Что такое вирусы восприятия

Обновлено: 19.04.2024

Приближается сезон простуд, а значит вопрос вирусов, бактерий и, конечно же, способов лечения вызываемых ими недугов вновь станет актуальным.

Известно, что, несмотря на то, что многие инфекционные заболевания вызываются именно вирусами, нередко при них назначаются антибиотики. Но эффективны ли эти препараты при вирусных инфекциях? Каковы отличия вирусов и бактерий, и какое это имеет значение при лечении инфекционных заболеваний?

Эти и некоторые другие вопросы мы затронем в нашей статье.

Дивный, дивный микромир

Невидимых невооружённым глазом обитателей, населяющих нашу планету - великое множество. Бактерии и вирусы, грибки и простейшие - число их огромно. Есть среди них как безвредные (и даже полезные и безусловно нужные) для организма, так и вызывающие различные инфекционные патологии.

Примеры некоторых болезней, вызываемых бактериями: дифтерия, сальмонеллёз, бактериальная дизентерия (не путать с амёбной), брюшной тиф, холера, дифтерия, туберкулез и многие другие.

А вот такие заболевания, как грипп, цитомегаловирусная болезнь, эпидемический паротит, инфекционный мононуклеоз, полиомиелит, ветряная оспа, корь, краснуха, ВИЧ, бешенство, некоторые гепатиты и т.д. - вирусной природы.

В ПРОЦЕССЕ ЭВОЛЮЦИОННОГО РАЗВИТИЯ
ОРГАНИЗМ НАУЧИЛСЯ БОРОТЬСЯ СО
МНОГИМИ ИЗ ИНФЕКЦИОННЫХ ПАТОГЕНОВ

В процессе эволюционного развития организм научился бороться со многими из инфекционных патогенов: на страже - наша иммунная система, реагирующая на внедрение инфекционных агентов. Однако, как и ранее, есть инфекции и случаи конкретного течения болезней, когда иммунитет отвечает недостаточно, либо его сил может не хватить, чтобы победить возбудителя.

Последующие исследования показали, что, во-первых, пенициллин действует далеко не на все болезнетворные микроорганизмы, а лишь на некоторые из них. Во-вторых, антибиотики в целом не действуют на вирусы.

АНТИБИОТИКИ В ЦЕЛОМ
НЕ ДЕЙСТВУЮТ НА ВИРУСЫ

Чтобы ответить на этот вопрос, нужно понимать, чем вирус концептуально отличается от бактерии.

Вирус - что это такое?

Что из этого можно заключить, возвращаясь к вопросу о влиянии антибиотиков на вирусы? Как минимум следующее: если мы назначим антибиотик, нарушающий процесс образования клеточной стенки, то эффекта не получим: у вируса этой стенки просто нет.

Есть только одно абсолютное правило: всё относительно

ПРИНЦИП "АНТИБИОТИКИ - ТОЛЬКО ПРОТИВ БАКТЕРИЙ"
НЕ АБСОЛЮТЕН: СУЩЕСТВУЮТ ТАКИЕ, КОТОРЫЕ
ДЕЙСТВУЮТ НА НЕКОТОРЫЕ ОПУХОЛЕВЫЕ
КЛЕТКИ ЧЕЛОВЕЧЕСКОГО ОРГАНИЗМА

Врачи думают иначе? Почему при вирусных инфекциях назначают антибиотики?

Исследование показало, что ликвидация этих бактерий ведёт к тому, что без них иммунитет не может правильно активировать систему противовирусной защиты. В результате клетки становятся более восприимчивыми к вирусу.

Вывод: антибиотики против вирусов - бесперспективная идея?

Как оказалось, нет, но пока вопрос находится на уровне экспериментов. Ещё одно проведённое исследование показало, что антибиотик неомицин подавляет активность вируса простого герпеса в слизистой оболочке влагалища, которую обрабатывали этим средством. В результате симптомы патологии были выражены более слабо.

Читайте материал по теме: Герпес: как распознать и вылечить?

При выяснении возможного механизма такого подавления было установлено, что неомицин активировал клеточные гены, которые управляют противовирусной защитой. Каким именно способом - пока неизвестно.

Дадут ли эти данные и дальнейшие исследования в этом направлении что-то клинической практике, пока неизвестно.

Против вирусов


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.


Обзор

здесь и далее рисунки Андрея Занкевича

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Напомним, что РНК (рибонуклеиновая кислота) — это такая молекула, представляющая собой одну цепочку нуклеотидов. В составе каждого нуклеотида присутствует остаток моносахарида рибозы. На сегодняшний день известно множество разных типов РНК, которые выполняют совершенно разные функции: от кодирования клеточных белков (мРНК) до противовирусной защиты (некоторые микроРНК) [1–5]. РНК, входящие в состав многих вирусов, могут иметь ряд оригинальных функций, таких как регуляция времени экспрессии различных вирусных генов путем изменения пространственной организации цепи РНК или привлечение клеточных белковых комплексов.

Но бывает ли такое, что в пределах одной молекулы РНК одна ее часть, кодирующая некоторый белковый продукт, имеет положительную полярность, в то время как другая часть цепи представлена участком отрицательной полярности, кодирующим другой белок? Могла ли такая молекула возникнуть в процессе эволюции живых форм?

Ответ — да! И для того, чтобы разобраться, как функционируют такие молекулы, нам предстоит погрузиться в таинственный мир вирусов.

Давным-давно, в далекой-далекой галактике.

Как известно, все формы жизни обладают определенной наследственностью, которая определяет степень генетической идентичности живых объектов. В качестве молекул, ответственных за поддержание такой наследственной идентичности, выступают нуклеиновые кислоты (ДНК и РНК). Клеточные формы жизни для хранения и передачи информации используют только один тип нуклеиновых кислот — дезоксирибонуклеиновую кислоту (ДНК), в то время как вирусы в качестве основной молекулы наследственности могут использовать либо ДНК, либо РНК.

В случае ДНК-содержащих вирусов реализуется, как правило, Центральная догма молекулярной биологии в классическом виде: попав в клетку, ДНК удваивается в процессе репликации вирусного генома, на матрице ДНК в ходе транскрипции синтезируются мРНК, которые затем прочитываются рибосомой, синтезирующей по ним вирусные белки, то есть осуществляется трансляция. Далее вирусные белки ассоциируются с ДНК-геномом вируса в вирусную частицу (вирион), которая способна заражать новые клетки.

Очевидно, что РНК-содержащие вирусы используют иные стратегии размножения и, следовательно, реализации своего генома. Непривычные для большинства биологов молекулярные механизмы, которые используются такими вирусами, вероятно, унаследованы от далеких предков из того самого РНК-мира.

Размножение РНК-вирусов подразумевает использование разных типов РНК:

  • геномная РНК находится внутри вириона, в зависимости от конкретного вируса, она может быть представлена (+)РНК, (–)РНК, (±)РНК, либо двухцепочечной РНК;
  • комплементарная геномной РНК антигеномная РНК образуется в процессе репликации вирусов с одноцепочечным РНК-геномом и обладает полярностью, противоположной геномной РНК;
  • субгеномная РНК (вирусная мРНК) имеет (+)полярность и является продуктом транскрипции геномной или антигеномной РНК. Как и подобает мРНК, субгеномная РНК участвует в процессе трансляционного синтеза белка.

Немного истории

Первым найденным РНК-вирусом стал бактериофаг f2, инфицирующий бактерию кишечную палочку (Escherichia coli) [7]. Выделенная геномная РНК фага f2 имела свойства мРНК, то есть она распознавалась рибосомой и могла транслироваться. На родственном РНК-бактериофаге Qβ была изучена РНК-зависимая РНК-полимераза (RdRp), которая, как оказалось, может синтезировать цепь РНК на матрице другой цепи РНК, то есть осуществлять репликацию вирусного РНК-генома! В ходе работы с РНК-бактериофагами f2 и его родственником Qβ были получены общие представления о биологии таких РНК-вирусов [8].

После РНК-бактериофагов были найдены (+)РНК-вирусы животных, такие, как вирус полиомиелита [9], [10], представитель группы пикорнавирусов. Подобные вирусы не содержат репликативных белков в составе вирусной частицы (вириона).

Встречаются вирусы, геном которых представлен двухцепочечной РНК. Как и в случае (–)РНК-вирусов, у дцРНК-вирусов во время репликации в клетке первым делом происходит синтез (+)цепи. Вирусные частицы этой группы также включают в свой состав RdRp.

Вирусы с двусмысленным РНК-геномом из семейства Bunyaviridae

Схематичное изображение структуры вириона флебовирусов

Рисунок 1. Схематичное изображение структуры вириона флебовирусов

В семействе Bunyaviridae роды Phlebovirus, Tospovirus и Tenuivirus являются вирусами с двусмысленным РНК-геномом и, в отличие от остальных представителей семейства, имеют чуть более длинный S-сегмент генома (РНК S) (±)полярности. Род Tospovirus имеет вдобавок (+)участок на РНК M, который делает и эту РНК амбисенсной.

Флебовирусы

Вирусы рода Phlebovirus выделяют практически по всему миру и относят к нетаксономической группе арбовирусов, распространяющихся в членистоногих переносчиках и в позвоночных, на которых питаются переносчики. Члены этого рода переносятся кровососущими членистоногими. Инфекции не обходят стороной человека: вирусы сицилийской и неаполитанской москитных лихорадок широко распространены по территории Средиземноморья [15]. Среди симптомов таких инфекций — продолжительная сильная лихорадка, тошнота, рвота, диарея и головные боли. Вирус Тосканы, также переносимый москитами, обладает способностью проникать в нервную ткань и, вдобавок к вышеперечисленным симптомам, вызывает асептический менингит и менингоэнцефалит. Флебовирусы, переносимые клещами, например, вирус Бханджа, вирус тяжелой лихорадки с синдромом тромбоцитопении, или вирус Хартленд, вызывают серьезные вспышки инфекций среди людей [16].

Эти вирусы получили свое имя от латинского названия москитов (Phlebotominae), которые являются их основными переносчиками. Вирионы флебовирусов имеют диаметр 100-125 нанометров. Внутри вириона находятся три вирусных рибонуклеопротеина (вРНП), содержащих геномные сегменты, однако для вируса лихорадки долины Рифт (RVFV) было показано [17], что вирионы также могут содержать ещё три дополнительных вРНП, образованных цепочками антигеномных РНК, комплементарных геномным вирусным РНК. Рецептор-распознающий аппарат вирусов представлен гетеродимерами гликопротеинов Gn и Gc, которые организованным способом распределены по мембране вириона.

Структура генома флебовирусов

Геном флебовирусов как и других представителей семейства Bunyaviridae, включает три молекулы РНК: PHК L, РНК M, РНК S, имеющие на 5′- и 3′- концах уникальные для каждого геномного сегмента комплементарные последовательности. РНК L (–)полярности кодирует белок репликазы L. (–)РНК M кодирует предшественник гликопротеинов G1 и G2. (±)РНК S кодирует белок нуклеокапсида N на (–)полярном участке (ближе к 3′) и неструктурный белок NSs на (+)полярном участке (ближе к 5′) (рис. 2).

Схема структуры генома флебовирусов

Рисунок 2. Схема структуры генома флебовирусов. Отмечены участки РНК, обладающие (–)- и (+)полярностью. Пунктирной линией обозначен сайт протеолиза белкового продукта.

NSs выполняет ряд функций, среди которых подавление индукции интерферона, усиление репликации и транскрипции вирусной РНК и определение круга хозяев [18]. NSs через цепочку белковых факторов способен приводить к инактивации противовирусной протеинкиназы R организма-хозяина [19].

Механизмы транскрипции и репликации РНК флебовирусов

Остановка транскрипции (–)участка РНК S определяется межгенным сигналом терминации. Похожие сигналы терминации находятся в 5′-концевой области РНК M и РНК L. В результате синтезируются кэпированные, но неполиаденилированные (и, следовательно, не такие стабильные, как клеточные мРНК) субгеномные РНК [18]. Также было показано [17], что в инфицированных клетках наблюдается ранняя экспрессия белка NSs, к тому же при детальном анализе состава вирионов обнаружили, что в вирусную частицу может упаковываться как три геномных цепи, так и еще три антигеномных цепи. Считается, что антигеномная РНК S присутствует в вирионе для осуществления ранней транскрипции мРНК, кодирующей NSs, поскольку этот неструктурный белок способен регулировать клеточные процессы, и чем раньше он начнёт работать в зараженной клетке, тем интенсивнее будет протекать вирусная инфекция.

Жизненный цикл флебовирусов

Жизненный цикл состоит из следующих стадий (рис. 3):

Основные этапы цикла флебовируса

Рисунок 3. Схема, демонстрирующая основные этапы цикла флебовируса

Тосповирусы и тенуивирусы

Название рода Tospovirus происходит от сокращения названия вируса пятнистого увядания томатов (tomato spotted wilt virus, ТоSWV), впервые выделенного в 1930 году из зараженных растений томата. Этот вирус имеет очень широкий спектр хозяев и важное хозяйственное значение, борьба с ним ведется, в основном, за счет контроля численности трипсов.

Структура генома тосповирусов и тенуивирусов

Представители родов Тospovirus и Tenuivirus (тенуивирусы близки к тосповирусам, но не имеют липидной оболочки) являются единственными известными РНКвирусами растений с двусмысленным геномом [23]. Геном тосповирусов представлен тремя РНК-сегментами: большим, средним и малым (L, M, S). РНК L кодирует репликазу L. РНК S, подобно таковой у флебовирусов, кодирует белок нуклеокапсида N в (–)области и неструктурный белок NSs в (+)области. Эти области не пересекаются, они разделены межгенным некодирующим участком, содержащим сигналы терминации транскрипции. М-сегмент генома имеет принципиально отличную от РНК М флебовирусов структуру, являясь амбисенсной РНК. РНК М тосповирусов имеет область (–)полярности, в которой находится последовательность, кодирующая мРНК GnGc — предшественника поверхностных гликопротеинов, а также участок (+)полярности в 5′-области, кодирующий белок межклеточного транспорта NSm. Эти последовательности также разделены межгенным участком (рис. 4). Механизмы транскрипции и репликации РНК этих вирусов сходны с таковыми у флебовирусов [18].

Схема структуры генома тосповирусов

Рисунок 4. Схема структуры генома тосповирусов. Отмечены участки РНК, обладающие (–)- и (+)полярностью. Пунктирной линией обозначен сайт протеолиза белкового продукта.

Отдельного внимания заслуживает неструктурный белок, закодированный в S-сегменте генома тосповирусов — NSs. Основной его функцией является супрессия противовирусного сайленсинга РНК, системы малых интерферирующих РНК [5], [24], распознающих вирусные РНК, что приводит к деградации последних [25]. Логично предположить, что синтез такого белка должен происходить как можно раньше, поэтому, возможно, по аналогии с белком NSs флебовирусов, ранняя транскрипция такой последовательности происходит в результате наличия в вирионе, помимо геномной цепи РНК S, еще и соответствующей ей антигеномной.

Вирусы с двусмысленным РНК-геномом из семейства Arenaviridae

Помимо семейства Bunyaviridae, амбисенсные РНК имеют представители семейства Arenaviridae. Аренавирусы являются таксономической группой вирусов позвоночных с сегментированным двусмысленным РНК-геномом. Вирусы, инфицирующие млекопитающих, определены в род Mammarenavirus, а заражающие рептилий — в роды Reptarenavirus и Hartmanivirus [26].

Вирионы аренавирусов, как и рассмотренных выше буньявирусов, плеоморфны, а их диаметр может варьировать от 40 до 200 нанометров в зависимости от вида, однако и частицы одного вида могут заметно различаться по размерам [27]. Границы вириона представлены липопротеидной оболочкой — производной клеточной мембраны, модифицированной равномерно распределёнными гликопротеиновыми комплексами (гетеродимерный гликопротеин GP1/GP2). Гликопротеины синтезируются в виде предшественника, который разрезается примерно пополам клеточной протеиназой на рецептор-распознающую субъединицу GP1 и трансмембранную субъединицу GP2. Последняя ответственна за слияние мембран при проникновении в цитоплазму [28]. В вирионе гликопротеины ассоциированны с лежащими на внутренней стороне мембраны молекулами матриксного белка Z, выстилающего внутреннюю поверхность мембраны, и белка нуклеокапсида N. Белок N способен связываться с РНК, распознавать кэп и ингибировать интерфероновый ответ. Структурный белок Z в клетке выполняет ряд функций (в том числе ингибирование трансляции клеточных мРНК и подавление апоптоза), являясь фактором созревания вирусных частиц (отвечает за инициацию сборки вирионов и за их отпочковывание).

Во время сборки вирусных частиц при формировании внешней оболочки иногда происходит захват субъединиц клеточных рибосом, по всей видимости, не играющих роли в вирусной инфекции (рис. 5).

Схематичное изображение структуры вириона аренавирусов

Рисунок 5. Схематичное изображение структуры вириона аренавирусов

Значительная часть представителей семейства вызывает хронические и, как правило, бессимптомные инфекции у грызунов. При контакте человека с такими вирусами может развиваться острая и тяжелая инфекция, часто — геморрагическая лихорадка (например, в случае инфекции вирусом лихорадки Ласса, LasV). Вирус лимфоцитарного хориоменингита (LCMV), первый выделенный аренавирус, является нейроинвазивным. Попав в организм человека (например, через выделения грызунов), вирионы с током крови преодолевают гематоэнцефалический барьер центральной нервной системы и вызывают воспаления мозговых оболочек [29].

Структура генома аренавирусов

Схема структуры генома аренавирусов

Рисунок 6. Схема структуры генома аренавирусов. Отмечены участки РНК, обладающие (–)- и (+)полярностью. Пунктирными линиями обозначены сайты протеолиза белковых продуктов.

РНК L на (–)участке несет последовательность, комплементарную гену репликазы L, и рамку матриксного и регуляторного белка Z на (+)участке в 5′-концевой части геномной РНК.

РНК S кодирует белок нуклеокапсида N в области (–)полярности и содержит рамку считывания GP1GP2 — предшественника поверхностных гликопротеинов GP1/GP2 (также в 5′-концевой части геномного сегмента).

Транскрипция и репликация генома аренавирусов

Переключение на репликацию связано с наличием белка N: когда его накапливается такое количество, что он начинает покрывать строящиеся цепи РНК, это, вероятно, влияет на конформацию репликазы и приводит к проскоку сигналов терминации транскрипции в виде межгенных шпилек. РНК S при репликации накапливается в больших количествах, так как нужно много копий белка нуклеокапсида, а также гликопротеинов (для экспрессии последних необходим предварительный синтез антигеномной РНК).

Заключение

Такая необычная организация двусмысленных геномных сегментов является интересным способом представления двух кодирующих последовательностей в одном геномном сегменте. На примере вирусов с двусмысленными РНК-геномами заметно, насколько изобретательной может быть эволюция вирусных РНК. Поскольку вирусы с двусмысленными РНК-геномами до сих пор удерживают определенную нишу, можно утверждать, что такой способ кодирования обладает некоторыми преимуществами по сравнению с более привычным для родственных вирусов способом, использующим только (–)РНК-сегменты.

Как возникли амбисенсные РНК и почему поддержались отбором, до сих пор остается одной из загадок современной вирусологии.

Благодарности от автора

Я благодарю доктора биологических наук, профессора кафедры вирусологии биологического факультета МГУ им. М.В. Ломоносова Аграновского Алексея Анатольевича за интересные и содержательные лекции по молекулярным процессам РНК-вирусов и вдохновение на написание данной статьи. Также выражаю благодарность художнику Андрею Занкевичу, чьи наглядные и яркие иллюстрации украшают данную статью.

– Юлия Владимировна, что такое обонятельные галлюцинации, какими они бывают?

– Почему такие галлюцинации появляются после коронавирусной инфекции?

– Такой побочный эффект объяснили тем, что SARS-CoV-2 — это нейротропный вирус. Причиной искажения запахов всегда служит или повреждение обонятельных рецепторов, или нарушенная идентификация запахов корой головного мозга.

– Каков риск, что после болезни человек столкнется с обонятельными галлюцинациями? Можно ли как-то снизить эту вероятность?

– По мнению врачей, после выздоровления от COVID-19 многие сталкиваются с обонятельными галлюцинациями и паросмией. Чаще всего это происходит с людьми, в период болезни на какое-то время полностью терявшими обоняние. Порой у тех, кто ранее столкнулся с потерей обоняния и вкусовых ощущений, этот симптом появляется спустя недели и даже месяцы после выздоровления.

COVID-19 – весьма коварный недуг. Он затрагивает все органы, в том числе нервные окончания, из-за чего восприятие ароматов становится искаженным. Проявляется это не у всех переболевших, и причину этой избирательности до сих пор не удалось окончательно установить. Существует гипотеза, что обонятельные галлюцинации – это один из этапов восстановления нервной системы после болезни. Когда после фиксации первых клинических случаев пройдет не менее трех-пяти лет и можно будет получить достоверные статистические данные, мы, возможно, сумеем ответить на вопрос, как снизить риск паросмии и фантосмии.

– Пройдут ли галлюцинации и как скоро?

– По данным итальянских ученых, после COVID-19 нормальное функционирование обонятельных рецепторов восстанавливается в среднем за восемьдесят суток. Их коллеги из Германии говорят о шестидесяти сутках. А вот искажения из-за нарушенной функции мозговой коры могут продолжаться сколь угодно долго. Для людей, у которых вирус затронул корковую часть анализатора, на возвращение к привычным ощущениям может уйти до полугода. Средний срок возвращения запахов для них – один-два месяца.

– Есть ли какие-то рекомендации для восстановления нормального обоняния и избавления от галлюцинаций?

– Проблема крайне актуальна, но ученые пока не нашли для нее оптимального решения. Во всем мире продолжают изучать остаточные явления и особенности постковидной реабилитации.

Доктор медицинских наук, врач-инфекционист Наталья Воробьева говорит, что восстановление обонятельных и вкусовых нейронов и их рецепторов займет некоторое время, и это определяется процессами нейропластичности.

Чтобы вернуть обоняние, специалисты благотворительной организации AbScent, поддерживающей людей с паросмией и аносмией, советуют тренировать его: ежедневно по 20 секунд вдыхать эфирные масла розы, гвоздики и лимона. Нос и мозг будут словно заново знакомиться с запахами и запоминать их. Не забывайте о спокойствии и психическом здоровье: медитируйте, испытайте разные практики релаксации, обратитесь к психологу или психотерапевту. Иначе формируется замкнутый круг: значительные нарушения обоняния приводят к сильному стрессу, а стресс в свою очередь ухудшает самочувствие.

– К какому врачу идти, если галлюцинации не проходят?

– Как правило, если обоняние частично восстановилось, есть хороший прогноз для восстановления обоняния в целом. Если обонятельные нарушения оказались устойчивыми, надо обратиться к отоларингологу и неврологу, чтобы исключить другие вероятные причины фантосмии или паросмии.

При затяжном реабилитационном периоде пациенту могут выписать курс лечения, направленный на восстановление периферических нервов. Как правило, он включает антихолинэстеразные, специальные витаминные препараты и препараты, улучшающие микроциркуляцию.

– Опасно ли игнорировать обонятельные галлюцинации?

– Конечно, опасно! Ведь галлюцинации после COVID-19 часто бывают отсроченными, и люди иногда принимают симптомы другой болезни за осложнения перенесенной ранее коронавирусной инфекции.

Наиболее частой причиной обонятельных галлюцинаций считается поражение головного мозга. Оно может быть вызвано черепно-мозговыми травмами, онкологическими заболеваниями, поражающими тот или иной участок мозга, инсультами, нейроинфекцией.

Среди других неблагоприятных факторов отмечают:
• психические заболевания (такие как шизофрения, расстройство личности);
• эпилепсию;
• интоксикацию организма;
• влияние сильнодействующих лекарственных препаратов, психотропных или наркотических средств;
• повреждения слизистой оболочки носовых пазух;
• проблемы с зубами;
• заболевания органов желудочно-кишечного тракта.

Есть немало людей, которые в течение долгих лет закрывают глаза на обонятельные иллюзии, не задумываясь о грозящей опасности.

Существует три основных способа определить, чем вызван симптом:
• МРТ головного мозга
• КТ головного мозга
• ЭЭГ


Для справки:

Читайте также: