Белок борющийся с вирусом

Обновлено: 24.04.2024

И это неудивительно хотя бы потому, что вирусы — штука довольно непонятная. Неясно даже, считать их живыми или нет. С одной стороны, это просто хрупкий набор молекул, который не может существовать автономно, без живой клетки. Он не производит и не накапливает энергии, а также не поддерживает постоянства внутренней среды — ее попросту нет. Но когда вирус попадает в клетку, он проходит жизненный цикл, копирует себя и эволюционирует. Невидимое глазу нечто существует в огромном количестве, постоянно меняется, переходит от одних хозяев к другим и причиняет страдания разной степени тяжести всему человечеству.

Как устроены вирусы?

РНК-содержащие вирусы можно разделить на собственно РНК-вирусы и ретровирусы. Первые — это вирусы гриппа, бешенства, гепатита С, а также коронавирусы и вирус Эбола. Они содержат РНК и используют для размножения РНК-зависимую РНК-полимеразу, с ее помощью на исходной молекуле РНК сразу синтезируется новая. А к ретровирусам относится, например, ВИЧ. Он содержит РНК, но в ходе жизненного цикла она превращается в ДНК и встраивается в геном клетки-хозяина. После чего новая РНК синтезируется уже на основе молекулы ДНК — то есть так же, как у нас.


Жизненный цикл вируса, на примере вируса иммунодефицита

Как с ними бороться?

Еще одна стратегия — активная и пассивная иммунопрофилактика. Активная — это простая и всем знакомая вакцинация. Человеку вводят неактивную форму вируса или его кусочек, в организме срабатывает иммунный ответ и синтезируются антитела, которые защитят человека в будущем, если он когда-нибудь встретится с настоящим живым вирусом. Но вакцину не всегда можно создать, да и уже существующие порой не работают на все сто. Так, вакцина от гриппа защищает только от нескольких — самых распространенных в текущем сезоне — штаммов (видов) вируса. Пассивная иммунопрофилактика — это введение готовых антител тем, кто уже встретился с вирусом или с большой вероятностью сделает это. Такие лекарства существуют для респираторно-синцитиального вируса (рекомендованы недоношенным младенцам) и ветряной оспы (для людей с подавленным иммунитетом).

И, наконец, последняя стратегия на случай, если ничто не помогло и человек заболел, — антивирусные препараты. Их развитие подстегивали научный прогресс и насущные проблемы. Чтобы придумать противовирусный препарат, нужно сначала изучить вирус и его жизненный цикл и выбрать возможные мишени для атаки. Причем такие, чтобы они как можно сильнее отличались от человеческих аналогов. Иначе лекарство будет бороться и с вирусами, и с невинными человеческими клетками, вызывая сильные побочные эффекты.

В 80-е произошло другое громкое открытие — вирус иммунодефицита человека. Это породило шквал научных работ, посвященных разработке новых противовирусных лекарств. К тому времени связанный с ним СПИД уже распространился по миру, а в США началась эпидемия.

Какие бывают антивирусные препараты?

Их можно разделить на 13 групп, причем к шести относятся различные лекарства против ВИЧ. Это ингибиторы входа вируса в клетку, вирусных ферментов интегразы и протеазы, а также три вида ингибиторов вирусного фермента обратной транскриптазы, или ревертазы. Все они действуют на разные этапы жизненного цикла вируса:

1. Проникновение в клетку

Это первое, что должен сделать вирус, попав в организм. То, какую клетку он поразит, определяется рецептором на ее поверхности. У ВИЧ это рецептор CD4, который есть у Т-хелперов, макрофагов, а также некоторых других видов клеток. Кроме него в связывании вируса и его проникновении участвуют: рецепторы CXCR4 и CCR5 со стороны клетки и поверхностные гликопротеины gp120 и gp41 — со стороны вируса.

Сейчас FDA (американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов) одобряет четыре лекарства, работающие на этой стадии. Каждый связывается с каким-то из участников процесса и мешает его работе. Например, к этой группе принадлежит самый новый препарат против ВИЧ — фостемсавир, его одобрили в США в июле 2020 года. В организме он превращается в активную форму темсавир, соединяется с вирусным гликопротеином gp120 и мешает ему связаться с клеточным рецептором CD4. Другой препарат — ибализумаб — связывается с самим CD4, причем так, что рецептор не может участвовать в проникновении вируса, но выполняет свою нормальную иммунную функцию — связывает и узнает антигены на поверхности антигенпрезентирующих клеток.

Подобные препараты также используются для лечения респираторно-синцитиального вируса, вирусов ветряной оспы и простого герпеса. Они тоже действуют на вирусные гликопротеины и их связывание с клеточными рецепторами. К этой же группе можно отнести препараты для пассивной иммунопрофилактики антителами.

2. Подготовка к размножению, часть 1

Когда вирус попал в клетку, он должен в ней размножиться, то есть создать копии себя, используя ресурсы самой клетки. Так как ВИЧ — ретровирус, его генетический материал — РНК, которая должна достроиться до двухцепочечной ДНК и встроиться в ДНК клетки. Процесс достраивания называется обратной транскрипцией, и для него необходим вирусный фермент обратная транскриптаза, ее еще называют ревертазой. Это самая популярная мишень препаратов против ВИЧ, которые делятся на две группы: нуклеозидные и ненуклеозидные.


Механизм дейсвтия ингибиторов обратной транскриптазы

3. Подготовка к размножению, часть 2

Чтобы наконец размножиться, ВИЧ, уже в виде молекулы ДНК, необходимо встроиться в геном клетки-хозяина. В этом участвует другой вирусный фермент — интеграза. Ее ингибируют несколько одобренных лекарств, причем они часто используются вместе с другим препаратом — кобицистатом. Он никак не действует на вирус, но ингибирует некоторые ферменты печени и увеличивает биодоступность самих антивирусных препаратов.

4. Созревание

Другие препараты

Есть три группы антивирусных препаратов, которые мы еще не упоминали. Во-первых, это ингибиторы белков NS5A и NS5B вируса гепатита С, которые играют важную роль в репликации РНК вируса. Во-вторых, лекарства против вируса гриппа: три ингибитора вирусного белка нейраминидазы и один ингибитор РНК-полимеразы вируса. И, наконец, сборная солянка препаратов, которые не действуют прицельно на вирусные компоненты. Это интерфероны, а также иммуностимуляторы и ингибиторы митоза клеток.

Первые заслуживают особого внимания из-за обилия отечественных лекарств против гриппа и простуды на их основе. FDA одобряет инъекции (!) интерферонов только для лечения гепатита B и С, причем на практике они используются очень осторожно из-за серьезных побочных эффектов. Отечественные противовирусные препараты с интерферонами, которые выпускаются в форме мазей, спреев и суппозиториев, вряд ли работают. И слава богу. Иммуностимуляторы и ингибиторы митоза клеток выпускаются в виде мазей и используются для лечения генитальных бородавок, то есть папилломавируса человека.

Наука не стоит на месте, и разработка противовирусных препаратов продолжается, подстегиваемая новыми вирусами, эпидемиями, а также развитием резистентности к существующим лекарствам. Но по-прежнему самыми изученными и многочисленными препаратами остаются ингибиторы вирусных обратной транскриптазы или ДНК-полимеразы и протеазы. Для разработки других стратегий борьбы ученым еще предстоит изучить детали работы вирусов — как давно известных, так и совершенно новых.

Да, вирусы остаются источником зловещих идей в популярной культуре. Но существующих препаратов и методов уже достаточно, чтобы мы могли избежать заражения, быстро вылечиться или свести негативные последствия болезни к нулю.

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

по теме


Мнение

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.


по теме


Эпидемия

Учёные выяснили, как вирусы обманывают иммунитет

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Перед тем как говорить о вакцине против ВИЧ, стоит начать с более общего вопроса: что мы понимаем под прививками и вакцинами с научной точки зрения?

По механизму возникновения иммунитет делится на два вида: врожденный и приобретенный. Первый есть у каждого человека с рождения, он выработан эволюционно. Благодаря нему человек не болеет многими болезнями, которыми, например, страдают животные.

Второй возникает в течение жизни и у каждого может отличаться в зависимости от того, с какими возбудителями человеку довелось встретиться.

по теме


Лечение

Как устроен иммунитет: Объясняем по пунктам

Приобретенный иммунитет может быть активным (он возникает вследствие реакции организма на перенесенную болезнь, присутствие возбудителя в организме), а может быть пассивным, когда антитела, например, передаются от матери ребенку во время беременности.

Именно по этим антителам, как правило, и ставится диагноз, если мы пользуемся экспресс-тестами. В случае с ВИЧ существует и пассивный иммунитет. Но при передаче вируса от матери ребенку, к сожалению, он не обладает достаточным защитным эффектом.

Еще одно направление — это искусственный иммунитет. Он тоже бывает активным и пассивным. Пассивный — это иммуноглобулины, выработанные либо у лабораторных животных, либо у других иммунизированных лиц, и сыворотки. Активный же достигается собственно путем вакцинации.

Вакцины бывают профилактические (защитные) и лечебные. Они различаются по типу воздействия на организм и по своим результатам.

Пассивный иммунитет возникает быстрее, сразу после того, как в организм ввели чужие антитела. Однако он бывает совсем недолговременным. Активный иммунитет держится долго, чаще — пожизненно, но и возникает не сразу.


Иммунный ответ: как это все работает?

Ученые обычно говорят о гуморальном и клеточном иммунитете. Принцип работы гуморального заключается в следующем: в нашем организме есть специальные клетки — лимфоциты. Они постоянно циркулируют в крови и проверяют все, что попадается им на пути, по принципу свой/чужой.

по теме


Лечение

Гид по вакцинам. Когда и какую прививку сделать? А главное: надо ли вообще прививаться? (Спойлер: конечно, надо)

Например, антитела к ВИЧ-инфекции появляются где-то через месяц после заражения, соответственно, все это время вирус может циркулировать в организме. Почему они неэффективны? Во-первых, потому что появляются слишком поздно.

Во-вторых, потому что вирус, с которым мы имеем дело, очень изменчив. Если даже В-клетки обнаружили его антиген, выработали к нему антитела, способные нейтрализовать заразу, то за время, которое ушло на все это, сам вирус успевает мутировать и оказаться неуязвимым для выработанного организмом оружия.

Когда мы говорим о клеточном иммунитете, речь идет об уничтожении тех вирусов, которые преодолели гуморальный барьер и успели забраться в саму клетку.

Клетки CD4 частично регулируют весь процесс и выполняют функцию клеток памяти. Их принято называть хелперами. CD8 — собственно занимаются уничтожением, за это их зовут киллерами.

ВИЧ — единственный вирус, который поражает не просто клетки организма, а собственно клетки иммунной системы. Той самой, которая с вирусом должна, по идее, бороться.


Именно поэтому против ВИЧ-инфекции иммунитет не может сработать так, как это было бы с любым другим вирусом.

Какие возникают трудности при создании вакцины против ВИЧ?

На данный момент в рамках более ста испытаний уже протестировано более сорока видов вакцин с участием тысяч добровольцев, и есть целая система, в которой регистрируются все исследования по вакцинации от ВИЧ.

Последнее время в разного рода СМИ регулярно появляется информация, что той или иной компанией разрабатывается новая вакцина против ВИЧ. Однако обнадеживающих результатов не так уж и много. Почему?

You are currently viewing Вакцинация против коронавируса или заражение COVID-19 — какой иммунитет сильнее?

Студент медицинского факультета УЛГУ. Интересы: современные медицинские технологии, открытия в области медицины, перспективы развития медицины в России и за рубежом.

  • Запись опубликована: 11.03.2022
  • Reading time: 3 минут чтения

После появления прививок от COVID-19 разгорелись дискуссии относительно безопасности вакцин, иммунитета, который они гарантируют, и его сравнения с иммунитетом после перенесенного коронавируса. Пожалуй уже можно ответить на эти вопросы, ведь после вспышки пандемии прошло два года, а после внедрения вакцин — год.

Что такое иммунитет организма?

Иммунитет — это способность организма побеждать патогенные микроорганизмы (вирусы, бактерии и грибки), нейтрализовать токсины и предотвращать развитие инфекционных заболеваний. За иммунитет отвечает иммунная система.

Иммунная система — это совокупность органов и иммунных клеток, взаимосвязанных сложной сетью. В эту систему входят костный мозг, тимус, селезенка, лимфатические узлы и миндалины.

Клетки иммунного ответа — белки клеток крови, борющиеся с бактериями и вирусами образуются и созревают в костном мозге. Они участвуют в различных типах иммунного ответа: некоторые готовы бороться с патогенами сразу, другим для реакции нужно время.

Клетки иммунной системы, участвующие в разных видах иммунитета:

  • Т- и В-лимфоциты;
  • макрофаги;
  • нейтрофилы;
  • эозинофилы;
  • базофилы.

Виды иммунитета

Можно выделить следующие виды иммунитета:

  • Неспецифический иммунитет и его подвиды.
  • Специфический иммунитет и его подвиды.

Что такое неспецифический иммунитет

Неспецифический иммунитет – это все защитные силы организма, направленные на любой вид микроорганизма. Он включает:

Специфический иммунитет

В этом случае иммунная реакция направлена против определенного фактора — типа вируса или бактерии. На его создание уходит несколько дней. Однако, как только он развился, он очень эффективен, поэтому нас интересует именно этот вариант.

  • Клеточный иммунитет. Этот тип иммунитета зависит от Т-лимфоцитов и заключается в прямой атаке и уничтожении этими лимфоцитами вирусов и бактерий. Болезнетворные микроорганизмы попадая в организм поглощаются макрофагами. Затем выделяется ряд веществ — антигенов, т.е. фрагментов уничтоженного патогена, к Т-лимфоцитам. Это стимулирует Т-клетки при обнаружении антигена на поверхности микроорганизма немедленно его устранять.
  • Гуморальный иммунитет. Зависит от антител, вырабатываемых В-лимфоцитами. Они обладают способностью связываться с вирусами и бактериями и таким образом устранять их. Как и в клеточном ответе, В-лимфоциты активируются первыми, трансформируются в плазматические клетки и начинают вырабатывать первичные антитела, т.е. те, которые связываются непосредственно с антигенами вируса/бактерий. Это антитела типа M (IgM) в начале, позже к ним присоединяются антитела типа G (IgG).

Специфический иммунитет – также можно разделить по длительности действия на кратковременный (пассивный) и длительного действия (активный) и естественный и искусственный:

  • естественный пассивный иммунитет – антитела в грудном молоке;
  • искусственный пассивный иммунитет – введение сыворотки с антителами;
  • специфический активный естественный иммунитет – после болезни;
  • специфический активный искусственный иммунитет – вакцинация.

Специфический активный естественный иммунитет, полученный после болезни и специфический активный искусственный иммунитет после прививки будут бороться с вирусом, но чтобы добиться иммунитета, организм проходит разный путь.

Как получить иммунитет к коронавирусу? В каком случае риски выше?

Все начинается с гуморального иммунитета, направленного на SARS-CoV-2 — второй линии защиты организма, более специализированной на обнаружение угрозы. Главную роль в нем играют антитела. Они нацелены на специфический патоген (антиген) – распознают его, подключаются к нему и нейтрализуют.

Важную роль здесь играет иммунная память – благодаря ей после первого контакта с антигеном иммунная система способна выявить его при следующем контакте. И, таким образом, более эффективно вырабатывать антитела.

Гуморальный иммунитет к коронавирусу может быть достигнут двумя способами, имеющими разные уровни риска. Вы можете:

  • Заразиться и заболеть COVID-19;
  • Сделать прививку от КОВИД.

Когда организм при болезни вступает в контакт с вирусом, стимулируется иммунный ответ, формируется иммунитет выздоровевших. Однако такой способ приобретения иммунитета связан с рисками. У каждого человека инфекция протекает по-разному. У одних больных коронавирус дает незначительные симптомы, у других — болезнь угрожает жизни.

При вакцинации от COVID в организм вводится модифицированный белок, полученный из шипа вируса — антиген вируса – белок S. Сам по себе он безвреден и не может вызвать инфекцию, но вызывает иммунный ответ. Иммунитет после вакцинации, после первой дозы, появляется в течение 14 дней. В зависимости от типа вакцины для укрепления иммунитета вводится вторая доза и бустерная доза. Риски осложнений в этом случае гораздо ниже.

Какие антитела сильнее — после болезни или прививки?

На этот вопрос ответили ученые из США, опубликовавшие в журнале Scientific Reports результаты исследования, посвященного этой теме. Специалисты рассказали, что происходит с антителами после болезни и введения вакцины.

Ученые взяли 41 образец сыворотки у 33 человек с документально подтвержденной историей инфекции SARS-CoV-2. Затем этот материал сравнили с сыворотками 28 человек, у которых никогда не было COVID-19, но которые получили две дозы мРНК-вакцин (Pfizer или Moderna). Результаты группы после иммунизации вакциной также сравнивали с группой вновь диагностированных пациентов с COVID-19.

Выводы довольно показательны:

  • Исследование показало, что у привитых людей в 17 раз больше нейтрализующих антител по сравнению с людьми с естественным иммунитетом.
  • У привитых в 30 раза больше антител, чем у заболевших.
  • Более высокие уровни антител у вакцинированных людей приводят к лучшей нейтрализации патогена.

Данные показали, что антитела, вызванные вакциной против коронавируса, работают лучше, чем те, которые вырабатываются при заболевании. Получается, что у привитых шансы заразиться или тяжело переболеть значительно ниже.

Справедливости ради стоит отметить, что исследования проводилось в лабораторных условиях и с определенными вакцинами, поэтому нельзя сказать на 100%, что выводы касаются любых прививок. Также ученые отметили разницу в медианном возрасте между группами с естественным иммунитетом и вакцинированными группами, хотя это не должно объяснять столь большую разницу в уровнях антител

You are currently viewing Уровни антител после COVID-19 — качество иммунитета, расшифровка анализа

Разработчик сайтов, журналист, редактор, дизайнер, программист, копирайтер. Стаж работы — 25 лет. Область интересов: новейшие технологии в медицине, медицинский web-контент, профессиональное фото, видео, web-дизайн. Цели: максимально амбициозные.

  • Запись опубликована: 21.01.2022
  • Reading time: 6 минут чтения

С начала пандемии ученые всего мира ищут ответ на вопрос, как долго сохраняется иммунитет у выздоровевших людей. Исследования подтверждают теорию о том, что антитела после COVID-19 сохраняются до нескольких месяцев, а их количество индивидуально и зависит от многих факторов.

Кого можно считать выздоровевшим от КОВИД?

Выздоровевшим считается человек, у которого COVID-19 был диагностирован на основе клинических критериев или подтвержден в лаборатории, и у которого больше нет симптомов этого заболевания и он не заразен.

Как работает иммунитет к COVID-19 у выздоровевших людей?

Чтобы получить ответ на этот вопрос, рассмотрим механизм иммунитета к коронавирусу. Иммунитет, защищающий организм от заражения COVID-19, связан с наличием в организме антител, специфичных к вирусу SARS-CoV-2 и специализированных клеток иммунной системы. Они запрограммированы на уничтожение вируса при новом контакте.

Таблица 1. Классы антител

Специфические физиологические функции связаны с классом антител. Антитела — часть механизма приобретенного, т.е. адаптивного иммунитета.

Для эффективной борьбы с коронавирусом организму необходим именно адаптивный иммунитет, поскольку он позволяет вырабатывать таргетные антитела и Т-лимфоциты, атакующие клетки, инфицированные вирусом. Если адаптивная реакция достаточно сильна, она оставляет постоянную память об инфекции в организме, обеспечивая защиту от вируса в будущем.

Как проверить уровень иммунитета при COVID-19?

Метод мониторинга уровня иммунитета, полученного после COVID-19 или после вакцинации против SARS-COV-2 — измерение концентрации антител против SARS-CoV-2. Известно, что иммунитет пропорционален концентрации антител.

Некоторые тесты адаптированы для измерения антител, особенно важных в механизмах противовирусного гуморального иммунитета – антител, нейтрализующих IgG anti-S. Результат теста выражается в BAU/мл. Измерение концентрации антител дважды позволяет уловить скорость изменения концентрации с течением времени.

Сроки измерений антител жестко не фиксированы, но их однозначно не следует делать в первые 2 недели после вакцинации. Лучше дождаться второй бустерной дозы и сдать анализы через пару недель.

Зная уровень ранних антител – IgM и поздних – IgG можно оценить эффективность иммунной системы, т.е. справилась ли она с коронавирусом SARS CoV-2 после заражения или после вакцинации. Тестирование уровня антител к COVID-19 также позволяет оценить время, прошедшее с момента заражения или последнего контакта с вирусом.

Можно ли отличить антитела после COVID-19 от антител после вакцинации?

Выработка антител стимулирует контакт иммунной системы с частицами (антигенами) вируса. Такой контакт может происходить по-разному. Наиболее распространенные — болезни или вакцинация, стимулирующие организм вырабатывать антитела против COVID-19 — сначала в классе IgM, а затем и в антителах IgG.

Вакцина содержит только модифицированный антиген, полученный из шипа на поверхности вируса, так называемый белок S. Поэтому после вакцинации антитела к COVID образуются только против этого белка. При заболевании COVID, организм контактирует с различными антигенами вируса, а не только с белком S, например, с белком N. Следовательно после болезни образуются различные антитела. На этом основании можно отличить антитела после заболевания (направленные против нуклеокапсидного N-белка) от образовавшихся после вакцинации (направленных только против белка S). Для выявления специфических антител следует проводить только соответствующий тест.

Какой уровень антител защищает от болезни?

Каждый организм по-разному реагирует на болезнь и введение вакцины, поэтому уровень вырабатываемых антител не одинаков. Их количество может варьироваться от нескольких десятков до нескольких тысяч связывающих антител, т.е. BAU (Binding Antibody Units) на миллилитр (/мл).

Пока ученым не удалось определить уровень (титр) антител к COVID, являющихся нормой, защищающей от заболевания. Однако известно, что их уровень отражает реакцию иммунной системы на вакцинацию.

При интерпретации результата на уровне антител необходимо учитывать принимаемые препараты. Некоторые из них, например, глюкокортикостероиды, иммуносупрессивные и противоопухолевые препараты, ухудшают иммунный ответ. У принимающих их людей обычно вырабатывается меньше антител.

С другой стороны, даже очень высокий результат (порядка нескольких тысяч антител/мл) не гарантирует иммунитет от болезни, но безусловно, позволяет избежать тяжелого и опасного для жизни течения заболевания.

Со временем на основании результатов научных исследований и статистических данных, уровень антител, выше которого защита от болезни будет почти стопроцентной, будет установлен.

Виды тестов на уровни антител при COVID-19 – от чего зависит интерпретация результатов анализов

Чтобы диагностировать COVID-19, используются разные виды тестов – генетические и антигенные, требующие мазка из носоглотки и анализы крови на наличие антител.

  • Генетическое тестирование . Основано на методах молекулярной биологии, поэтому наиболее чувствительно. То есть COVID-положительные результаты обычно являются истинными (достоверными).
  • Антигенные тесты . Это популярные кассетные тесты на SARS-CoV-2. Они менее чувствительны, но просты в использовании и результат получается быстро. Результат теста на COVID может быть положительным (была инфекция), отрицательным (вирус не обнаружен) или неубедительным (тест нужно повторить). . Обнаруживают COVID-специфические антитела IgG и антитела IgM. Это могут быть качественные тесты, т.е. оценка того, существуют ли вообще данные антитела. При интерпретации результатов тестов IgG и IgM результаты интерпретируются с использованием готовых, простых для понимания инструкций. Также доступны количественные тесты. В них уровень антител к COVID определяется числовым значением, выраженным в единице BAU/ml.

Интерпретация результатов на уровне антител IgG

Тесты на IgG SARS-CoV-2 интерпретируются только с точки зрения их наличия и/или уровня в крови. Можно получить отрицательный или положительный результат. Реактивным (положительным) результатом считается >/= 30 БАУ/мл, нереактивным (отрицательным) результатом —

Отрицательный результат теста на антитела IgG свидетельствует об:

  • отсутствии контакта с вирусом;
  • отсутствии вакцинации;
  • неэффективности вакцины;
  • серологическом окно — время, необходимое инфицированному организму для выработки антител, направленных против патогена; это также ранний момент заражения, когда антитела еще не обнаруживаются;
  • недавнем контакте с возбудителем.

Антитела IgG вырабатываются через некоторое время после заражения и в среднем это период в 2-3 недели, поэтому в начале их может еще не быть.

Положительный результат теста на антитела IgG свидетельствует о том, что:

  • в анамнезе была инфекция;
  • пациент вакцинирован.

И болезнь, и вакцинация, должны были, имели место некоторое время назад.

Количество антител к COVID-19 следует интерпретировать согласно инструкции производителя теста. У каждого человека может быть разный уровень антител.

Интерпретация результатов на уровне антител IgM

Антитела IgM образуются сначала после контакта с вирусом/вакциной. Они производятся уже через несколько дней.

Положительный результат теста на уровень антител класса IgM (высокий уровень IgM), при отсутствии антител IgG (низкий уровень IgG), указывает на текущую или недавнюю инфекцию или вакцинацию. Титры IgM постепенно снижаются, поэтому они не подходят для оценки иммунного ответа на вакцинацию. Они полезны только при обнаружении недавней инфекции.

Оценка IgG и IgM

Анализ общего результата, как уровня IgG к COVID-19, так и уровня антител IgM, может быть полезен для определения был ли пациент в контакте с вирусом.

  • Высокие уровни IgM с низким / нулевым IgG, скорее всего, указывают на недавнюю первую болезнь / вакцинацию.
  • Высокий уровень IgG с низким IgM указывает на отдаленное время от первой болезни или вакцинации.

Расшифровывать результаты антител к COVID-19 следует у врача.

Отрицательный тест на антитела

Результат теста на уровень антител к COVID-19, интерпретируемый как отрицательный (нереактивный результат), возможен при достижении концентрации антител ниже уровня, указанного в тесте как реактивного, т.е. положительного. Он необязательно должен быть равен нулю.

Отрицательный результат обычно свидетельствует об отсутствии коронавирусной инфекции или отсутствии или неэффективности вакцинации. Это указывает на то, что организм никогда не вступал в контакт с вирусом или его антигенами и не вырабатывал антитела.

Другая ситуация, когда результат теста может быть нереактивным, — длительный период с момента последнего контакта с вирусом, так как ранее выработанные антитела через некоторое время начинают исчезать. Отсутствие раздражителей в виде антигенов приводит к тому, что организм перестает вырабатывать антитела и их уровень снижается.

Также организм может слабо реагировать на контакт с вирусом или вакциной и не вырабатывать антитела в ситуации иммунодефицита из-за лекарств или болезни.

Какой уровень антител после ковид 19 — норма?

Таблица 2. Результаты тестов на антитела у переболевших

Резюме интерпретации тестов на антитела против SARS-CoV-2 (серологические)

ТестыПоложительный результатОтрицательный результат
ПОСЛЕ COVID-19
P-тело p/SARS-CoV-2 IgM полуколичественно

* Период, необходимый инфицированному организму для выработки антител, направленных против возбудителя – в этот ранний период инфекции антитела еще не обнаруживаются.

** Можно провести клеточный ответ.

Устойчивость выздоровевших людей к Covid– что показывают исследования?

Первое исследование по определению вероятности повторного заражения после заражения SARS-CoV-2, без предварительного получения вакцины от covid-19, было проведено учеными из Йельской школы общественного здравоохранения и Университета Северной Каролины в Шарлотте.

Результаты дали четкий ответ, что иммунная резистентность после естественного течения covid-19 недолговечна. У людей, которые не вакцинировались, повторное заражение SARS-CoV-2 весьма вероятно вскоре после выздоровления, даже в течение 3-х месяцев. Поэтому авторы исследования рекомендуют вакцинацию, поскольку сама инфекция мало защищает от последующего заражения.

Ученые из Института Ла-Хойя, основываясь на зафиксированных до сих пор реинфектациях, сделали вывод, что если первая инфекция имеет тяжелое течение, то иммунный ответ организма будет сильнее. Благодаря этому шансы на повторное заражение значительно снижаются. В свою очередь, журнал Healthline ссылается на исследование, опубликованное в журнале Immunity, показывающее, что выздоровевшие люди, легко перенесшие болезнь, вырабатывают антитела не менее 5-7 месяцев.

На основании этих исследований можно предположить, что у значительной части выздоровевших людей в течение нескольких месяцев фактически поддерживаются высокие концентрации антител, которые постепенно снижаются с течением времени. При снижении концентрации антител повышается риск повторного заражения и тяжелого течения болезни.

Долгосрочный иммунитет у выздоровевших от COVID-19

Исследование ученых из Вашингтонского университета, опубликованное в журнале Nature, показывает, что клетки, сохраняющие память о прошлом вирусе, остаются в костном мозге, чтобы иметь возможность вырабатывать антитела в любое время. В свою очередь, второе исследование говорит о том, что В-клетки, отвечающие за иммунную память, спустя год после заражения находятся еще на стадии созревания и укрепления.

Перенесенный COVID-19 не дает 100% гарантии от повторного заражения, хотя, как показывают многочисленные исследования, может ограничить его риск на некоторое время. Чтобы обезопасить себя от повторного заражения вирусом, необходимо заботиться об иммунитете. Также нужно вакцинироваться.

Вакцина не полностью защищает от инфекции, но облегчает клиническое течение заболевания и значительно снижает риск летального исхода. Отсрочка принятия решения о вакцинации дает вирусу шанс распространяться и бесконтрольно мутировать.

Читайте также: