Что помогает эволюционировать вирусам

Обновлено: 27.03.2024

Биологическая эволюция — это естественный процесс развития живой природы, который сопровождается изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом.

Этот процесс касается всех изменений в биосфере за время существования планеты Земля. Согласно современной синтетической теории эволюции все эволюционные изменения происходят под действием ряда факторов. К ним относят:
наследственная изменчивость;
борьбу за существование;
естественный отбор;
адаптацию;
популяционные волны;
изоляцию;
мутации;
дрейф генов.

Основателями биосферы являются – бактерии и археи, вирусы. По крайней мере, так обозначено в составленном биологами древе жизни. При этом древнейшими считаются бактерии и археи. Так как нет окончательного мнения насчет того, считать ли вирусы живыми, то роль вирусов в формировании и эволюции биосферы фактически не учитывается (игнорируется).

На сегодня описаны более 6 тысяч видов вирусов, хотя предполагают, что их существует более ста миллионов. Вирусы обнаружены почти в каждой экосистеме на Земле, они являются самой многочисленной биологической формой. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей (вирусы бактерий обычно называют бактериофагами). Геномы большинства видов позвоночных содержат от сотен до тысяч последовательностей полученных от древних ретровирусов.

Если вирусами (ретровирусами) были заражены первичные бактерии и археи, то роль вирусов в эволюции живого фактически выходит на первый план, так как вирусы становятся таким же естественным фактором генетической изменчивости организмов (включая мутации), как физические (радиация различного вида) и химические (геохимические) факторы.

Следует сразу отметить, что микроорганизмы в силу своих размеров наиболее быстро реагируют на изменения в окружающей среде (изменение физических и геохимических параметров). Множество вирусов, в частности РНК-вирусы, имеют маленький период размножения и повышенную частоту мутаций (одна точечная мутация или более на геном за один раунд репликации РНК вируса). Такая повышенная частота мутаций, в случае комбинации с естественным отбором, позволяет вирусам быстро адаптироваться к изменениям в окружающей среде. Это приводит к тому, что вирусы демонстрируют огромное количество вариантов организации генома: в этом смысле они более разнообразны, чем растения, животные, археи и бактерии.

Сейчас генетики считают, что большая часть генетического аппарата содержит информацию об изменения окружающей среды.

Как выше было сказано, на сегодня описаны более 6 тысяч видов вирусов, которые относят к патогенным или паразитарным. Совершенно очевидно, что вирусы (так называемые – патогенные) играют видную роль в естественном отборе вместе с иными патогенными микроорганизмами. Патогенные микроорганизмы убирают из биосферы неустойчивые в данных конкретных условиях окружающей среды живые организмы (т.е. организмы с пониженным иммунитетом, в том числе стареющие). Организмы с хорошим иммунитетом не только выживают, но и изменяют сами вирусы. То есть идет взаимное совершенствование.

Одна из важнейших функций микроорганизмов - это связь биосферы и геосферы в обмене веществ: микроорганизмы поставляют из геосферы в биосферу питательные элементы развивающимся многоклеточным организма, а из биосферы в геосферу различные компоненты путем разложения отживших организмов. Это важнейшая функция – осуществление кругооборота веществ в условиях ограниченности веществ параметрами Земли.

Вирусы, наряду с бактериями, участвуют в горизонтальном обмене генов организмов.

Сегодня микробиологи используют вирусы для создания генномодифицированных организмов, тем самым признавая фактически вирусы в качестве эволюционного фактора.

Таким образом, вирусы можно считать одним из важнейших первичных эволюционных факторов, которые однозначно влияют на генетическую изменчивость, адаптацию и естественный отбор.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Весной 1997 года у трехлетнего мальчика в Гонконге началась болезнь, по всем симптомам напоминавшая обычную простуду. Кашель и высокая температура не проходили шесть дней, из-за чего маленького пациента доставили в Больницу королевы Елизаветы.

В тот раз человечеству крупно повезло, поскольку вирус птичьего гриппа тогда не приобрел способности передаваться от человека к человеку. Но все могло быть иначе, если бы вирус H5N1 встретился с вирусом сезонного гриппа, например, в организме свиньи. В таких случаях, когда сразу несколько вирусов проникают в клетку, происходит их реассортация — обмен генетическим материалом, в результате чего возникают новые варианты вирусов.


Схема процесса реассортации вирусов

The New England Journal of Medicine

Источники новых вирусов

Геном вирусов гриппа состоит из 8 отдельных сегментов РНК, которые собираются в вирионы в клетке-хозяине. Если клетка одновременно инфицируется двумя вирусами гриппа, то это уже 16 сегментов, которые могут собираться в разных комбинациях. Теоретически 2 вируса гриппа могут давать 256 различных комбинаций.

Реассортация — один из основных механизмов появления пандемических вирусов. Яркий пример — вирус А(H1N1)pdm09, вызвавший пандемию в 2009 году. А(H1N1)pdm09 — продукт реассортации вирусов человека, свиньи и птиц в организме свиньи.

Это не первый коронавирус, с которым столкнулось человечество. О коронавирусах стало известно еще в середине 1960-х годов. В 2002 году коронавирус SARS-CoV стал причиной эпидемии тяжелого острого респираторного синдрома (ТОРС). Всего было зафиксировано 8437 случаев заболевания, из которых 813 закончились смертью заболевших. Спустя 10 лет стал бушевать другой коронавирус — MERS-CoV, вызвавший ближневосточный респираторный синдром (БВРС), смертность которого составляет 35 процентов.

Оба этих вируса, а также новый коронавирус SARS-CoV-2 попали к человеку от летучих мышей. Но, в отличие от вируса птичьего гриппа, коронавирусы SARS-CoV и SARS-CoV-2 легко передаются от человека к человеку.


The New England Journal of Medicine

Вирус MERS-CoV в основном передается от животного к человеку, а передача от человека к человеку возможна лишь при очень тесном контакте, например в семье или между инфицированным пациентом и врачом.

Вирусы SARS-CoV и SARS-CoV-2 сумели распространиться на людей благодаря тому, что S-белок короны вирусов по своей структуре имитирует ангиотензинпревращающий фермент 2. Благодаря этому они успешно связываются с рецепторами ангиотензинпревращающего фермента 2 АСЕ2 (их много на поверхности клеток легких — альвеолоцитов), после чего впрыскивают свою РНК внутрь клетки.

Сравнение вирусов SARS-CoV и SARS-CoV-2 показывает, что у последнего сила связывания (аффинность) с рецептором АСЕ2 выше. В исследовании китайских ученых показано, что основные отличия между вирусами SARS-CoV и SARS-CoV-2 сосредоточены между 435 и 510 аминокислотными остатками рецептор-связывающего домена (RBD). Это регион рецептор-связывающего мотива (RBM) RBD, определяющего специфичность к клеткам-хозяина.

Анализ аминокислотных последовательностей RBM двух типов коронавирусов летучих мышей (RaTG13-CoV, Bat-CoV), коронавируса панголинов (GD Pangolin-CoV) и SARS-CoV-2 показал пять ключевых отличий в аминокислотной последовательности, которые являются общими только для GD Pangolin-CoV и SARS-CoV-2.


Аминокислотная последовательность рецептор-связывающего мотива вирусов nCoV-2019 (SARS-CoV-2), Pangolin-CoV, RaTG13-CoV и Bat-CoV. Вертикальными рамочками выделены ключевые аминокислоты, принимающие участие в связывании с рецептором ACE2. Все пять аминокислот nCoV-2019 совпадают с таковыми у Pangolin-CoV. У nCoV-2019 и RaTG13-CoV всего одна общая аминокислота.

Matthew C. Wong et al. / bioRxiv, 2020

Это позволяет исследователям предположить, что панголины могут рассматриваться в качестве потенциального промежуточного хозяина, в организме которых могла произойти рекомбинация.

По мнению китайских исследователей, GD Pangolin-CoV передал вирусу RaTG13 гены, ответственные за синтез RBD, благодаря чему новый вирус приобрел возможность преодолевать межвидовой барьер. Но это пока гипотеза, поскольку сходство между двумя вирусами может быть и итогом конвергентной эволюции, когда два вида независимо друг от друга приобретают одинаковый набор признаков из-за сходства условий обитания.

И SARS-CoV, и MERS-CoV удалось сравнительно быстро обуздать из-за высокой смертности и относительно быстрого развития симптомов. Как ни странно, но чем более смертоносен вирус, тем легче его локализовать. Другая история с SARS-CoV-2. В большинстве случаев инфекция проходит в легкой форме, что позволяет вирусу выигрывать время и распространяться дальше.

Преодолевая барьеры

Существует несколько способов, с помощью которых вирус способен преодолеть межвидовой барьер. Это мутации и рекомбинации.

Упомянутая выше реассортация генов является одним из видов рекомбинации и характерна для сегментированных вирусов (в частности, вирусов гриппа). Коронавирусы обладают несегментированной РНК, поэтому для них возможны другие варианты рекомбинации, когда один из вирусов привносит в другой вирус какой-то фрагмент генома.

Второй механизм изменчивости вирусов — это мутации. Поскольку репликация РНК, в отличие от ДНК, происходит без возможности репарации (исправления ошибок), то при синтезе РНК вероятность появления ошибок в 10 тысяч раз выше, чем при репликации ДНК.

При каждом репликационном цикле около 10 процентов РНК-вирусов имеют мутации. Это может быть выпадение или вставка одного или нескольких нуклеотидов. Мутации в РНК являются одним из основных источников антигенного дрейфа — изменения антигенных характеристик.

В отношении нового коронавируса SARS-CoV-2 промежуточного хозяина пока не установили. Анализ рецептор-связывающего домена S-протеина указывает на то, что это могут быть панголины. Но есть и другое исследование по филогенетическому анализу, в котором ученые предполагают, что промежуточного хозяина нет, а вирус перекочевал к людям непосредственно от рукокрылых.

Во всей этой истории с перемещениями важным является тот факт, что на всем протяжении своего пути вирусы постоянно мутируют. К этому их вынуждают внешние обстоятельства.

При вирусной инфекции организм хозяина запускает различные механизмы защиты. Помимо выработки антител, это запуск программы апоптоза клеток, продукция интерферона, который активирует синтез протеинкиназы, нарушающей синтез белков, в том числе и вирусных. Также при вирусной инфекции увеличивается синтез олигоаденилатсинтазы, выступающей в роли РНКазы, которая фрагментирует РНК, в том числе и вирусные.

Иммунитет победит

Большинство респираторных вирусов, передаваясь от человека к человеку, теряли свои позиции под прессом иммунной системы. Такой феномен известен как аттенуация (ослабление). Ближайший родственник нового коронавируса — SARS-CoV — ослабел уже на средних стадиях эпидемии.

Дальнейшие исследования на клеточных культурах показали, что делеция в 29 нуклеотидов у вируса SARS-CoV в ORF8 привела к уменьшению его репликативной активности. Концентрация вирусных частиц с делетированным участком в инфицированных клетках была ниже в 23 раза.

Полученные сведения позволили руководителю объединения вычислительному биологу Тревору Бэдфорду предположить, что переход вируса SARS-CoV-2 от летучей мыши к промежуточному хозяину состоялся 20-70 лет назад. Газете Financial Times Тревор Бэдфорд рассказал, что все изменения, происходящие с вирусом, укладываются в логику естественной эволюции, обычной для вирусов. Тем самым ученый опроверг теории о генно-инженерном создании вируса.

В начале марта вышла статья китайских ученых об идентификации двух форм вируса SARS-CoV-2 — L и S. Две формы отличаются между собой лишь двумя однонуклеотидными полиморфизмами. При этом более ранняя S-форма вируса является менее агрессивной, чем L-форма.

Более 96 процентов заболевших в Ухане заразились L-формой, в то время как в других странах на долю SARS-CoV-2 L-типа приходится чуть больше 60 процентов случаев. Группа ученых из Центра по изучению вирусов Университета Глазго считает такие выводы некорректными.

Во-первых, по мнению исследователей, двух однонуклеотидных полиморфизмов недостаточно для разделения вируса на два типа. К моменту выпуска статьи было идентифицировано 111 мутаций, не оказывающих существенного влияния на функциональный контекст.

Во-вторых, шотландские эксперты акцентируют внимание на том, что превалирование L-типа вируса не обязательно указывает, что он легче передается. Чтобы утверждать подобное, необходимо проведение исследования с проверкой нулевой гипотезы, предполагающей равные скорости передачи инфекции, чего не было сделано исследователями из Китая.

Первые обнадеживающие изменения в вирусе SARS-CoV-2 были замечены 11 марта в Сингапуре. Это делеция огромного куска все в той же OFR8 (как и у SARS-CoV и MERS-CoV) размером целых 382 нуклеотида.

Пока ученые не берутся делать однозначные выводы относительно репликативных свойств измененного вируса. Учитывая тот факт, что делеции в ORF8 вирусов SARS-CoV приводили к изменению в работе N-белка вируса, отвечающего за репликацию, исследователи предполагают, что и в данном случае речь идет об аттенуации вируса.

Возникает закономерный вопрос — это первая и последняя встреча с SARS-CoV-2 или нам придется схлестнуться с ним еще раз после окончания пандемии? Напомним, что пандемия испанки затихла в июле-августе 1918 года, а осенью пришла вторая, более смертоносная волна.

На вопрос о возможной повторной встрече с вирусом SARS-CoV-2 сейчас ответить сложно. Если все пойдет по пути значительного ослабления вируса, то в конечном итоге он превратится в один из неопасных циркулирующих вирусов, вызывающих простуды.

Если присмотреться к вирусу SARS-CoV (вызывающего ТОРС), то повторных вспышек заражения этим вирусом не было. Эпидемия началась в ноябре 2002 года, а закончилась в июне 2003-го.

В 2004 году была вспышка атипичной пневмонии в Китае, однако это произошло из-за контакта сотрудника одной из китайских лабораторий с образцом вируса SARS-CoV. Передачи от человека к человеку или от животного к человеку начиная с июня 2003 года зафиксировано не было. При этом вирус по-прежнему живет в летучих мышах и циветах, и никто не знает, будет ли повторное заражение человека.

Что касается коронавируса MERS-CoV, то он все еще дает о себе знать. После 2013 года вспышка MERS была зафиксирована в Южной Корее. Диагноз подтвердился у 182 пациентов, 33 из которых умерли от атипичной пневмонии. В 2019 году зафиксировано 212 случаев заражения и 57 случаев смерти в Саудовской Аравии и Омане. Согласно данным ВОЗ, 9 и 13 января 2020 года были лабораторно подтверждены два случая заражения вирусом MERS-CoV в Объединенных Арабских Эмиратах.

Какими будут вакцины

В борьбе с новым коронавирусом большие надежды возлагают на вакцины, ее разработкой занимаются множество лабораторий. Однако быстро меняющийся геном вируса SARS-CoV-2 пока не позволяет ученым гарантировать полный успех. На сегодня текущие мутации никак не усложнили поиск вакцины, но что будет через месяц-два, спрогнозировать сложно.

Помогают ученым и уже имеющиеся наработки по вакцинам против вируса SARS-CoV. Около 23 процентов Т-клеточных и 16 процентов В-клеточных эпитопов являются консервативными для обоих вирусов. Это дает основание полагать, что дальнейшие мутации, скорее всего, не будут затрагивать эти эпитопы.

Наиболее простой способ — создать вакцину на основе аттенуированного или убитого вируса, но такие вакцины обладают большим числом побочных эффектов, а кроме того, они более чувствительны к условиям хранения. Вторая разновидность — рекомбинантные вакцины, представляющие собой субъединицу S-белка вируса SARS-CoV-2, синтезированную дрожжами или бактериями. Данная вакцина не содержит вирусного материала, поэтому спектр ее побочных действий крайне низок.

И третья разновидность — РНК- или ДНК-вакцины, представляющие собой генно-инженерную конструкцию, которая при попадании в организм начинает синтезировать белки вируса SARS-CoV-2. Преимущества РНК- и ДНК-вакцин в том, что они обеспечивают не только гуморальный иммунитет (выработку антител), но и специфический клеточный иммунитет — активацию макрофагов, натуральных киллеров и цитотоксических Т-лимфоцитов. В США уже начались испытания новой вакцины на добровольцах.


Обзор

Человеческая Т-клетка (синий), атакованная ВИЧ (желтый). Вирус ориентирован на Т-клетки, которые играют важную роль в иммунной реакции организма против вторжений, таких как бактерии и вирусы.

Автор
Редакторы


Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?

Схема трехдоменной классификации

Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA).

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].

Строение мембранных липидов бактерий и архей

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева)

Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Сценарий вирусного мира

Рисунок 3. Сценарий вирусного мира в гипотезе доклеточного происхождения вирусов подпись

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).

Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса

Схематическое представление структуры модели эволюции РНК-подобной системы

Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте.

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами .

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.

Схема общей трансдукции

Рисунок 5. Схема общей трансдукции

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].

Роль гена Peg10 в эмбриональном развитии

Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24].

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).

Горизонтальный перенос генов в рамках трехдоменного дерева

Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.

Читайте также: