Что такое рыбий грипп

Обновлено: 26.04.2024

Эпидемии свиного и птичьего гриппа унесли множество человеческих жизней, а вирусологи в срочном порядке выпустили вакцину, дабы спасти человечество от зоонозных (передающихся от животных) инфекций. Но в век технологий, бактерии и вирусы так стремительно мутируют, что медицина просто не успевает выпустить соответствующие препараты от все новых появляющихся видов напастей.

Не успели мы разобраться с птичьим гриппом, как появился. рыбий! Напасть приплыла из соседних морей, и, по словам ученых, с подобным человечество еще не сталкивалось. Попав в организм животных или людей, вирус не оставляет им шансов на выживание.

Греческие СМИ первыми получили считающуюся пока еще секретной информацию о рыбьем гриппе. "Этот вирус мы сразу же окрестили "рыбий грипп" - за его схожесть с птичьим гриппом. Как он появился, мы можем пока только гадать. Не знаем и о масштабах распространения инфекции. Первых зараженных рыб выловили в Средиземном море, в которое она попала, предположительно, через Суэцкий канал", - говорят специалисты НИИ болезней рыб.

Инфицирование людей происходит преимущественно в результате прямого контакта с инфицированными обитателями моря, или при употреблении в пищу плохо прожаренной зараженной рыбы.

Одна хорошая новость состоит в том, что рыбий грипп не передается от человека к человеку, как было установлено экспертами.

Просим по возможности пожертвовать нашему изданию любую посильную для вас сумму .

Для этого мы создали специальный аккаунт в PayPal.

Оплатить подписку можно по QR code:

preview

Или нажав на эту кнопку:

Подписаться

Для жителей РФ , где недоступен PAYPAL мы предлагаем оформить оплату через Юмани (можно пополнить через Сбербанк / любые карты РФ / Счет телефона Билайн, МТС, Tele2)

Также вы можете перевести свои пожертвования на наши банковские счета указанием в назначении платежа "Οικονομική βοήθεια"(Financial help)

  • Eurobank: - 0026.0200.430106055945 (IBAN GR3802602000000430106055945 SWIFT EFGBGRAA)
  • Εθνική Τράπεζα της Ελλάδος-155677059-24 (IBAN GR6701101550000015567705924 swift trapesas bic ethngraa)
  • Τράπεζα Πειραιώς - 5126-035164-032 (IBAN GR8201721260005126035164032 PIRBGRAA)

Учитывая, что греческие банки берут комиссию в размере 3,5 евро, за перевод с других банков, пожалуйста не перечисляйте из других банков сумму меньше 3,5 евро, иначе она пойдет в минус.

Не успели мы разобраться с птичьим гриппом, как появился. рыбий. Напасть приплыла из северных морей, и, по словам ученых, с подобным человечество еще не сталкивалось. Попав в организм животных или людей, вирус не оставляет им шансов на выживание. “МК” первым добыл считающуюся пока секретной информацию о рыбьем гриппе.

— Этот вирус мы сразу же окрестили “рыбий грипп” — за его схожесть с птичьим гриппом, — говорят специалисты НИИ болезней рыб. — Как он появился, мы можем пока только гадать. Не знаем и о масштабах распространения инфекции. Первых зараженных рыб выловили в Баренцевом море.

Это была семга — рыба семейства лососевых, кстати, особо любимая россиянами. Симптомы заражения смертельным вирусом у рыбы довольно “стертые”, но любой рыбак сможет их заметить: мутные глаза, “взъерошенность” чешуи, деформация плавников и тела. Кроме того, при пальпации наблюдается припухлость внутренних органов, образование гранулём.

И все же у некоторых ученых есть предположения относительно происхождения вируса. Скандинавские рыбопромышленные заводы регулярно выращивают и разводят рыбу в искусственных условиях, а затем выпускают ее в море. Возможно, именно на этих фабриках и произошло заражение. Ведь морских животных там кормят в том числе. рыбьей мукой. То есть берут некачественную, плохую рыбу, которую нельзя пустить на продажу, перемалывают ее, а затем делают корм. И в итоге получается, что семга съедает семгу.

— Каннибализм (поедание особей своего вида) приводит к развитию различных заболеваний, которые до сих пор плохо изучены наукой, — поясняют в Институте антропологии. — Обратите внимание: каннибалы живут очень недолго, потомство у них слабое и больное, при этом в их организме начинаются мутации. Одной из причин возникновения коровьего бешенства считается тот факт, что коров кормили костной мукой, которую делали из их же сородичей…

Источник в МИДе заявил, что семга в норвежских рыбопромышленных заводах по сути мутировала. И это стало причиной появления смертельного вируса. А когда семгу выпустили в море — она заразила других рыб.

— Помните скандал с нашим траулером “Электрон”? Так вот, весь сыр-бор разгорелся именно из-за зараженной семги, — считает представитель МИДа. — Экипаж “Электрона” первым нашел косяк больной рыбы. Рыбаки, заподозрив неладное, решили показать ее ученым. Скандинавы, которые о заражении знали и старались скрыть этот факт, под любым предлогом решили остановить рыбаков. В планах иностранцев было забрать всю больную рыбу, чтобы информация о ней никуда не просочилась. Даже если бы наши рыбаки заявили, что видели собственными глазами странную семгу, им никто бы не поверил.

Но то, что случилось дальше, в планы скандинавов не входило. Задержанный “за нарушение правил рыболовства” российский корабль изменил курс и направился в российские территориальные воды со скандинавскими инспекторами на борту. В конце концов зараженная рыба попала к русским ученым, которые и забили тревогу.

Новая рыбья болезнь пока до конца не изучена. Известно только, что все больные самки автоматически заражают потомство. Как она передается — тоже загадка. Скорее всего, инфицированных рыб съедают другие хищники и тоже заражаются. Сколько времени может прожить рыба с момента инфицирования — неизвестно. Ученые здесь в мнениях не сходятся и называют разные цифры — от пяти дней до нескольких месяцев.

— Мы зафиксировали болезнь лишь у семги, но не исключаем вероятность того, что вирус уже есть у целого ряда других видов рыб, — говорят специалисты НИИ болезней рыб. — В любом случае, чтобы это выяснить, потребуется несколько месяцев серьезных исследований. Российское правительство готово выделить на них необходимые средства, и как только окончательное решение будет принято, мы организуем экспедиции.

Поскольку вирус высокопатогенный, он опасен для людей. Подцепить его можно только одним способом — съев больную сырую или плохо прожаренную рыбу. После чего у человека начнется тяжелое респираторное заболевание, исход которого — смерть. Ходят слухи, что кое-кто из скандинавских рыбаков уже госпитализирован с подозрениями на заражение рыбьим гриппом.

На днях министр здравоохранения Михаил Мурашко предупредил о возможности новой волны COVID-19 уже в мае. Скорее всего, ее вызовет кто-нибудь из представителей семейства "Омикрон", которое продолжает пополняться новыми подвидами.

Врачи предупреждают о высокой смертности от

По данным Роспотребнадзора, сейчас абсолютное большинство (90%) случаев инфицирования вызвано "Омикроном" BA.2, также известного как "Стелс-Омикрон". И хотя считается, что при всей его высокой заразности особой "злости" в нем нет, опыт других стран показывает, что это не совсем верно. К тому же появилась научная работа, доказывающая, что в непривитой популяции "Стелс-Омикрон" вызывает не меньшую смертность, чем предыдущие варианты коронавируса.

В последние дни ежесуточный прирост количества заболевших в стране составляет 9-11 тысяч человек (по данным на 18 апреля — 9,4 тысячи). Самая высокая заболеваемость на сегодня — в Санкт-Петербурге (вчера там официально заболело 629 человек); Москва — на втором месте (497 человек).

По данным Роспотребнадзора, сегодня 90% заболеваемости коронавирусом в стране вызвано вариантом "Стелс-Омикрон". Считается, что он протекает легче, однако это не совсем так. Недавно появилась научная работа, которая показала, что в непривитой популяции этот вариант коронавируса убивает пожилых так же, как ранние варианты.

Еще одна серьезная проблема связана с тем, что даже после очень легкого и бессимптомного течения "Омикрон" возникает серьезный постковидный синдром. Чаще всего он проявляется в виде тромбозов, астении, упадка сил вплоть до полной нетрудоспособности и инвалидности, что встречается у молодых и прежде полных сил людей. Что делать с этой армией пациентов, врачи до конца не знают: никаких протоколов лечения до сих пор не разработано, и четкого понимания, как облегчать симптомы и помогать людям, нет. По данным медиков, каждый пятый (!) столкнувшийся с постковидом теряет работоспособность.

Профессор кафедры госпитальной терапии №21 Сеченовского университета Сергей Яковлев недавно заявил, что применение моноклональных антител и стероидных гормонов при ковид вызывает серьезное угнетение иммунитета: "Считаю, что надо брать у пациента согласие, от чего он хочет умереть: от цитокинового шторма или поздней бактериальной суперинфекции".

Тем временем еще один подвариант "Омикрона" – "Омикрон-ХЕ" - начинает шествие по миру. Его количество в Великобритании начало резко расти. Пока известно лишь то, что он представляет собой гибрид вариантов BA.1 и BA.2, и может быть наиболее заразной из ранее обнаруженных версий COVID-19. ВОЗ заявила, что XE примерно на 10% более заразен, чем BA.2, но эти данные требуют дополнительных исследований.

Сможет ли новый вариант вызвать очередную волну (по экспертным оценкам, волны будут накатывать каждые 7-8 месяцев), пока сказать сложно. Однако многие эксперты называют именно май наиболее подходящим временем для нового подъема в России. К сожалению, практика показывает, что иммунитет у переболевших "Омикроном" сохраняется ненадолго, к тому же другие варианты вируса к нему вообще нечувствительны. Поэтому специалисты советуют вести себя предельно аккуратно и соблюдать защитные меры, которые нам уже очень хорошо знакомы.

COVID-19 часто сопровождается нарушениями пищеварения, приводя к дефициту жизненно-важных веществ. Для восполнения недостатка нутриентов, укрепления иммунитета и более быстрого восстановления рекомендуется нутритивная поддержка сипинговыми смесями.

Новая коронавирусная инфекция, ставшая причиной глобальной пандемии 2019 года, продолжает вызывать активный интерес международного научного и медицинского сообщества. Широко изучаются как особенности патогенеза этого заболевания, так и возможные методы терапии, немедикаментозной поддержки и реабилитации тяжелых пациентов.

Вирус SARS-CoV-2 поражает все органы и системы организма. Известно, что наиболее распространенными клиническими проявлениями являются лихорадка, кашель и одышка. Однако до 10% пациентов обнаруживает и желудочно-кишечные симптомы, включая диарею, тошноту и рвоту. Поражение новой инфекцией пищеварительного транспортного конвейера, через который организм получает жизненно необходимые нутриенты, энергетические, пластические, регуляторные вещества, заставляет самым внимательным образом отнестись к аспекту питания при COVID-19. На сегодняшний день необходимость этапной нутритивной поддержки, которая будет сопровождать пациентов с коронавирусной инфекцией от отделения реанимации и интенсивной терапии до общей палаты и даже до домашней реабилитации, уже не вызывает сомнений.

Воздействие SARS-CoV-2 на желудочно-кишечный тракт

Проникая через слизистую оболочку носа, гортани и бронхиального дерева в периферическую кровь, вирус SARS-CoV-2 поражает целевые органы: легкие, пищеварительный тракт, сердце, почки, клетки которых экспрессируют ангиотензинпревращающий фермент 2 (АПФ-2, ACE2). Большой S-белок коронавируса связывается с ACE2 на инфицированных клетках, в результате чего комплекс SARS-CoV-2/ACE2 беспрепятственно проникает в цитоплазму. После высвобождения вирусной РНК, с нее транслируются два полипротеина, структурные протеины, и начинается репликация вирусного генома.

Альвеолярные эпителиальные клетки и эпителиальные клети тонкого кишечника, развивающиеся из одного эмбрионального листка, отличатся высоким уровнем экспрессии ACE2. Это объясняет не только причину преимущественного поражения нижних дыхательных путей при COVID-19, но и довольно высокую частоту возникновения абдоминального и диспептического синдромов.

Уязвимость желудочно-кишечного тракта также может быть связана с тем, что коронавирус нового типа использует в качестве входных ворот в слизистые не только дыхательных путей, но и пищеварительной системы. Последние исследования показывают, что вирус попадает в организм и выделяется из него через ЖКТ. Согласно некоторым данным, у больных с гастроэнтеральными симптомами РНК SARS-CoV-2 выявлялась в кале более чем в 52% случаев, и у пациентов без гастроэнтеральных жалоб – в 39%.

На данный момент предполагается, что поражение пищеварительной системы вирусом COVID-19 может быть обусловлено сразу несколькими причинами, включая:

  • рецептор-опосредованное проникновение вируса в клетки;
  • индукцию воспаления и изменение проницаемости слизистых оболочек;
  • влияние на состав микробиоты кишечника.

Немаловажно, что нарушение функций ЖКТ утяжеляет общее состояние и дополнительно способствует прогрессированию респираторных симптомов, что в свою очередь усугубляет патологические процессы в кишечнике.

Гастроэнтеральные симптомы при COVID-19

Результаты обследования группы больных с COVID-19, имевших гастроэнтеральные симптомы, показали, что самой частой жалобой была диарея (24,2%), за которой следовала анорексия (17,9%) и тошнота (17,9%). Авторы исследования, тем не менее, обратили внимание, что чаще всего диарея развивалась уже во время госпитализации и потенциально могла быть обусловлена применением антибиотиков.

Интересно, что наличие гастроэнтеральных симптомов достоверно коррелирует с тяжестью состояния пациентов. Так, при оценке течения заболевания 74 больных с COVID-19, имевших гастроэнтеральные жалобы, было показано, что тяжелые и критические формы встречались достоверно чаще (22,97% и 31,08% соответственно), чем у пациентов, у которых эти симптомы отсутствовали (8,14% и 20,45% соответственно). У больных с COVID-19 с желудочно-кишечными симптомами также чаще отмечались лихорадка, общая слабость, одышка и головная боль.

Таким образом, наличие гастроэнтеральных жалоб можно считать настораживающим признаком. Пациенты их предъявляющие требуют повышенного внимания и назначения дополнительных исследований на предмет изучения желудочно-кишечных функций. По некоторым данным, из-за отсутствия аппетита, тошноты и других гастроэнтеральных симптомов пациенты с COVID-19 могут терять 5-10 кг веса, и из-за резкого дефицита нутриентов, в первую очередь протеинов, быстро восстановить функции иммунной, нейроэндокринной и собственно пищеварительной системы проблематично.

С целью восполнения недостающих жизненно-важных веществ и укрепления местного и общего иммунитета целесообразно назначение адекватного лечебно-профилактического питания, содержащего сбалансированное количество легкодоступного протеина, триглицеридов, витаминов и микроэлементов.

Этапная нутритивная поддержка при COVID-19

Коронавирусная инфекция в большинстве (81%) случаев протекает в нетяжелой или неосложненной форме. Однако у 14% пациентов развиваются серьезные состояния, которые требуют дыхательной поддержки, и в 5% случаев требуется лечение в отделении реанимации и интенсивной терапии.

Нутритивная поддержка у тяжелых пациентов с выраженной интоксикацией, резким снижением аппетита, нарушением функции внешнего дыхания, дисфагией и другими симптомами, начинается непосредственно в отделении реанимации. Больному на фоне терапии может назначаться энтеральное питание с использованием метаболически направленных смесей, при выборе которых необходимо учитывать степень скомпрометированности различных органов и систем.

После компенсации патологического процесса пациент переводится на стандартные сбалансированные смеси, а потом на щадящий вариант диеты, в которой используется принцип химического, механического и температурного щажения при приготовлении и подаче блюд. Нутритивная поддержка сипинговыми смесями рассматривается и как необходимая мера при домашней реабилитации после перенесенной инфекции больных, особенно пожилого и старческого возраста.

Питание у пациентов с COVID-19 на ИВЛ

Искусственная вентиляция легких (ИВЛ), полностью или частично замещающая спонтанное дыхание, –одна из самых частых мер в терапии дыхательной недостаточности у пациентов с COVID-19 в тяжелом состоянии.

Современные клинические рекомендации предписывают раннее начало энтерального питания при отсутствии критических изменений гемодинамики – в течение 24-48 часов после поступления в ОРИТ. Доказано, что ранняя нутритивная поддержка способствует снижению уровня смертности у пациентов в критическом состоянии, находящихся на ИВЛ, а также уменьшает число инфекционных осложнений и продолжительность пребывания в стационаре.

Энтеральный путь введения без сомнения является наиболее физиологичным, и до тех пор, пока не будут использованы все стратегии для оптимизации энтерального питания, парентеральный метод применять не стоит. Тем не менее, возможности использования энтерального питания у тяжелых пациентов с COVID-19 зачастую ограничены в связи с их положение на животе. В таком случае питание сначала вводится парентерально, но по мере возможности сразу сменяется зондовым.

Зондовое питание пациентов с COVID-19

Для определения потребности в калориях у пациентов на ИВЛ сегодня используются непрямая калориметрия или различные прогностические формулы. Необходимо учитывать, что для этой категории больных состав и качество получаемых нутриентов имеют огромное значение. Учитывая уязвимое и часто скомпрометированное состояние желудочно-кишечного тракта при COVID-19, требуемые калории должны поступать в организм в наиболее легкодоступном виде, и их усвоение не должно требовать дополнительных энергозатрат. Количество поступающего протеина должно компенсировать потерю белка при катаболических процессах: существующие клинические руководства предписывают начинать с 1,2 – 2 г/кг/сутки.

Оптимальные продукты для зондового питания:

  • Nestle Peptamen. Смесь на основе сывороточного белка облегчает усвоение всех необходимых питательных веществ у пациентов с нарушенной функцией ЖКТ. Продукт с содержанием калорий 1000 ккал/л и белка 40 г/л полностью удовлетворяет энергетические потребности организма. Смесь хорошо переносится за счет гидролизованного белка 100% молочной сыворотки, не содержит лактозу. Легкодоступным источником энергии являются среднецепочечные триглицериды (70% жирового компонента смеси), усваивание которых проходит без участия ферментов двенадцатиперстной кишки. Высокий уровень цистеина помогает контролировать воспалительный процесс путем нейтрализации свободных радикалов.
  • Nestle Resource Optimum. Изокалорическая полноценная сбалансированная смесь для профилактики и лечения недостаточности питания отличается очень хорошей усвояемостью даже у тяжелых пациентов. Сочетание казеинов и сывороточных белков обеспечивает полный набор эссенциальных аминокислот. Продукт содержит высокие концентрации омега-6 и омега-3 жирных кислот (в соотношении 4:1), а также СЦТ (25%), рапсовое и кукурузные масла, широкий набор витаминов и микроэлементов.
  • Nestle Impact. Этот продукт занимает первое место на мировом рынке иммунного питания. Эффективность Нестле Импакт клинически доказана на основе мета-анализа результатов лечения более 2000 пациентов с различной хирургической патологией в ведущих мировых центрах. Полноценная сбалансированная смесь обогащена аргинином, омега-3-жирными кислотами и нуклеотидами, а также содержит жизненно необходимые витамины и микроэлементы.

Немаловажно, что все указанные смеси подходят не только для зондового, но и для перорального питания.

Питание после отлучения от ИВЛ

После того, как пациент снимается с искусственной вентиляции легких, рекомендуется провести логопедическую оценку его способности к глотанию, а, следовательно, к самостоятельному пероральному питанию. Специалист должен определить тип подходящей больному консистенции пищи и необходимость использования загустителей для введения жидкостей. Перспективным продуктом является универсальный загуститель для еды и напитков Nestle Resource Thicken Up Clear, который используется для диагностики дисфагии, оценки степени выраженности нарушений и облегчения питания для пациентов с дисфагией.

Питание при неинвазивной вентиляции и дыхательной поддержке

Пациентам с неинвазивной дыхательной поддержкой для обеспечения клинического выздоровления также необходима метаболическая стабильность и адекватный статус питания. В этих случаях важно оценивать адекватность перорального приема пищи индивидуальным нуждам больных и при необходимости использовать сбалансированные сипинговые смеси для нутритивной поддержки.

Дополнительное сипинговое питание Nestle Resource с повышенным содержанием белка (9г/100 мл) и полным набором эссенциальных микро- и макронутриентов поддерживает оптимальную скорость восстановления иммунной системы и регенерации тканей после инфекционного процесса. Широкая линейка продуктов – Nestle Resource 2.0+fibre, Resource 2.0, Resource Protein, Resource diabet plus – дает возможность подобрать смесь под индивидуальные энергетические и питательные нужды и учесть потенциальное наличие коморбидных патологий, например, диабета или нарушения толерантности к глюкозе.

Питание при COVID-19 после ОРИТ

По мере восстановления пациента, после купирования основных гастроэнтеральных симптомов, диареи, тошноты, болей, можно постепенно переводить его на щадящую диету, предпочтительно не отказываясь и от поддержки сипинговым питанием Resource Nestle. При комплектовании индивидуального рациона следует учитывать энерготраты больного, его состояние и коэффициент активности.

Основные принципы диеты у пациентов с COVID-19

  • При переводе на щадящий вариант диеты необходимо сохранить высокую квоту употребления полноценного суточного белка (1,5 стакана молока или 30 г сыра, или равнозначное количество других молочных продуктов).
  • Рекомендуется ограничить прием жиров до 30% от суточной потребности. Основной упор должен быть сделан на употребление ПНЖК омега-3 с целью ускорения восстановления структуры слизистых оболочек и профилактики микротромбозов.
  • Стоит уменьшить прием соли и сахара до 5 г в сутки.
  • В рацион необходимо включить овощи и фрукты (сначала в виде отваров, компотов, пюре, продуктов детского питания), а также бобовых и цельнозерновых продуктов, содержащих пищевые волокна, витамины группы В.
  • С учетом длительного пребывания в помещении рекомендовано ежедневное употребление витамина D в дозе 10 мкг, минералов цинка, железа, селена.

Профилактическая нутритивная поддержка

Эпидемические исследования, проведенные сотрудниками института питания РАМН в различных регионах России, показали, что до 80% населения нашей страны испытывают дефицит тех или иных микро- или макронутриентов. Безусловно, это не может не сказываться на состоянии иммунитета, рисках инфекционных заболеваний и сроках реабилитации после них.

Для восполнения имеющихся дефицитов, а также для восстановления нарушенной под действием экопатогенов и стресса функции адаптационных регулирующих механизмов организма, требуется повышенная обеспеченность эссенциальными нутриентами. Этого, однако, невозможно достичь только за счет стандартных рационов питания, не превышая их разумных объемов. Ключом к решению этого вопроса, по мнению специалистов, является регулярное включение в рацион специализированных функциональных пищевых продуктов и функциональных напитков, примером которых являются, в частности, сипинговые смеси Resource Nestle.

В заключение

Нарушение пищеварения – один из самых распространенных симптомов нового коронавируса, наряду с респираторными проявлениями. Пациентам с COVID-19 на всех стадиях лечения необходимо обеспечить полноценное питание, которое не только восполнит дефицит жизненно необходимых нутриентов и станет полноценным источником энергии для восстановления, но и будет максимально безопасным и легко усвояемым для скомпрометированной пищеварительной системы. Продукты Nestle для зондового и перорального питания, подходящие для каждого этапа терапии – от ИВЛ в условиях реанимации до амбулаторной реабилитации, оптимально способствует компенсации нужд пациентов с коронавирусной инфекцией. Специализированные смеси обладают сбалансированным составом аминокислот, жиров, витаминов и микроэлементов и усваиваются при минимальных ферментных и энергетических тратах.

Этиология гриппа

Грипп — острое респираторное вирусное заболевание, этиологически связанное с представителями трех родов — Influenza A virus (вирусы гриппа А), Influenza В virus (вирусы гриппа В) и Influenza С virus (вирусы гриппа С) — из семейства Orthomyxoviridae [2, 26].

Вирус гриппа А был впервые изолирован от свиней американским вирусологом Ричардом Шоупом (1901–1966) в 1930 г.; от людей — тремя годами позже группой английских ученых: Вильсоном Смитом (1897–1965), Кристофером Эндрюсом (1896–1987) и Патриком Лейдлоу (1881–1940) [26].

Рис. 1. Структура вириона вируса гриппа А (Orthomyxoviridae, Influenza A virus)

На поверхности вириона (вирусной частицы) вируса гриппа А имеются две функционально-важные молекулы (рис. 1): гемагглютинин (с помощью которого вирион прикрепляется к поверхности клетки-мишени); нейраминидаза (разрушающая клеточный рецептор, что необходимо при почковании дочерних вирионов, а также для исправления ошибок при неправильном связывании с рецептором) [2, 24, 26].

В настоящее время известны 16 типов гемагглютинина (обозначаемые как Н1, Н2, …, Н16) и 9 типов нейраминидазы (N1, N2, …, N9). Комбинация типа гемагглютинина и нейраминидазы (например, H1N1, H3N2, H5N1 и т. п.) называется субтипом: из 144 (16 × 9) теоретически возможных субтипов на сегодняшний день известны 115 [24].

Природным резервуаром вируса гриппа А являются дикие птицы водно-околоводного экологического комплекса (в первую очередь, речные утки, чайки и крачки), однако вирус способен преодолевать межвидовой барьер, адаптироваться к новым хозяевам и длительное время циркулировать в их популяциях [9–12]. Эпидемические варианты вируса гриппа А вызывают ежегодный подъем заболеваемости и раз в 10–50 лет — опасные пандемии [1, 11, 16].

Вирус гриппа В был открыт в 1940 г. американским вирусологом Томасом Фрэнсисом-младшим (1900–1969). Вирус гриппа В не вызывает пандемии, но является возбудителем крупных эпидемических вспышек [26].

Вирус гриппа С был открыт в 1947 г. американским вирусологом Ричардом Тейлором (1887–1981). Вирус гриппа С вызывает локальные эпидемические вспышки в детских коллективах. Наиболее тяжело инфекция протекает у детей младшего возраста [26].

Вирусы гриппа занимают важное место в структуре заболеваемости людей острыми респираторными вирусными инфекциями (ОРВИ), составляющими до 90% от всех других инфекционных болезней. По данным Всемирной Организации Здравоохранения (ВОЗ), только тяжелыми формами гриппа в мире ежегодно заболевают 3–5 млн человек. Заболевает ежегодно гриппом и другими ОРВИ в РФ — 25–35 млн, из них 45–60% — дети. Экономический ущерб РФ от сезонного эпидемического гриппа составляет до 100 млрд руб./год, или порядка 85% экономических потерь от инфекционных болезней [2–8, 20–23].

История гриппозных пандемий

В первый постпандемический эпидсезон 2010–2011 гг. пандемический грипп А(H1N1) swl стал причиной более 70% случаев ОРВИ в мире, грипп А(H3N2) — 1–5%, грипп В — 10–20%.

Состав противогриппозных вакцин в эпидсезоне 2011–2012 гг. (как и в 2010–2011 гг.): A/California/07/2009 (H1N1) swl; A/Perth/16/2009 (H3N2); B/Brisbane/60/2008.

Пандемический вирус гриппа А(H1N1) swl резистентен к Ремантадину и Аманта­дину, но чувствителен к Тамифлю, Релензе, Ингавирину, Арбидолу и Риба­вирину [13–16, 18, 19, 23].

Высоковирулентный грипп А(H5N1) птиц — возможный возбудитель очередной пандемии.

Вероятность преодоления вирусом гриппа А межвидового барьера и проникновения в человеческую популяцию с опасными последствиями резко увеличивается в период эпизоотий 3 . Поэтому высоковирулентный вирус гриппа А(H5N1) птиц, ставший причиной современной масштабной эпизоотии среди диких и домашних птиц Старого Света и имеющий повышенную способность репродуцироваться в клетках млекопитающих, рассматривается как наиболее вероятный возбудитель очередной пандемии гриппа [10, 11, 17]. Дальнейшее распространение этого вируса может иметь катастрофические последствия в случае появления у него эпидемического потенциала (способности передаваться от человека к человеку), так как, во-первых, у человечества отсутствует коллективный иммунитет к вирусам гриппа А (Н5), а во-вторых, из 563 лабораторно подтвержденных случаев заболевания людей в 15 странах мира в результате заражения вирусом гриппа А(H5N1) птичьего происхождения за 2003–2011 гг. 330 умерли, т. е. летальность приближается к 60% [11, 24].

Патогенез гриппа

У человека вирусы гриппа поражают эпителиальные клетки слизистой оболочки респираторного тракта, а также бокаловидные клетки (секретирующие слизь), альвеолоциты и макрофаги [3, 4, 7]. Все эти клетки имеют на своей поверхности рецептор, с которым связывается вирусный гемагглютинин (рис. 1), — концевой остаток сиаловой, или N-ацетилнейраминовой, кислоты (Neu5Ac) (рис. 2), в составе полисахаридных цепочек, входящих в состав ганглиозидов и гликопротеинов. Концевой остаток сиаловой кислоты может связываться со следующим моносахаридом двумя способами: с помощью альфа2-3- или альфа2-6-связи (рис. 2) [14, 18].

Рис. 2. Структурные формулы сиаловой, или N-ацетилнейраминовой кислоты (Neu5Ac) и двух способов ковалентной связи со следующим моносахаридом (в данном случае — галактозой, Gal): альфа2-3- или альфа2-6-связью

Клетки эпителия верхних отделов респираторного тракта человека содержат, в основном, альфа2-6-сиалозиды; нижних отделов — альфа2-3-сиалозиды (рис. 3). Поэтому эпидемические штаммы вирусов гриппа, имея альфа2-6-специфичность, легко репродуцируются в верхних отделах респираторного тракта человека, активно выделяются в окружающую среду при речи, чихании, кашле и эффективно заражают других людей капельно-воздушным путем.

Варианты вируса гриппа А, адаптированные к птицам, имеют альфа2-3-специфичность (рис. 3). Концевые альфа2-3-сиалозиды содержатся у птиц, в основном, на поверхности эпителиальных клеток слизистой кишечника, поэтому у птиц грипп протекает в форме энтерита; вирус выделяется во внешнюю среду с фекалиями, а заражение происходит алиментарным путем. Альфа2-3-специфичность птичьих вариантов вируса гриппа А объясняет их неспособность эффективно поражать эпителий верхних отделов респираторного тракта человека и, как следствие, — передаваться капельно-воздушным путем в человеческой популяции. Вместе с тем, если высоковирулентный вирус гриппа А птиц каким-либо образом сумел вызвать продуктивную инфекцию в человеческом организме, то он будет эффективно поражать нижние отделы респираторного тракта, становясь причиной тяжелой первичной вирусной пневмонии (по данным ВОЗ, в 60% случаев — летальной).

Эпителиоциты свиней одновременно содержат и альфа2-6-, и альфа2-3-сиалозиды (рис. 3), по­этому в организме могут одновременно циркулировать и эпидемические, и птичьи варианты вируса гриппа А. Вследствие этого в свиных популяциях могут, во-первых, формироваться реассортанты 4 человеческих и птичьих штаммов с новыми биологическими свойствами; во-вторых, селектироваться штаммы со смешанной альфа2-6/альфа2-3-специфичностью. Именно такой смешанной альфа2-6/альфа2-3-специфичностью обладают штаммы пандемического вируса гриппа А(H1N1) swl, и, как следствие, они обладают способностью распространяться капельно-воздушным путем и вызывать тяжелые пневмонии [13–15, 18, 19, 23].

Рис. 3. Сиалозиды-рецепторы вирусов гриппа А на поверхности эпителиоцитов людей (альфа2-6 — на слизистой верхних, альфа2-3 — на слизистой нижних отделов респираторного тракта), свиней (альфа2-6/альфа2-3-смесь на слизистой респираторного тракта) и птиц (альфа2-3 — на слизистой кишечника)

Инфицирование эпителиоцитов имеет следствием быстрый рост вирусной нагрузки, апоптоз, дегенерацию и некроз этого типа клеток с последующим развитием токсических и токсико-аллергические реакций. У людей характерно повреждение клеток цилиндрического эпителия трахеи и бронхов. Главным звеном в патогенезе гриппа А является поражение сосудистой и нервной систем, возникающее вследствие токсического действия вируса. При этом одним из основных механизмов влияния вируса гриппа А на сосудистую систему является образование активных форм кислорода, которые взаимодействуют с фосфолипидами клеточных мембран, вызывая в них процесс перекисного окисления липидов, нарушение мембранного транспорта и барьерных функций, способствуя дальнейшему развитию вирусной инфекции. Лизосомальные ферменты дополнительно повреждают эпителий капилляров, базальную мембрану клеток, что способствует распространению гриппозной инфекции и виремии. Повышение проницаемости сосудов, ломкость их стенок, нарушение микроциркуляции является причиной возникновения геморрагических проявлений — от носовых кровотечений до геморрагического отека легких и кровоизлияний в вещество головного мозга. Циркуляторные расстройства, в свою очередь, вызывают поражения ЦНС: патоморфологическая картина характеризуется наличием лимфомоноцитарных инфильтратов вокруг мелких и средних вен, гиперплазией глиальных элементов и очаговой демиелинизацией, что свидетельствует о токсико-аллергической природе патологического процесса в ЦНС при гриппе [3–8, 23].

Важным фактором патогенеза при гриппе является продукция вирусного белка PB1-F2, который вызывает апоптоз тканевых макрофагов легких и тем самым способствует развитию вторичных бактериальных пневмоний (у современного пандемического варианта вируса гриппа А(H1N1) swl продукция PB1-F2, к счастью, отсутствует, что снижает — но не отменяет! — вероятность развития вторичных пневмоний, оставляя в силе опасность первичных вирусных пневмоний — см. далее) [2, 26].

Клиническая картина гриппа у людей

Начало острое, с озноба, быстрого повышения температуры до высоких цифр, резкого нарастания симптомов интоксикации. Температура достигает максимальных значений (39,0–40,0 °С) в первые сутки заболевания. В этот же период нарастают признаки интоксикации: озноб, сильная головная боль, головокружение, миалгии, артралгии, выраженная слабость. При внешнем осмотре: лицо гиперемировано, одутловато, сосуды склер инъецированы, определяется гиперемия конъюнктив, цианоз губ и слизистой оболочки ротоглотки, возможны точечные геморрагии на мягком небе. Цианоз вообще является важным симптомом при гриппе: следует обращать внимание не только на цианоз губ, но и на цианотичный оттенок язычка, миндалин, небных дужек на фоне яркой гиперемии слизистой ротоглотки; слизистая оболочка мягкого неба также имеет цианотичный оттенок, хорошо видна мелкая зернистость, инъекция сосудов и мелкоточечные геморрагические элементы; на задней стенке глотки — умеренная гиперплазия лимфоидной ткани.

Локализация головной боли: в лобно-височной области и в глазных яблоках (при легком надавливании на них или при их движении). Нередко определяются менингеальные знаки, которые постепенно исчезают с уменьшением интоксикации и снижением температуры тела. Диапазон клинических проявлений со стороны нервной системы достаточно широкий: от функциональных расстройств до серозных менингитов и тяжелых менингоэнцефалитов.

При развитии вторичных пневмоний на фоне вирусной инфекции определяются признаки бактериального воздействия, подтверждаемого обнаружением в мокроте бактерий Streptococcus pneumoniae, Staphylococcus aureus и др. Как правило, вторичная пневмония развивается после 5–7 сут гриппа и характеризуется повторным подъемом температуры до фебрильных значений, усилением кашля, появлением слизисто-гнойной мокроты, часто с прожилками крови, рентгенологически — очаговыми и очагово-сливными инфильтратами, нередко с признаками деструкции и абсцедирования. Позже 10 сут пневмония имеет, как правило, бактериальную этиологию и чаще всего связана с грамотрицательной микрофлорой.

Одним из главных факторов, способствующих тяжелому течению гриппа, является сопутствующая патология. В частности, у пациентов, умерших в период двух последних эпидсезонов 2009–2011 гг., преобладали болезни сердца и сосудов, сахарный диабет, метаболический синдром (ожирение), алкоголизм и табакокурение. Особую группу риска составляют беременные, у которых пневмония может развиваться стремительно, а потому они требуют особого внимания клиницистов и безотлагательной терапии.

Литература

М. Ю. Щелканов, доктор биологических наук, доцент
Л. В. Колобухина, доктор медицинских наук, профессор
Д. К. Львов, доктор медицинских наук, профессор, академик РАМН

1 Для сравнения: в результате военных действий за 5 лет Первой мировой войны (1914–1918 гг.) погибли 8,3 млн человек.

3 Эпизоотия — процесс распространения инфекционного заболевания в популяциях животных.

4 Вирус гриппа А имеет геном, состоящий из 8 отдельных молекул РНК. Реассортацией называется формирование штамма, у которого источником различных генетических сегментов стали различные родительские штаммы, одновременно инфицировавшие одну и ту же клетку.

Читайте также: