Что такое рекомбинантные вирусы

Обновлено: 19.04.2024

Да, конечно, нынешние онколитические вирусы — не вирусы растений. Но мы видим начало сознательного использования вирусов против онкозаболеваний: к списку методов лечения рака официально добавился метод разрушения опухолей с помощью вирусов.

Сомнения и перестраховка

Тем не менее в течение всего ХХ века к этому методу неоднократно возвращались. В частности, начиная с 1950-х годов в разных странах применялись слабо- или вообще не патогенные штаммы вирусов лихорадки Западного Нила, желтой лихорадки, вируса бешенства, аденовирусы, вирус болезни Ньюкасла, энтеровирусы, парамиксовирусы и некоторые другие непатогенные или слабопатогенные вирусы. При этом порой онкобольные полностью выздоравливали, наблюдались и временные улучшения. Но опять же отсутствие предсказуемости результатов, научно обоснованных принципов действия вирусов на опухоли и предубеждение контролирующих органов привели почти к полному прекращению применения этого подхода.

Начиная с 1950-х годов в разных странах применялись слабо- или вообще не патогенные штаммы вирусов лихорадки Западного Нила, желтой лихорадки, вируса бешенства, аденовирусы, вирус болезни Ньюкасла, энтеровирусы, парамиксовирусы и некоторые другие непатогенные или слабопатогенные вирусы

У нас работы в данном направлении были начаты в 1970-х годах профессором М. К. Ворошиловой в Институте полиомиелита и вирусных энцефалитов под Москвой. Она применяла для лечения онкозаболеваний вакцинные штаммы вируса полиомиелита и другие штаммы непатогенных энтеровирусов и в ряде случаев добилась серьезных успехов. Но предубеждения руководящих онкологов привели к запрету ее работ.

И в нашей стране, и в ряде других стран недоверие к потенциально полезным противораковым вирусам до недавнего времени превалировало из-за боязни их патогенных свойств. При этом врачи хорошо знают, что многие химиотерапевтические препараты для борьбы с онкозаболеваниями дают массу вредных побочных реакций. Но их применяют, и никакого предубеждения у врачей к ним нет. Между тем механизм действия большинства таких препаратов рассчитан на разницу в метаболизме раковых и нормальных клеток. Так что поражают эти препараты и раковые, и некоторые здоровые, но активно метаболизирующие, делящиеся клетки.

Существующие на сегодня подходы к лечению онкозаболеваний

Первые официально испытанные вирусные онколитики

С 1990-х годов появилась теоретически намного более обоснованная концепция специальных онколитических вирусов. Впервые был выяснен, как тогда считали, механизм противораковой специфичности делеционного варианта аденовируса пятого серотипа с названием ONYX-015.

Дело в том, что в клетках человека и практически всех млекопитающих есть белок р53, который при начале каких-либо необычных процессов в клетке (в том числе при появлении в ней вирусов) запускает процесс апоптоза (запрограммированной клеточной смерти), чтобы не дать вирусу или вообще всей этой вдруг ставшей необычной клетке размножиться. Однако во многих опухолевых клетках ген белка р53 поврежден, а сам белок становится дефектным по этой своей функции, и в таких клетках ничто не сдерживает размножение вируса.

Но у аденовируса, в свою очередь, есть белок Е1В-55К, который связывает р53 и не дает ему запускать апоптоз. Таким образом, если из генома вируса удалить часть гена Е1В, где закодирован белок 55К, то такой вирус будет размножаться только в опухолевых клетках, где р53 и так не работает, а в нормальных он этого делать не сможет, так как клетки будут уходить в апоптоз и саморазрушаться.

Однако, как выяснилось позднее — в 2004 году, удаление части или целого гена E1B приводит к тому, что белок E1B-55K не выполняет еще ряд функций для размножения аденовируса. В опухолевых же клетках в его отсутствие эту функцию берет на себя не установленный до сих пор фактор. Также выяснилось, что есть много и других дефектов в клетках, которые приводят к их перерождению в раковые, и тогда такие аденовирусы не работают как лечебные препараты.

Известные на сегодня семейства вирусов, убивающих раковые клетки

В конце 1990-х эта тематика по ряду причин пошла на спад. Тем не менее аналог ONYX-015, названный Н101 (онкорин), был официально разрешен для лечения больных с опухолями головы и шеи в Китае. Другой полученный в Китае рекомбинантный аденовирус, также с делецией гена Е1В, но с дополнительной вставкой человеческого гена р53 сейчас там также применяется для лечения онкобольных под названием гендицин.

Онколитические препараты на основе вирусов, которые разрабатываются и уже применяются

Канада: рекомбинантные аденовирусы и вирусы осповакцины.

Китай: препараты на основе рекомбинантных аденовирусов онкорин и гендицин.

Латвия: энтеровирусы.

Россия: рекомбинантные поксвирусы и аденовирусы, парамиксовирусы, энтеровирусы.

США: вирусы болезни Ньюкасла, природный и рекомбинантный вирус миксомы кроликов, рекомбинантный аттенуированный герпесвирус, рекомбинантные аттенуированные поксвирусы и аденовирусы, реовирус, вакцинный штамм вируса кори, рекомбинантный вирус везикулярного стоматита, вакцинные штаммы вирусов гриппа.

Финляндия: рекомбинантные аденовирусы.

Япония: рекомбинантные герпесвирусы.

Препараты нового поколения

В 2010 году Новосибирский государственный университет получил мегагрант на исследования под руководством известного российского молекулярного биолога П. М. Чумакова, одним из ведущих исполнителей которого стал и автор настоящей статьи. В НГУ фактически с нуля была создана хорошо оборудованная научно-исследовательская лаборатория в комплексе с практикумом по микробиологии, подготовлен и опубликован ряд обзорных статей по онколитическим вирусам, и еще в 2012 году были получены и охарактеризованы первые кандидатные онколитические штаммы.

Таким образом, имеются все основания для проведения дальнейших работ и особенно — для полноразмерных доклинических исследований, а впоследствии и клинических испытаний этих и подобных им перспективных онколитических вирусных штаммов. Сейчас наступило время преодолеть предубеждения и дать зеленый свет для финансирования разработок этих крайне перспективных препаратов, разработанных в России.

Работы в этом направлении продолжаются не только в НГУ, профессор П. М. Чумаков развивает эти исследования на энтеровирусах и парамиксовирусах в своей лаборатории в Институте молекулярной биологии РАН им. В. А. Энгельгардта в Москве. Заинтересовались ими и в ряде клиник России.

Могут ли вирусы быть полезными

Данное направление работ за рубежом в последние десять лет получило очень мощное развитие. В октябре 2015 года в США произошел кардинальный сдвиг в отношении этого направления разработок: как уже было сказано, FDA разрешило широкие клинические испытания третьей фазы генно-инженерного штамма герпесвируса с названием имлиджик (Imlygic) для лечения больных с рецидивирующей меланомой.

Исходный штамм герпесвируса, который содержит аттенуирующие (снижающие его патогенные свойства) мутации в геноме и экспрессируемый ген гранулоцит-макрофаг-колониестимулирующего фактора человека (ГМ-КСФ или GM-CSF), был разработан американской компанией BioVex Inc. В 2011 году эту компанию вместе с правами на препарат купил фармгигант Amgen. Этот же препарат был официально разрешен к применению и в Европе в конце 2015 года, информация о нем регулярно обновляется на сайте Imlygic.

В том же 2015 году аналогичное разрешение на проведение третьей фазы клинических испытаний было получено для препарата на основе рекомбинантного штамма вируса осповакцины пекса-век (Pexa-Vec), или JX-594, в отношении лечения гепатоцеллюлярной карциномы (рака печени). Данный препарат сконструирован на основе исходного штамма вируса осповакцины Wyeth, у которого для уменьшения реактогенности удален ген тимидинкиназы и встроен ген ГМ-КСФ человека. Его сейчас интенсивно исследуют на добровольцах. Результаты нескольких независимых клинических испытаний первой и второй фазы уже известны, они положительны, и поэтому клинические испытания третьей фазы для этого препарата проходят уже в нескольких десятках стран в 86 больницах, что говорит о его большой перспективности.

В этой связи возникает вопрос: а не может ли быть такого, что роль по крайней мере некоторых из вирусов для человеческого организма как раз и состоит в защите от раковых клеток, и лишь иногда они вызывают заболевания, выходя из-под контроля?

Такое предположение заслуживает внимания. Человечество уже очень много полезного создало из весьма вредоносных, на первый взгляд, веществ и микробов. А вирусы как лекарства очень интересны, поскольку являются высокоспецифичными микромашинами. Некоторые из них люди уже приспособили для своих нужд и применяют в качестве живых вакцин, лечебных препаратов (например, бактериофаги — вирусы бактерий вместо антибиотиков) и для избирательной борьбы с вредными насекомыми.

Современная технология рекомбинантной ДНК. Виды рекомбинантных субъединичных вакцин.

Современная технология рекомбинантной ДНК пришла на смену устаревшей рутинной технологии изготовления вакцины против одного из наиболее опасных и широко распространенных заболеваний людей. Ранние вакцины против гепатита В были необычными и представляли собой очищенный поверхностный антиген вируса (HBsAg), полученный из плазмы крови человека, хронического носителя вируса. Это была уникальная в своем роде вакцина.

Рекомбинантные дрожжевые клетки продуцируют поверхностный антиген вируса гепатита В, агрегированный в многомерные сферические частицы диаметром 22 нм, идентичные натуральному поверхностному HBsAg антигену, обнаруживаемому в плазме крови хронически инфицированных людей.

HBsAg синтезировался в дрожжах в количестве, достаточном для промышленного изготовления вакцины. Антиген, выделенный из разрушенных дрожжей, очищают скоростным центрифугированием в сочетании с иммунной хроматографией.

Сравнительный анализ физико-химических, морфологических и иммуногенных свойств HBsAg, полученного генно-инженерным способом и выделенного из плазмы крови носителей вируса, продемонстрировал близость их характеристик. Однако поверхностный антиген вируса гепатита В, продуцируемый дрожжами, оказался негликозилированным. С целью усиления иммуногенности в рекомбинантные вакцины были включены, помимо HBsAg, белки, кодируемые зонами пpe-S ДНК вируса гепатита В.

тельца гварниери рекомбинантной вакцины

Рекомбинантные культуры дрожжей, в отличие от плазмы носителей антигена вируса, практически представляют неограниченный источник вирусного антигена для изготовления вакцинного препарата. Протективная активность рекомбинантной вакцины не отличается от активности вакцины, полученной из плазмы крови доноров. В дрожжах экспрессирован G-белок вируса бешенства в нативном виде.

Основной протективный белок VP2 вируса бурсальной болезни кур образовывался в высокоиммуногенной форме в рекомбинантных дрожжах. Рекомбинантный белок VP2 после однократного внутримышечного введения (50 мкг) в составе эмульгированной вакцины вызывал у кур вируснейтрализующие антитела в таком же титре, как после введения живого вируса. Трансовариальная передача антител обеспечивала выраженный иммунитет у потомства и вселяла надежду на практическое применение такой вакцины.

Аналогичные результаты получены с рекомбинантной субъединичной вакциной, содержащей белок VP2, экспрессированный в бакуловирусной системе.
Создание эффективной вакцины против гепатита С связано с многими проблемами, и в первую очередь, с отсутствием возможности размножения вируса в культуре клеток, а так же генетическим разнообразием и высоким уровнем мутабильности вируса. Вакцины, основанные на гликопротеинах Е1 и Е2, вызывали кратковременное образование антител у обезьян к этим антигенам и требовали частой бустеризации. Привитые животные были защищены против внутривенного заражения малыми дозами вирулентного вируса гомологичной антигенности, но не против заражения большой дозой вируса или заражения гетерологичным штаммом вируса.

Возможно, что для усиления протективного эффекта требуется индукция специфических цитотоксических лимфоцитов к консервативным эпитопам неструктурных белков.

Возрастающий интерес к изготовлению компонентных вакцин на основе технологии рекомбинантной ДНК привлек внимание к использованию клеток животных в качестве систем, экспрессирующих рекомбинантные вирусные белки. В качестве таких систем часто использовали трансформированные линии клеток, в том числе яичника китайского хомяка (линия СНО), а также клетки обезьян, трансформированные вирусом SV-40 (линия COS). Такую систему использовали для наработки антигенов, вируса гепатита В и др. Продуцируемые в рекомбинантных клетках СНО вирусоподобные частицы, содержащие поверхностный антиген вируса гепатита В, имели диаметр 22 нм, плотность в хлориде цезия 1,21 г/см3 и не отличались от частиц, обнаруживаемых в плазме крови инфицированных носителей. Культуральные свойства клеток СНО позволяли рассчитывать на их промышленное использование в качестве продуцентов иммуногенного материала.

Клетки гепатобластомы человека (линия HepG2), трансфицированные полноразмерной ДНК вируса гепатита В, в большом количестве секретировали антигены Е, С и S. Мембранный гликопротеин (340/220) вируса Эпштейн-Барр длительное время экспрессировался в фибрабластоподобных клетках мышей, трансформированных вирусом папилломы крупного рогатого скота.

Белок Е1 вируса краснухи был экспрессирован в клетках COS после трансфекции клеток кДНК в составе вектора обезьяньего вируса SV-40. Этот белок антигенно подобен белку, экспрессируемому в клетках, зараженных вирусом краснухи.

Генно-инженерным методом получена клеточная линия, продуцирующая пустые капсиды парвовируса В-19 человека. Продукция полых капсидов была равной или превышала формирование вирионов в инфицированных клетках костного мозга (1000-2000 капсидов на клетку). Трансфекция не влияла на скорость роста клеток-продуцентов. Капсиды парвовируса В-19, экспрессированные в бакуловирусной системе, по антигенным и иммуногенным свойствам были подобны нативным вирионам. Испытание рекомбинантной вакцины на серонегативных добровольцах дало положительные результаты Получен рекомбинантный вирус бешенства, стабильно экспрессирующий гликопротеин оболочки др 160 вируса иммунодефицита человека 1. Этот вирус вызывал у мышей образование ВН-антител в высоком титре (1:800) и мог служить прообразом рекомбинантной вакцины против ВИЧ-1.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Рекомбинантные живые векторные вакцины. Преимущества живых векторных вакцин.

В генетическом разнообразии вирусов в природе, особенно корона-, флави-и тогавирусов, важную роль играет рекомбинация. Она может происходить не только между близкородственными, но и отдаленно родственными вирусами.

Важным достижением технологии рекомбинантной ДНК явилось открытие возможности замены удаленного гена чужеродным геном. Этот метод использует вирусы как векторы для переноса генов протективных антигенов других вирусов. В геном авирулентного вируса вставляют ген интересующего вируса, кодирующий антиген, вызывающий протективный ответ в привитом организме.

Модифицированный таким образом авирулентный вирус используют как живую вирусную вакцину. Клетки, в которых векторный вирус реплицируется in vivo, экспрессируют чужеродный белок, вызывающий гуморальный и опосредованный клетками иммунный ответ на данный белок.

Вирусные химеры, как вакцины с репликативным механизмом одного вируса и протективными антигенами другого, являются быстрой формой векторных вакцин. Прообразом таких вакцин можно считать реассортантные вакцины.

живые векторные вакцины из герпесвирусов

Вирус осповакцины был одним из первых вирусов, на примере которого была показана возможность такой замены без потери жизнеспособности рекомби-нантного вируса с экспрессией белка, кодируемого чужеродным геном и индукцией иммунитета на этот белок. Подход к получению безопасной эффективной живой вакцины заключается в использовании стабильного вакцинного вирусного штамма для создания рекомбинантов, которые экспрессируют протективные антигены других вирусов, против которых желательно создать иммунитет. Члены семейства вирусов оспы оказались удобными для получения рекомбинантных гибридов, благодаря их большому геному, позволяющему удалять значительные участки ДНК без потери способности к репликации.

Гены, кодирующие различные антигены многих вирусов, были включены в геном вируса осповакцины. Прививка животных этими рекомбинантными векторными вакцинами каждый раз сопровождалась хорошим антительным ответом. Например, вирус осповакцины, использованный в качестве вектора вакцины против бешенства, будучи включенным в приманку для скармливания, защищал лис и хорьков от бешенства. Возможность включения нескольких генов, кодирующих соответствующие иммуногены, позволяет создать новый тип комбинированных (поливалентных) вакцин.

Участок генома вирусов оспы, кодирующий тимидинкиназу, не является геномом, функция которого жизненно необходима для размножения вируса, и его можно заменять на чужеродные ДНК.

Чужеродные белки, экспрессирующиеся рекомбинантным вирусом оспы, сохраняют свои антигенные свойства и способность формировать вирионную структуру.

Использование этого вируса в качестве вектора для вакцинации имеет ряд преимуществ: способность размножаться в клетках многих видов животных, экспрессировать несколько генов, индуцировать гуморальный и опосредованный клетками иммунитет, термостабильность, экономичность производства и легкость применения.

В качестве векторов для создания живых рекомбинантных вакцин могут быть использованы адено-, бакуло- и герпесвирусы. Они, как и вирусы оспы, имеют крупный геном, — по крайней мере с одной несущественной областью для репликации и несколькими участками, в которые могут быть встроены чужеродные гены и экспрессированы без потери инфекционности. В качестве векторов успешно используют вирусы оспы птиц.

Рекомбинантные векторные вакцины как бы сочетают в себе положительные качества живых и инактивированных вакцин. При репликации в организме рекомбинантного вируса с встроенным чужеродным геном, кодирующим синтез гликопротеина, который может быть экспрессирован на поверхности клеток и может индуцировать развитие как гуморального, так и клеточного иммунного ответа. Субъединичные вакцины могут индуцировать развитие только гуморального иммунного ответа.

Использование вируса осповакцины или других аттенуированных векторов для создания реплицирующихся субъединичных (компонентных) вакцин - новое перспективное направление молекулярной биологии и генной инженерии. В последнее время этот метод получил широкое применение в разработке нового поколения вакцин против различных вирусных заболеваний. Естественно, что становление принципиально нового направления создания вакцин сопряжено со многими трудностями. Однако на главный и принципиальный вопрос — способны ли рекомбинантные вакцины вызывать выраженный и длительный иммунитет — получен положительный ответ. Накопилось много данных о получении рекомбинантных вакцин, особенно на основе вируса осповакцины, содержащих гены различных вирусов, об их антигенной и иммуногенной активности при испытании в лабораторных и практических условиях.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Создание живых векторных вакцин. Особенности рекомбинантных живых векторных вакцин.

Рекомбинантный вирус оспы птиц, экспрессирующий ген гликопротеина В вируса болезни Марека оказался безопасным и защищал цыплят от заболевания. На основе вируса оспы птиц получена рекомбинантная вакцина против геморрагического энтерита индеек (аденовирус птиц тип 2), экспрессирущая белок гексонов. Рекомбинантная вакцина по антигенности и иммуногенности не уступала коммерческой традиционной вакцине, но в отличие от нее не вызывала иммуносупрессии.

Рекомбинанты вируса осповакцины, экспрессирующие гликопротеины В, D, E, G, I вируса простого герпеса испытывали на мышах для сравнения иммуногенности индивидуальных гликопротеинов. Гликопротеины D и В индуцировали выраженный синтез антител и повышали уровень элиминации вируса, а также защищали от развития латентного носительства ВПГ-1 в чувствительных ганглиях. Гликопротеин Е был слабым индуктором нейтрализующих AT, а гликопротены G, Н и I вовсе не вызывали образования нейтрализующих AT и не предотвращали латентное инфицирование ганглиев.

Варианты рекомбинантной вакцины против японского энцефалита созданы на основе вируса осповакцины. Они обеспечивали синтез гликозилированного неструктурного белка NS-1 и гликозилированного белка Е оболочки вириона. Рекомбинанты, экспрессирующие тот и другой вирусные белки, обладали высокой иммуногенностью. Две инъекции вакцины защищали мышей от 104ЛД50 вируса японского энцефалита. Высокий уровень защиты коррелировал с высоким уровнем AT, обладающих нейтрализующей активностью и активностью в РТГА.

Рекомбинанты вируса осповакцины, содержащие в геноме различные сочетания генов С, М, Е, NS-1 вируса клещевого энцефалита, размножали в культуре клеток CV-1. Двукратное введение мышам вируса, экспрессирующего белок Е оболочки вируса клещевого энцефалита, защищало их при контрольном заражении гомологичным вирулентным вирусом.

Гены структурных белков вируса классической чумы свиней были встроены в ген тимидинкиназы вируса осповакцины. В культуре клеток CV-1 рекомбинантный вирус экспрессировал все четыре структурных белка вируса чумы, которые по основным свойствам не отличались от соответствующих вирионных белков. Иммунизация рекомбинантным вирусом надежно защищала свиней от инфицирования вирулентным вирусом. Сконструирован рекомбинантный вирус осповакцины, экспрессирующий основной белок оболочки вируса лейкоза крупного рогатого скота.

живые векторные вакцины

Иммунизация телят таким вирусом оказывала лишь частичный защитный эффект. Аналогичные результаты получены в других исследованиях при испытании рекомбинантного вируса на овцах.

Мыши, иммунизированные рекомбинантным вирусом осповакцины, кодирующим неструктурный белок NS-1 вируса денге, были полностью защищены от летального энцефалита при последующем заражении вирулентным вирусом. В ген gill аттенуированного вакцинного штамма вируса инфекционного ринотрахеита крупного рогатого скота встроены последовательности кДНК, кодирующие мономерные и димерные формы эпитопов белка VP1 вируса ящура. Такая вакцина вызывала иммунитет к вирусу ринотрахеита и выработку антител против ящура.

Рекомбинантный бакуловирус экспрессировал капсидный белок VP 2 вируса катаральной лихорадки овец в иммуногенной форме. Добавление структурного белка VP5 усиливало иммуногенный эффект.

С целью создания эффективной, безопасной и экономичной антирабической вакцины для профилактической иммунизации людей и животных получен рекомбинантный аденовирус серотипа-5 человека, содержащий ген гликопротеина вируса бешенства. Иммунизированные им мыши были защищены от летальной интрацеребральной инфекции.

Получен рекомбинантный вирус осповакцины, содержащий одновременно участки генома вирусов гепатита В, гриппа и герпеса простого, который экспрессировал HBsAg вируса гепатита В, гемагглютинин — вируса гриппа и гликопротеин D вируса герпеса простого.

Таким образом, в качестве векторов для создания рекомбинантных вакцин используют различные стабильные аттенуированные вирусы. Наибольший успех был достигнут при использовании вируса осповакцины в качестве рекомбинантного вектора. Такой рекомбинантный вирус мог экспрессировать протективные антигены большого количества вирусов, в том числе его использовали для иммунизации против бешенства. Вставка гена гликопротеина вируса бешенства в ген тимидинкиназы вируса вакцины приводит к снижению его вирулентности.

В силу того, что геном вируса осповакцины способен включать много чужеродных генов без потери способности формировать вирионную структуру, теоретически возможно конструировать в качестве вектора один рекомбинантный вирус, способный защищать против нескольких вирусных болезней.

Использование вируса оспы птиц в качестве вектора при создании рекомбинантных вакцин для птиц представлялось весьма логичным. Однако большим сюрпризом оказалось то, что вирус оспы птиц может служить вектором при имммунизации млекопитающих. Допускается возможность, что этот вирус и тесно связанный с ним вирус оспы канареек, также используемый в качестве вектора, не реплицируются с образованием инфекционного вируса в клетках млекопитающих, но включенные в их геном чужеродные гены экспрессируются и вызывают специфический иммунный ответ.

Возможно, что такие векторы вызывают абортивную инфекцию in vivo с экспрессией чужеродных антигенов, вызывая клеточный и гуморальный иммунитет. Такие нереплицирующие векторы являются безопасными для иммуносупрессивных хозяев.

Необходимо иметь в виду, что введение рекомбинантных живых вакцин в организм может вызывать иммунный ответ как против вируса донора чужеродного гена, так и против векторного вируса. Однако непохоже, чтобы рекомбинантные субъединичные вакцины были эффективнее рекомбинантных векторных вакцин, ограниченных однократным применением из-за развития иммунитета к векторному вирусу.

Отдельные векторные вакцины применяют в полевых условиях. Это вакцина против бешенства лис, применяемая для профилактики бешенства в Европе, и вакцина против бешенства хорьков, применяемая в США. Вакцина против чумы КРС (основанная на вирусе осповакцины и вирусе оспы коз) применяется в Африке. Недавние исследования подтвердили, что адено-, герпес- и парвовирусы могут также служить векторами и могут иметь преимущества в экспресии генов гетерологичных вирусов.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: