Что такое фитопатогенные вирусы

Обновлено: 01.05.2024


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.



Phytovirus или растительные вирусы, является вирусом , который атакует растительные организмы . Эти вирусы имеют особенность проникновения в растительную клетку своего хозяина, чтобы отвлечь механизмы клетки в свою пользу и позволить им воспроизводиться.

Это размножение вирусов приводит к метаболическим изменениям или разрушению клетки. Распространение вирусов внутри тканей растений может в некоторых случаях сначала не вызывать никаких видимых симптомов (явление маскировки), но очень часто вирусные атаки проявляются в виде мозаики , пятнистости или фасциаций .

Клоны растительных вирусов развивались независимо друг от друга: как и большинство эндопаразитов , вирусы размножаются изолированно в своих хозяевах . Параллельная эволюция вирусных штаммов и резистентных хозяев (совместная эволюция) лежит в основе большой специализации вирусов по отношению к их хозяину. Таким образом, вирусы способны атаковать только один вид или одно семейство растений. Вирус табачной мозаики, например, способен атаковать большинство растений , принадлежащих только к пасленовой семье ( томатные , табак , баклажаны и т.д.)

Резюме

История

Открытие вирусов растений, вызывающих заболевания растений, часто приписывают немецкому химику Адольфу Майеру (1892 г.), проводившему свои исследования в Нидерландах . Он продемонстрировал, что сок, полученный из листьев табака с мозаичными симптомами, вызывает те же симптомы при введении в здоровые растения. Однако возбудитель инфекции был уничтожен кипячением сока. Он думал, что возбудителем болезни были бактерии . Однако после более крупной инокуляции большим количеством бактерий это не могло вызвать появление мозаичного симптома.

Очистка (кристаллизация) вируса табачной мозаики (TMV) была впервые проведена Венделлом Мередит Стэнли , которая опубликовала свое открытие в 1935 году, хотя он не смог определить, что именно РНК составляет инфекционный материал. Однако в 1946 году он получил Нобелевскую премию по химии . В 1950-х годах открытие, сделанное одновременно двумя лабораториями, продемонстрировало, что очищенная РНК TMV заразна, что усилило аргументы. Именно РНК несет генетическую информацию, позволяющую кодировать образование новых инфекционных частиц.

В последнее время исследования вирусов были сосредоточены на понимании генетики и молекулярной биологии генома вируса растений, с особым интересом к пониманию того, как вирус может реплицироваться, перемещаться и заражать растения. Понимание генетики вирусов и функций белков использовалось биотехнологическими компаниями для изучения возможных коммерческих приложений. В частности, последовательности вирусов позволили обнаружить оригинальные формы устойчивости . Последние технологические разработки, позволяющие людям манипулировать фитовирусами, могут привести к новым стратегиям производства растениями белков с добавленной стоимостью.


Фитопатогенные вирусы – субмикроскопические инфекционные агенты, вызывающие инфекционные заболевания растений. Характеризуются малыми размерами, не наблюдаются в световом микроскопе. Полностью зависят от клетки растения-хозяина (облигатные паразиты). Имеют простое строение вирионов (нуклеиновая кислота, покрытая одним или несколькими слоями белковых молекул) [3] .

Содержание:

Морфология и структура фитовирусов

По морфологии частиц вирусы растений могут быть палочковидными, нитевидными, изомерическими (близкие к сферическим), бацилловидными или пулевидными [3] .

В состав вириона входят нуклеиновая кислота и капсид. Последний определяет форму вириона. Существует и несколько крупных вирусов, имеющих вокруг капсида внешнюю оболочку – мембрану, образующуюся на поздних стадиях формирования вириона. К таким вирусам относятся: Tomato spotted wilt virus, Winter wheat Russian mosaic virus [1] .

У вирусов палочковидной и нитевидной формы спиральный тип строения капсида, у изомерических – инкосаэдрический [1] .

Из вирусов со спиральной симметрией хорошо изучен вирус табачной мозаики. К вирусом с икосаэндрической симметрией, оболочки, которых выглядят как многогранники относятся:

  • вирус желтой мозаики турнепса – имеет 180 белковых субъединиц, сгруппированных в 32 капсомера (12 пентамеров и 20 гексамеров), РНК большей частью погружена в белковую оболочку;
  • вирус обыкновенной мозаики огурца, вирусмозаики костра – строение капсомера аналогично вирусу желтой мозаики турнепса;
  • мозаика коровьего гороха – вирион содержит 60 белковых субъединиц двух типов: первый – субъединицы собраны в 12 пентамров, второго – в 20 тримеров [1] .

Размеры вирионов фитовирусов варьируют в значительных пределах. Каждому вирусу соответствует определенный размер частиц одного или нескольких видов. Изомерические частицы имеют диаметр от 17 нм до 75 нм. Палочковидные, нитевидные, бацилловидные – могут иметь длину от десятков до 2000 нм. Диаметр нитевидных и палочковидных вирионов – 3–10 нм, бацилловиных – от 18 до 75 нм [1] .


Вирус табачной мозаики Tobacco mosaic virus


Растение-хозяин – табак (Nicotiana tabacum) [5]

Химический состав вирусов растений

Фитопатогенные вирусы содержат нуклеиновую кислоту (РНК или ДНК), белок, ионы металлов. У некоторых отмечают присутствие до 20% липидов (бацилловидные вирусы), до 1% полиамидов (вирус желтой мозаики турнепса), ферментов типа РНК-транскриптазы (вирусы раневых опухолей клевера, вирусы некротического пожелтения салата-латук). Половину массы кристаллов вирусов и от 10% до 50% массы вирионов в суспензии составляет вода. Однако для определения состава вириона расчеты проводят по сухой массе [1] .

Нуклеиновые кислоты

Нуклеиновая кислота – это длинная полимерная цепь, состоящая из нуклеотидов. В состав нуклеотида входят: азотистое основание, сахар (рибоза для РНК и дезоксирибоза для ДНК), остаток фосфорной кислоты [1] .

Последовательность оснований нуклеиновой кислоты определяет последовательность аминокислот и свойства вирусоспецифичности белков. Нуклеиновая кислота каждого вируса имеет характерную только для него последовательность и соотношение нуклеотидов [1] .

Большинство фитовирусов имеют одноцепочечную РНК (вирус табачной мозаики, X-вирус картофеля, Y-вирус картофеля). Двухцепочечная РНК зафиксирована у вируса раневых опухолей клевера, вируса карликовости риса. ДНК содержащими вирусами являются: вирус мозаики цветной капусты и вирус пожелтения жилок огурца [1] .

Содержание РНК варьирует. Для изометрических вирусов оно составляет от 15% до 45%, для палочковидных – до 5%, для бацилловидных – до 1% [1] .

РНК включает два пуриновых (аденин и гуанин) и два пиримидиновых (цитозин и урацил) основания. ДНК вместо урацила содержит тимин. Соседние нуклеотиды соединены фосфорнодиэфирными связями между 3’-атомом рибозы одного нуклеотида и 5’-углеродным атомом другого [1] .

Вирусы с одноцепочной РНК характеризуются не совпадением соотношений гуанин: цитозин и аденин: урацил. Двухцепочечные РНК и ДНК- содержащие вирусы характеризуются совпадением указанных соотношений [1] .

Существуют многокомпонентные фитовирусы вирусы или вирусы с разделенным геномом. В них РНК представлена несколькими типами с различной молекулярной массой. Отдельные представители этой группы имеют в одном из типов частиц две и более молекулы РНК с различными генами в составе. Характерно, что каждая из них в отдельности неинфекционна и вирусы реплицируются на основе обмена продуктами, кодируемыми отдельными компонентами фрагментированного генома. К многокомпанентным вирусам относятся: вирус кольцевой пятнистости табака, вирус кольцевой пятнистости малины. У них выявлено: три типа частиц у первого и два типа частиц у второго патогена [1] .

Многокомпонентные вирусы могут иметь однородные по размерам частицы с одной молекулой РНК. Однако эта молекула у разных частиц различается по молекулярной массе и запасу информации. К таким вирусам относятся: вирус мозаики коровьего гороха, вирус обыкновенной мозаики огурца, вирус мозаики костра [1] .

Описан ряд сферических, палочковидных и бациловидных вирусов с наличием различных по размерам и содержанию РНК вирионами. В частности, вирус погремковости табака имеет частицы двух типов. Вирус мозаики люцерны характеризуется наличием вирионов от почти изометрической до бацилловидной и палочковидной формы, с различными параметрами длины и ширины. Каждому типу частиц соответствует РНК определенной молекулярной массы. Различие типов РНК многокомпонентных вирусов имеет важное биологическое значение в вопросе репродукции вирусов [1] .

Белки

Белки формируют капсиды вирусов растений. По аминокислотному составу и соотношению аминокислот они не отличаются от белков бактерий, растений и животных. В белках вирусов в малых количествах содержаться цистеин, метионин, триптофан, гистидин, тирозин. Некоторые из названных аминокислот могут отсутствовать. Одновременно характерно повышенное содержание треонина и серина [1] .

Белок оболочки (капсида) состоит из одинаковых белковых субъединиц. Их молекулярная масса у различных вирусов колеблется от 10 до 80 тыс. Размер белковых молекул фитовирусов варьирует в диапазоне от 150 до 600 и более аминокислотных остатков [1] .


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: