Что такое самосборка вирусов

Обновлено: 28.03.2024

спонтанное упорядоченное объединение биополимеров, приводящее к образованию биологически важных структур: рибосом, цитоскелета, мембран, ферментных комплексов, вирусов и т. п. Наиб, ярко выражена способность к С. у белковых молекул (нуклеиновые к-ты, углеводы и липиды также участвуют в этом процессе). С. не требует затрат энергии и осуществляется за счёт образования нековалентных, вторичных связей. При объединении молекул первыми включаются наиб, дальнодействующие электростатич. силы, к-рые ориентируют сближающиеся молекулы, затем подключаются более короткие водородные, гидрофобные и, наконец, ван-дер-ваальсовы взаимодействия. Важную роль в С. играет комплементарность поверхностей взаимодействующих молекул. Как правило, С. протекает с участием одинаковых молекул и сходна с процессом кристаллизации, но вместе с тем возможно взаимодействие и разных молекул.

Смотреть что такое "САМОСБОРКА" в других словарях:

самосборка — самосборка … Орфографический словарь-справочник

Самосборка — * самазборка * self assembly процесс сборки субчастиц рибосомы из 16S рРНК и рибосомных белков с поэтапным образованием RI (1 й этап), RI*(2 й этап) и PI* частиц, дополнительных рибосомных белков и образованием 30Sсубчастицы. Этот процесс зависит … Генетика. Энциклопедический словарь

самосборка — спонтанное упорядоченное объединение биополимеров, приводящее к образованию биол. важных структур–рибосом, мембран, ферментных комплексов, вирусов и т. д. Наиболее ярко способность к С. выражена у белковых молекул (в этом процессе могут… … Словарь микробиологии

самосборка — сущ., кол во синонимов: 1 • сборка (22) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

самосборка — Термин самосборка Термин на английском self assembly Синонимы Аббревиатуры Связанные термины биомиметические наноматериалы, водородная связь, капсид, нанослой, самособирающиеся монослои, супрамолекулярная химия, супрамолекулярный катализ, темплат … Энциклопедический словарь нанотехнологий

Самосборка — Пример самосборки: характерные проекции бинарных сверхрешеток, образованных различными наночастицами, и модельные элементарные ячейки соответствующих трехмерных структур. Самосборка ( … Википедия

самосборка в жидкости — Fluidic Self Assembly Самосборка в жидкости Новая технология точной сборки больших количеств миниатюрных устройств. Малый размер, точность сборки, производимой на плоскости, ведут к возникновению очень небольшого числа паразитных связей,… … Толковый англо-русский словарь по нанотехнологии. - М.

Введение

Нет в мире более агрессивной напасти, угрожающей любому живому существу, чем невидимые простым глазом вирусы.

Вирусы поражают всё живущее на земле, представителей всех царств живых существ: самих вирусов (вирофаги)‚ архей‚ бактерий (бактериофаги)‚ водорослей‚ грибов, растений‚ простейших‚ беспозвоночных и позвоночных. Вирусы вездесущи, или убиквитарны (В. М. Жданов и др.).

Сколько генов достаточно иметь, чтобы существовать в качестве самостоятельного живого организма (или его клетки)?

Клетки человека содержат примерно 60 000 генов, кишечной палочки (E. coli) - 4 000, семейство поксвирусов 200-230, мимивирусы 670-690, некоторые хвостатые ДНК-фаги - до 750. Считается, что минимальное число генов у самого простого живого организма равно примерно 500. Самым маленьким одноцепочечным ДНК-геномом обладает цирковирус из семейства Circoviridae: его геном кодирует лишь два белка и содержит всего 2000 нуклеотидов.

РНК-содержащие вирусы содержат всего 5-15 генов, длина геномной РНК у них меньше: 4-35 kb, а у вироидов - около 250 b. Это вызвано более низкой стабильностью РНК во внешней среде по сравнению с ДНК. Вероятно, поэтому эволюционно более длинные РНК-геномы не закрепились в процессе макроэволюции.

Размеры большинства вирусов человека, животных и растений обычно не превышают 100 нм.

ORF — открытая рамка считывания (англ. Open Reading Frame, ORF) — последовательность нуклеотидов в составе ДНК или РНК, потенциально способная кодировать белок. Основным признаком наличия ORF служит отсутствие стоп-кодонов (в случае РНК — обычно UAA, UGA и UAG) на достаточно длинном участке последовательности после стартового кодона (в подавляющем большинстве случаев — AUG). Поскольку в некоторых случаях стартовый и терминирующие кодоны отличаются от канонических, а также ввиду возможности супрессии (подавления действия) стоп-кодонов при трансляции у некоторых организмов, при определении рамки считывания применяют специальные алгоритмы, которые учитывают эти различия. Количество ORF отражает количество белков, которые может экспрессировать исследуемый геном.

3d_influenza_black_no_key_pieslice_lrg.jpg

вирус гриппа

Определение понятия

Вирусы - это нуклеопротеиновые молекулярные машины, предназначенные для самокопирования и самотиражирования за счёт использования чужих внутриклеточных механизмов. Они способны пассивно сохраняться во внешней среде и активируются только в организме хозяина, являясь внутриклеточными паразитами.

Образно можно сказать, что вирусы - это "дикие" автономные нуклеиновые кислоты (РНК или ДНК), формирующие себе защитную белковую оболочку и ведущие самостоятельное существование, используя ресурсы чужих клеток.

Можно сказать и так: "вирус - это самостоятельный геном в белковой оболочке, размножающийся за чужой счёт".

© 2020-2022 Сазонов В.Ф. © 2020-2022 kineziolog.su

Вирусы - это более мелкие, чем бактерии, неклеточные элементы живой материи, содержащие генетическую информацию (в виде РНК или ДНК), заключенную в белковый чехол, покоящиеся вне клетки и способные к самовоспроизведению (размножению, репродукции) только в живой клетке, обладающие изменчивостью и наследственностью [Жданов В.М. Эволюция вирусов. - М.: Медицина, 1990. - 376 с. ].

klassifikaciyavirusov.jpg

Классификация вирусов

Кроме различий в составе нуклеиновых кислот (НК), геном вирусов может быть сегментированным или несегментированным, НК могут быть как кольцевыми, так и линейными, с разрывами в одной из цепей или без разрывов. А кольцевая двуцепочечная ДНК вирусов может иметь дополнительные суперспиральные витки.

Самосборка вируса в вирион (вирусную нуклеопротеиновую частицу)

Интересно, что на вирусной геномной РНК можно собрать оболочку из белковых частиц, принадлежащих вирусу другого вида. Так, РНК-геном вируса табачной мозаики удалось одеть в белковую оболочку, собравшуюся из белков вируса мозаики подорожника. Правда, при первом же размножении в клетках табака этот гибрид вновь воссоздал обычные вирионы вируса табачной мозаики. Геномная РНК гибрида, принадлежавшая вирусу табачной мозаики, запустила синтез привычных "табачно-вирусных" белков. Наследственность проявила себя!

И даже такой сложный вирус, как бактериофаг, тоже собирается путём самосборки белков и белковых блоков.

Видео: Вирусы: виды, устройство и способы заражения клетки

Самый "заслуженный" вирус - вирус табачной мозаики

Видеолекция: Историю вирусологии и многообразие существующих вирусов. Лектор: О.В. Карпова

Видео: Антивир - комплекс из 6 кинезиологических упражнений против вирусных инфекций

Всего 6 несложных упражнений. Всего пара минут в день. А эффект - заметный!

Вирусы — это субмикроскопические (20–400 нм в диаметре) неклеточные объекты, геномы которых состоят из нуклеиновой кислоты и которые реплицируются в живых клетках. Используя их (клеток) синтетический аппарат, они вызывают синтез специализированных структур, способных переносить вирусный геном в другие клетки.

Уникальным свойством вирусов является отсутствие у них собственных белок-синтезирующих систем. Синтез вирусных белков осуществляется белок-синтезирующим аппаратом клетки - клеточными рибосомами, которые связываются с вирусными и РНК. Вирусы вводят в клетку лишь свою генетическую информацию, которая успешно конкурирует с клеточной информацией, несмотря на ничтожно малые размеры вирусных геномов (на 5-6 порядков меньших по молекулярным массам, чем геном эукариотической клетки). Уровень паразитизма у вирусов иной, чем у бактерий или простейших: в отличие от внутриклеточного паразитизма вирусов определяется как генетический паразитизм, а вирусы рассматриваются как генетические паразиты. Ярким примером генетического паразитизма является способность ряда вирусов интегрировать (объединяться) с клеточным геномом. В этом случае вирусные гены превращаются в группу клеточных генов и обозначаются как противовирус.

К уникальным свойствам вируса относится его способ размножения, который резко отличается от способов размножения всех других клеток и организмов (бинарное деление, почкование, образование спор).

Вирусы не растут, и их размножение обозначается как дисъюнктивная (разобщенная) репродукция, что подчеркивает разобщенность в пространстве (на территории клетки) и времени синтеза вирусных компонентов (нуклеиновых кислот и белков) с последующей сборкой и формированием вирионов.

Существует ряд гипотез происхождения вирусов.

По первой, вирусы являются результатом крайнего проявления регрессивной эволюции бактерий или других одноклеточных организмов. Гипотеза регрессивной эволюции не может объяснить разнообразия генетического материала у вирусов, неклеточной их организации, дисъюнктивного способа репродукции и отсутствия белок-синтезирующих систем. Поэтому в настоящее время эта гипотеза имеет скорее историческое значение и не разделяется большинством вирусологов.

Согласно второй гипотезе вирусы являются потомками древних, доклеточных форм жизни – протобионтов, предшествовавших появлению клеточных форм жизни, с которых и началась биологическая эволюция.

Просто организованные вирусы представляют собой нуклеопротеиды или нуклеокапсиды и состоят из нуклеиновой кислоты (РНК или ДНК) и нескольких кодируемых ею белков, формирующих вирусную оболочку вокруг нуклеиновой кислоты – капсид.

Сложно организованные вирусы содержат дополнительные оболочки, белковые или липопротеидные, и имеют более сложный химический состав. Помимо нуклеиновой кислоты и белков, содержат липиды в наружных оболочках и углеводы в составе белковых наружных оболочек (гликопротеидов). Обычно липиды и углеводы имеют клеточное происхождение. В составе некоторых вирусов обнаруживаются также клеточные нуклеиновые кислоты и белки.

В отличие от клеток вирусы содержат лишь один вид нуклеиновой кислоты – либо РНК, либо ДНК. И та, и другая может быть хранителем наследственной информации, выполняя функции генома.


Обзор

Авторы
Редакторы

Вообще, вирусы прекрасны. Они прекрасно выглядят и прекрасно приспособлены к использованию в своих целях любых живых организмов: животных, растений, грибов, простейших, бактерий и архей. И даже неклеточных созданий, братьев-вирусов.

Вирусы — это паразиты, которые не могут размножаться вне живых клеток. Окружающая среда по отношению к ним недружелюбна, и в ней они в виде ничего не делающих частиц коротают время до встречи с подходящей клеткой-хозяином. Вирусные частицы, или вирионы, не относят к живым организмам, потому что они не имеют клеточного строения, не могут обеспечивать себя энергией и производить белки для построения своих частиц. А вот бактерии, которые тоже часто на ком-то паразитируют, всё это умеют и потому с полным правом считаются живыми существами.

Отличаются ли вирусы от бактерий размерами?

Вирус табачной мозаики и аденовирус

Вирус табачной мозаики и аденовирус.

Бактериофаг Т2

Бактериофаг Т2.

Как вирусы устроены?

Вирус осповакцины и вирус Pf1

Вирус осповакцины и вирус Pf1.

Фаг ФХ174 и вирус гриппа

Фаг ФХ174 и вирус гриппа.

Как вирусы размножаются?

Жизненный цикл вируса

Схема жизненного цикла вируса.

Все ли вирусы — злодеи?

Люди боятся и не любят вирусы за то, что те вызывают тяжелые, иногда смертельные болезни, от которых практически нет лекарств: сложно, не повредив клетку, убить засевшего в ней паразита, который не делает почти ничего сам, а пользуется обычными клеточными системами. Многие вирусы умеют искусно уходить от иммунного надзора, превращаясь в медленных убийц. Они вызывают хронические инфекции, иногда скрытые, которые десятилетиями никак не проявляются, но исподволь готовят почву, например, для развития рака. И всё же человек, накопив нужное количество знаний, научился бороться с некоторыми из самых опасных вирусов — с помощью прививок [5]. К сожалению, привиться от всех тяжелых вирусных болезней пока нельзя, потому что многие вирусы очень изменчивы.

От вирусов страдает не только человек, но и животные, и растения. Однако такие сложные живые организмы сталкивались с вирусами уже с момента своего возникновения и потому приспособились к совместному сосуществованию с большинством из них. Да и вирусу, как правило, незачем убивать хозяев — тогда ведь придется всё время искать новых, и если в скученных бактериальных сообществах это не так уж и сложно, то вот в человеческих.

Но если отвлечься от добрых и злых, с точки зрения человека, дел вирусов, то нужно признать, что на этих невидимках во многом держится наш мир: они переносят свои и чужие гены от организма к организму, увеличивая генетическое разнообразие, регулируют численность сообществ живых существ и просто необходимы для круговорота биогенных элементов, ведь вирусы — самые многочисленные биообъекты на нашей планете.

Полноформатную раскраску можно скачать по этой ссылке.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: