?) .

Первые представлены сапротрофами (питаются мёртвой органикой), паразитами (потребляют органику живых особей) и симбионтами (живут и питаются вмести с другими организмами). Вторые получают питание посредством фотосинтеза (путём преобразования солнечной энергии либо за счёт химического окисления неорганических веществ).

В отличие от прокариотов, эукариоты – это ядерные живые организмы (т.е. их клетки содержат ядро).

Они могут быть как одноклеточными, так и многоклеточными, однако строение клеток у них однотипное.

В группу эукариотов (они могут быть одно- или многоклеточными) входят растения, животные (в том числе человек) и грибы.

Клетки эукариот разделены системой мембран на отдельные отсеки, имеют схожий химический состав и однотипный обмен веществ.

Генетический материал сконцентрирован, главным образом, в хромосомах, которые образованы цепочками ДНК и белковыми молекулами. В цитоплазме располагаются мембранные органоиды.


Животные и растения

Непременным структурным элементом любой эукариотической клетки является ядро . В нём, а также в митохондриях животные клетки хранят наследственную информацию.

В растительных клетках эта информация находится не только в ядре и митохондриях, но ещё и в пластидах. Объёмное соотношение между ядром и цитоплазмой называется ядерно-цитоплазматическим индексом, с помощью которого можно оценить уровень метаболизма (это что?) .

Почему грибы принадлежат к группе эукариот

У клеток грибов есть оформленное ядро, поэтому их относят к эукариотам.

Правда, изначально к эукариотам относили только растения и животных. В дальнейшем были выделены грибы как отдельное царство, так как они сочетают в себе растительные и животные признаки.

В частности, у них отсутствует хлорофилл, а питание происходит путём впитывания органических веществ из внешней среды (создавать собственную органику они не способны). Размножаются грибы как половым, так и бесполым способом.

В состав клетки эукариот входят следующие основные компоненты:

  1. ядро;
  2. ядерная мембрана;
  3. линейная ДНК;
  4. цитоплазма;
  5. митохондрии;
  6. плазматическая или клеточная мембрана;
  7. хромосомы;
  8. рибосомы;
  9. лизосомы (у животных клеток для переваривания клеточных микромолекул);
  10. хлоропласты (у растительных клеток для обеспечения фотосинтеза);
  11. эукариотический жгутик(и).


Согласно самым распространённым научным гипотезам эукариоты появились порядка 1,5 млрд.лет тому назад. Многие учёные полагают, что они эволюционировали благодаря симбиогенезу, т.е. взаимодействию собственных клеток с клетками бактерий.

Отличие прокариотов от эукариотов

Главное, что отличает прокариотов от эукариотов, – отсутствие клеточного ядра .

А это значит, что ДНК прокариотической клетки не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены намного сложнее. Их ДНК упакована в хромосомы, которые располагаются как раз в ядре.

Основные отличия рассматриваемых биологических категорий сведены в таблицу:

Одноклеточные (за редким исключением)

Одно- или многоклеточные

Не имеют сформировавшегося ядра

Имеют чётко выраженное ядро (ядра) с собственной оболочкой

Наследственная информация содержится в кольцевой молекуле ДНК

Наследственная информация хранится в линейной ДНК ядра, а также митохондриях и пластидах

Не имеют мембранных органоидов

Содержат мембранные органоиды и немембранные структуры

Бинарное деление клетки

Набор генов – гаплоидный

Набор генов, как правило, – диплоидный

Размножение вегетативное, споровое, почкованием

Жгутик в виде белковых нитей вмонтирован в оболочку клетки

Жгутик представлен выростом клетки в виде микротрубки

Клетки имеют размер 0,1-10 мкм

Клетки имеют размер 10-100 мкм

Предварительный просмотр:

Подавляющее большинство известных на сегодняшний день живых организмов (растения, животные, грибы и бактерии) имеет клеточное строение. Форма клеток может быть округлой, цилиндрической, кубической, призматической, дисковидной, веретеновидной, звездчатой и др.

Несмотря на все разнообразие клеток, общий план строения для них един: все они содержат наследственную информацию , погруженную в цитоплазму, и окружающую клетку плазматическую мембрану . Снаружи от мембраны у клетки может быть еще клеточная стенка , состоящая из различных веществ, которая служит для защиты клетки и является своего рода ее внешним скелетом.

Прокариоты и эукариоты

В настоящее время различают два основных типа организации клеток : прокариотические и эукариотические.

Прокариотическая клетка не имеет ядра, ее наследственная информация не отделена от цитоплазмы мембранами. Область цитоплазмы, в которой хранится наследственная информация в прокариотической клетке, называют нуклеоидом . Прокариотами являются бактерии.

Эукариотическая клетка — клетка, в которой хотя бы на одной из стадий развития имеется ядро — специальная структура, в которой находится ДНК. К эукариотическим организмам относят растения, животные и грибы.

Размеры прокариотических клеток, как правило, на порядок меньше, чем размеры эукариотических. Большинство прокариот является одноклеточными организмами, а эукариоты — многоклеточными.

Сравнительная характеристика строения клеток растений, животных, бактерий и грибов

Кроме характерных для прокариот и эукариот особенностей, клетки растений, животных, грибов и бактерий обладают еще целым рядом особенностей. Так, клетки растений содержат специфические органоиды — хлоропласты, которые обусловливают их способность к фотосинтезу, тогда как у остальных организмов эти органоиды не встречаются.

Растительные клетки, как правило, содержат крупные вакуоли, наполненные клеточным соком. В клетках животных, грибов и бактерий они также встречаются, но имеют совершенно иное происхождение и выполняют другие функции. Основным запасным веществом, встречающимся в виде твердых включений, у растений является крахмал, у животных и грибов — гликоген, а у бактерий — волютин.

Еще одним отличительным признаком этих групп организмов является организация поверхностного аппарата: у клеток животных организмов клеточная стенка отсутствует, их плазматическая мембрана покрыта лишь тонким гликокаликсом, тогда как у всех остальных она есть. Это целиком объяснимо, поскольку способ питания животных связан с захватом пищевых частиц в процессе фагоцитоза, а наличие клеточной стенки лишило бы их данной возможности. Химическая природа вещества, входящего в состав клеточной стенки, неодинакова у различных групп живых организмов: если у растений это целлюлоза, то у грибов — хитин, а у бактерий — муреин.

Бактериальные клетки имеют следующие характерные для них структуры — плотную клеточную стенку, клеточную мембрану, одну кольцевую хромосому, расположенную в нуклеотиде, рибосомы, мезосомы (внутренние клеточные мембраны), жгутики и клеточные включения в виде жировых капель и гранул полисахаридов. В этих клетках нет многих органоидов, характерных для эукариотических растительных, животных и грибных клеток. По способу питания бактерии делятся на автотрофов, хемотрофов и гетеротрофов.

Клетки растений содержат характерные только для них пластиды — хлоропласты, лейкопласты и хромопласты; они окружены плотной клеточной стенкой из целлюлозы, а также имеют вакуоли с клеточным соком. Все зеленые растения относятся к автотрофным организмам.

У клеток животных нет плотных клеточных стенок. Они окружены клеточной мембраной, через которую происходит обмен веществ с окружающей средой.

Клетки грибов покрыты клеточной стенкой, отличающейся по химическому составу от клеточных стенок растений. Она содержит в качестве основных компонентов хитин, полисахариды, белки и жиры. Запасным веществом клеток грибов и животных является гликоген.

Строение бактериофага

Так мир познакомился с микроорганизмами, питающимися бактериями, которые много тысяч лет делали свое дело слаженно, не давая бактериям уничтожить все живое на земле. В 1921 г. Д. Мэйсон и Р. Брайон впервые описали успешное лечение стафилококковой инфекции кожи с помощью стафилококкового бактериофага. Во время Второй мировой войны бактериофаги использовались при гнойно-септических инфекциях, дизентерии, тифе и др.

Бактериофаги еще в прошлом столетии доказали свою эффективность и безопасность. Почему же бактериофаги до сих пор не стали основными средствами борьбы с инфекцией? Это объясняется несколькими причинами. Главная — открытие новой группы препаратов – антибиотиков, надолго оттеснившее интерес к бактериофагам. Плюс:

  • недостаточная информированность врачей и пациентов,
  • отсутствие фагов ко многим патогенным бактериям,
  • неэффективность лечения в связи с неправильным подбором бактериофагов для лечения конкретного больного,
  • недостаточно изученное иммунологическое взаимодействие бактериофагов и организма человека,
  • отсутствие нормативно-правовых аспектов применения бактериофагов в лечении инфекций человека.

Что такое бактериофагиМеханизм

В 1939 году А. Флемингом был открыт антибиотик, и началась эра антибиотиков в лечении бактериальных инфекций. Появилось большое количество антибиотиков 1, 2, 3, 4 поколений, причем антибиотики последнего поколения, которыми пользуются и сейчас, появились еще в 70-е годы прошлого столетия. На Западе и Америке отказались от бактериофагов и активно начали применять антибиотики.

Но А. Флеминг предупреждал о некоторых обязательных моментах применения антибиотиков:

  • строгих показаниях к назначению,
  • соблюдении продолжительности и запрете прерывания курса лечения,
  • адекватных дозах препарата,
  • способах введения,
  • назначения их обязательно врачом,
  • отпуске антибиотиков исключительно по рецепту.

Несоблюдение хотя бы части этих требований могло привести и, как оказалось, приводит к кризису антибиотиковой эры. Бактерии перестают реагировать на препараты. Пока ещё действуют антибиотики последнего поколения, решая труднейшие клинические проблемы, но рассчитывать на появление новых антибиотиков не приходится.

Россия на сегодняшний день оказалась самой развитой страной в области микробиологии изучения бактериофагов. Бактериофаги – это естественные антагонисты бактерий.

Каков механизм действия бактериофагов

Сегодня многие заболевания вызываются стафилококками, стрептококками, клебсиеллами и другими бактериями, и успешно могут лечиться бактериофагами. Это естественная альтернатива антибиотикам, возврат к природе.

Какие преимущества имеют бактериофаги в лечении бактериальных инфекций

Бактериофаги много тысяч лет делали свое дело, не давая бактериям уничтожить все живое на земле.

Бактериофаги могут применяться и у беременных, и у детей, во всех возрастных группах людей. Противопоказаний к их применению нет.

Фаги совместимы с различными лекарствами, в том числе с антибиотиками, причем они уменьшают непереносимость (резистентность) бактерий к антибиотикам.

Курс лечения бактериофагами более короткий (7-14 дней). Фаги практически не дают побочных явлений. Они определяются бактериальной зараженностью и распадом бактерий с выделением эндотоксина, но они значительно меньше, чем при приеме антибиотиков, эти явления легко снимаются приёмом энтеросорбентов. Бактериофаги можно применять при аллергических реакциях на антибиотики.

Бактериофаги, благодаря своей специфичности воздействия на бактерии, не убивают хорошие бактерии и не изменяют нормальную микрофлору кишечника. Они, в отличие от антибиотиков, не нарушают микробиом человека.

Какие виды бактериофагов известны

Известно, что бактериофаги действуют на один штамм бактерий, поэтому производятся препараты бактериофагов, действующих против разных штаммов одного возбудителя:

  • стафилококковый бактериофаг,
  • сальмонеллезный бактериофаг,
  • стрептококковый бактериофаг,
  • клебсиеллёзный бактериофаг (Клебсиелла пневмония),
  • бактериофаг псевдомонас (против синегнойной палочки).

Бактериофаги

Производятся препараты против двух и более возбудителей, поливалентные бактериофаги:

  • бактериофаг дизентерийный, действующий на разные штаммы дизентерийной палочки,
  • клебсиеллезный бактериофаг против трёх видов клебсиелл,
  • бактериофаг бактериальный поливалентный очищенный (действует на стрептококк, стафилококк, протей, клебсиеллу пневмонию, кишечную палочку, синегнойную палочку),
  • пиобактериальный комплексный бактериофаг (против стафилококка, стрептококка, двух видов протея, двух видов клебсиеллы, энтерококков, энтеропатогенной кишечной палочки, синегнойной палочки),
  • бактериофаг интестин-бактериальный против дизентерийной палочки, сальмонеллы, кишечной палочки, протея, энтерококков, стафилококков, синегнойной палочки,
  • пиобактериофаг поливалентный или секстафаг (против стафилококка, стрептококка, протея, синегнойной палочки, клебсиеллы пневмонии, энтеропатогенной кишечной палочки).

Особенность бактериофагов – узкая специфичность, в следствие чего они могут применяться против определенных штаммов бактерий, поэтому необходимо иметь большую коллекцию бактериофагов, из которой можно выбрать подходящий препарат или фаговый коктейль для конкретного пациента. Коллекция бактериофагов составляет более 200 препаратов.

Производителем бактериофагов в России является научно-производственное объединение Микроген — мировой лидер изучения бактериофагов.

При каких заболеваниях применяются бактериофаги

Бактериофаги применяются при:

  • трофических язвах,
  • раневых инфекциях,
  • инфекциях органов дыхания,
  • мочеполовой системы,
  • желудочно-кишечных тракта,
  • болезнях лор-органов и др. заболеваниях.

Инфекции желудочно-кишечного тракта, вызванные сальмонеллой, золотистым стафилококком, протеем, и др. и сопровождающиеся диареей (поносами), успешно лечатся бактериофагами.

Применяться бактериофаги при острых кишечных инфекциях могут:

  • в виде монотерапии при легких формах,
  • в сочетании с антибиотиками при
    • средне-тяжелых формах болезни,
    • бактерионосительстве – выделении энтеропатогенных бактерий,
    • комплексной терапии условно-патогенной флоры и нарушении микробиома (микрофлоры) кишечника.

    Используются бактериофаги в дерматологии, в детской практике, хирургии. С профилактической целью — в детских садах и школах для предотвращения эпидемий, например, дизентерии. Бактериофаги уже более 100 лет на службе человека. Может быть, как раз сейчас начинается эпоха бактериофагов. В новосибирском научном центре разрабатываются технологии персонализированного лечения. Медицинские центры Франции, Бельгии, Швейцарии проводят клинические исследования коктейлей бактериофагов.


    Важным условием успешного лечения бактериофагами является знание микрофлоры тех органов, где предполагается бактериальная инфекция. Ниже приведены необходимые исследования микрофлоры для различных очагов заражения:

    Участок заражения Обследование
    желудочно-кишечный тракт анализ на микробиом толстой кишки (на дисбактериоз)
    носоглотка мазок на микрофлору
    урологические заболевания посев мочи,
    посев секрета простаты
    гинекологические заболевания мазки
    раневые поверхности и язвы,
    в том числе при диабетической стопе
    посев

    В настоящее время при выявлении бактериального возбудителя болезни есть возможность определить его чувствительность к бактериофагу. Перед началом лечения необходимо пройти это обследование.

    Как принимаются бактериофаги

    Бактериофаги хранятся в холодильнике при температуре 2-8 градусов.

    Бактериофаги — это крупные частицы. Они трудно проникают в ткани органов, поэтому лучше вводить их при лечении прямо к месту локализации инфекции. Это могут быть ингаляции при легочной патологии, промывания при лор-заболеваниях, аппликации при трофических язвах, ожогах, ранах. При инфекциях мочевыводящих путей для достижения успеха препараты бактериофагов вводятся в полость мочевого пузыря (хронический цистит).

    Для внутреннего употребления есть бактериофаги во флаконах по 20 мл, 4 флакона в упаковке. Перед употреблением флакон следует подержать в руке, согреть, перелить в чистую посуду и принять внутрь. Принимать 2 раза в день натощак и после ужина, курс лечения 6 дней.

    Забор бактериофага из 100-мл флакона

    Есть упаковки по 50 мл и 100 мл. Поскольку следует максимально сохранять стерильность препарата (при помутнении запрещён его приём), необходимый для однократного приёма объём следует набирать в шприц.

    В настоящее время проводят лечение бактериофагами диабетической стопы. Из больных тканей берут мазок для выявления конкретных патогенных бактерий. Затем из коллекции бактериофагов подбирают те, которые способны ликвидировать именно эти бактерии. Бактериофаг наносят на стерильную салфетку, прикладывают к ране. Лечение около недели.

    Бактериофаги применяются в медицине местно или внутрь. Еще в 30-ые годы прошлого столетия бактериофаги доказали свою безопасность и высокую эффективность в клинических условиях. Но покупать бактериофаги и лечиться самостоятельно не стоит.

    Заключение

    Не всегда бактериофаги могут заменить антибиотики. Так, если имеет место острая ситуация, когда заподозрена бактериальная инфекция, но нет времени определить бактериальный фон болезни, чтобы подобрать препарат бактериофаг, то применяется лечение антибиотиками. При хронических инфекционных болезнях, когда установлена нечувствительность бактерий к антибиотикам и бактериальный фон заболевания, предпочтение следует отдать бактериофагам.

    Хотя бактериофаги, возможно, не смогут полностью заменить антибиотики, но вместе они могут бороться со многими серьезными болезнями в клинической практике.

    Читайте также: