Что за эпидемиологически опасный вирус

Обновлено: 19.04.2024

Когда-то давно одна из веток в популяции гоминид, все больше отделяясь, стала постепенно обретать морфологию и образ жизни человека нынешнего, – так сказать, разумного. Но история вирусов началась задолго до нашей. Задолго до того, как наш мозг развился к способности задавать вопросы. И задолго до того, как мы стали сначала догадываться, а потом и понимать, – от чего, собственно, болеем и умираем. Сегодня на одной планете с нами живет неисчислимое количество вирусов; по некоторым оценкам, их здесь сформировалось более ста миллионов разновидностей (представляете себе, например, сто миллионов человеческих рас?), и если каким-то чудом пересчитать все вирусы поштучно, то численность этой популяции значительно превзойдет состав всех прочих популяций, вместе взятых, включая даже бактерии и насекомых. Вирусы фантастически разнообразны во всех аспектах своего существования, особенно в размерах, форме и предпочтениях. А мы до сих пор не решили даже, можно ли их считать живыми.

Любое живое существо на Земле, – во всей биомассе от бактерий и простейших до слона и баобаба, – заражается теми или иными вирусами. Некоторые вирусы колонизируют представителей какого-то одного вида, другие не столь привередливы. К человеку абсолютное большинство из них относится нейтрально. Но все они, – внутриклеточные паразиты, которые перестраивают геном зараженной клетки на свой лад, на репликацию все новых и новых своих копий. Активно существовать и размножаться вне живой клетки вирусы не могут. Пассивное же их существование и, вообще, этот странный вирусный мир, где даже гравитация работает как-то не так, нам представить довольно сложно.

В целом, при заражении наша судьба зависит от общего состояния здоровья и актуального иммунного статуса, от инфицирующей дозы (численность попавшей в организм колонии) и поведения самого вируса. Клетки-то не просто инфицируются; какое-то время они работают как фабрика вирусов, а при разрушении мембраны неизбежно погибают, и если это происходит в массовом порядке, да в жизненно важном органе, который не восстанавливается…

Для Homo sapiens’а, который привык считать себя центром мироздания и венцом творения, Великая вирусная война как-то… оскорбительна, что ли. Действительно, в ней ведь нет ничего личного. Вообще ничего. Враг попросту не знает о том, что он – враг, что существуем такие себе высокоразвитые мы, что нам не нравится болеть и умирать. Когда на человека нападал опасный хищник-людоед (например, другой Homo sapiens), это всегда была какая-то схватка, какая-то ярость, хоть какие-то шансы. А этого врага даже не увидишь в лицо, потому что лица у него нет. Ему нечем и незачем нас ненавидеть, нечем о нас знать и думать, нечем испытывать к нам аппетит. Его и самого-то, врага этого, практически нет, настолько он мал. Наш организм для него – нечто вроде Галактики, с которой из-за разности в масштабах невозможно пребывать в каких-то личных отношениях. Мы – просто мир обитания, место и способ существования. Вот они и существуют в своем измерении, пока им существуется. Кстати говоря: когда мы своими бензопилами, заводами и фабриками, потребностями и отходами уничтожаем породившую нас природу, – мы ведь делаем это не потому, что мы плохие, ненавидим свою планету и целенаправленно торопимся довести ее до нежилого состояния. Вовсе нет. Просто вот такой у нас получается course of events, как сказал бы англичанин. Такой ход событий, курс нашего (паразитического, выходит?!) развития. И, кстати, не случайно мы в последние годы все чаще сравниваем с вирусами самих себя, – в пересчете на масштабы, конечно. Сравнив, неприятно удивляемся: а и правда, много ведь общего. Только мы, пожалуй, поагрессивней будем, подеструктивней, покатастрофичней для своей экосистемы в целом. И природа, возможно, пытается сдерживать нас с помощью мелких и мельчайших, – есть и такая теория. Именно сдерживать. Если бы от нас по-настоящему хотели избавиться, уже давно избавились бы, так что полное вымирание нам, видимо, не грозит, – во всяком случае, вымирание от инфекционных болезней. Это по отдельности мы теперь стали нежны и уязвимы, а как вид мы остаемся очень цепкими, живучими, плодовитыми и настырными. Даже теряя сотни миллионов, быстро восстанавливаемся в миллиардах. К тому же известно, что ни один паразит не заинтересован в том, чтобы уничтожить своих хозяев как вид, вывести его вчистую. Даже если этот вид опасен для всех.

А кто из них по-настоящему опасен для нас?

Вакцины уже есть, но никаких ощутимых результатов пока нет, да и вообще не очень понятно, как там у нас обстоят дела с иммунитетом к коронавирусу.

В целом, пока совсем не похоже, что пандемия идет (или пойдет в ближайшем будущем) на спад. Более вероятным представляется дальнейшее развитие.

Учитывая все вышесказанное, наверное, лучше бы нам понимать, с чем мы имеем дело.

Далее – о двенадцати самых опасных для человека вирусах (по версии экспертов ресурса Live Science).

Марбургский вирус

Вирус Эбола

Широко известный вирус, вызывающий геморрагическую лихорадку. Ее клинические проявления и пути распространения в целом подобны описанным выше; сам вирус также имеет генетическую структуру, аналогичную Марбургскому вирусу, однако представляет собой отдельный серотип (т.е. вызывает несколько отличный иммунный отклик). По состоянию на 2018 год было известно шесть видов эболавируса, каждый из которых имеет собственную специфику. Наиболее опасным является заирский штамм; эпоним Эбола – название реки в Заире (ныне Демократическая республика Конго), где этот вид впервые был идентифицирован.

Вирус бешенства

Вирус иммунодефицита человека

Заболевание, известное сегодня во всем мире как AIDS (СПИД, синдром приобретенного иммунодефицита), появилось и стало объектом исследований с начала 1980 годов, – сначала на выборках гомосексуалистов и инъекционных наркоманов, затем в других категориях населения (в частности, у пациентов, получавших переливание препаратов крови). Инфекционная этиология предполагалась с самого начала; в 1985 году возбудитель был выделен и идентифицирован как ВИЧ, вирус иммунодефицита человека. ВИЧ относится к семейству ретровирусов, отличается продолжительным инкубационным периодом и, как следует из названия, приводит к постепенному ослаблению иммунной системы. СПИД – это терминальная стадия ВИЧ-инфекции, когда организм становится абсолютно беззащитным перед любыми, в том числе условными патогенами, – как внешними, так и внутренними (например, раковыми клетками).

Современные молекулярно-генетические исследования свидетельствуют о том, что правирус иммунодефицита появился в животном мире Африки сто с небольшим лет назад, и, неоднократно мутировав, за несколько десятилетий эволюции обрел способность инфицировать и вызывать заболевание у человека. Быстрому распространению вируса сначала в африканских странах, а затем и по всему миру, способствовал ряд социально-экономических факторов. По оценкам ВОЗ, с момента идентификации ВИЧ-СПИД различные типы и подтипы вируса унесли жизни более чем 32 миллионов человек, что является наибольшими потерями от инфекционных болезней на современном этапе. До 95% новых случаев заражения приходится на беднейшие страны; более двух третей всех инфицированных проживает в Африканском регионе ВОЗ (каждый двадцать пятый взрослый там является, как минимум, носителем).

Вирус оспы

Вирус характеризуется… вернее, характеризовался, поскольку натуральная оспа теперь уже относится к побежденным болезням: естественного вируса оспы в природе не существует. Он характеризовался очень высокой контагиозностью (заразностью), вирулентностью (способностью вызывать заболевание у носителя) и летальностью, – что в совокупности делало оспу одной из опаснейших инфекционных болезней в истории человечества. Эволюция вируса Variola насчитывает десятки тысяч лет, но способность инфицировать человека, как считают современные исследователи, у вируса развилась не ранее, чем две тысячи лет назад; произошло это, видимо, на Ближнем Востоке или в Северной Африке. В начале нашей эры от эпидемий черной оспы страдала, прежде всего, Европа и Азия (Китай, Корея, Индия, Япония), где у выживших вырабатывался устойчивый иммунитет. В тех регионах, куда вирус был занесен позднее, эпидемии носили катастрофический характер: например, 90% коренного населения Америки было уничтожено не мушкетами и винчестерами, а вирусом оспы, и затем уже другими инфекциями, вирусными и бактериальными.

Оспа побеждена, теперь это лишь история, и мы очень надеемся, что никто и никогда из землян уже не будет инфицирован этим вирусом.

Тем не менее, продолжаются работы по созданию противооспенных вакцин; совсем недавно появился даже этиотропный препарат. Уместно повторить: никогда и ни в чем нельзя быть уверенным до конца (даже в высшей защите, которая была и в Ухане), если речь идет о вирусах. К сожалению, есть все основания опасаться, – особенно в нашем неспокойном мире с его терроризмом и ползучими идеями о биологическом оружии. Попади вирус оспы в беспечные, алчные или, хуже того, в недобрые руки (особенно если эти руки окажутся еще и умелыми по части генетической модификации) – и последствия будут… в общем, лучше не думать. С другой стороны, а как об этом не думать, если в 2014 году в одном из американских Национальных институтов здоровья кто-то из сотрудников в очередной раз открыл никем не охраняемый лабораторный холодильник, вдруг заинтересовался давно и невостребованно стоящей пробиркой, вынул ее (слава богу, со всеми необходимыми предосторожностями) – и вот, пожалуйста: пробирочка с черной оспой, забытая, как потом оказалось, еще в 50-е годы. А этот вирус, в отличие от многих других, очень устойчив, и за все шестьдесят лет он так и не утратил жизнеспособность.

Этот образец уничтожен. Но действительно ли он был последним?

Хантавирус

Вирус изолирован и описан Хо Вангом Ли в 1976 году. В дальнейшем было выделено множество разновидностей хантавируса, которые условно можно разделить на две крупные группы – евразийскую и американскую.

Первая группа, широко распространенная в Азии и Европе (в том числе в 61 субъекте Российской Федерации по обе стороны от Урала), при инфицировании человека вызывает ГЛПС, геморрагическую лихорадку с почечным синдромом. Это наиболее частая из всех острых природно-очаговых инфекций. Протекает с высокой температурой, кровотечениями, серьезным поражением почек и рядом тяжелых сопутствующих дисфункций в различных системах организма. Летальность выше в азиатских регионах (до 10-12%).

Все хантавирусы переносятся грызунами и, реже, рукокрылыми. Человек инфицируется при вдыхании, попадании с пищей или при прямом контакте с продуктами жизнедеятельности либо иным биоматериалом зараженного грызуна. Передача от человека к человеку зафиксирована лишь в единичных случаях в Южной Америке.

Этиотропные средства на данном этапе находятся в стадии разработки, вакцины – в стадии клинических испытаний и внедрения. Лечение на сегодняшний день всегда паллиативное, сугубо симптоматическое. Эпидемиологические данные по хантавирусным инфекциям постоянно отслеживаются и уточняются соответствующими службами.

Вирус гриппа

Но даже в те годы, когда сезонная эпидемия гриппа вызывается не самым агрессивным штаммом, она протекает тяжело у нескольких миллионов человек и уносит от 300 до 500 тысяч жизней. Это при летальности менее одного процента для гриппа А. Грипп В более смертоносен, но он реже приобретает размах эпидемий и пандемий.

Первые упоминания или описания похожих на грипп болезней, явно инфекционных и явно респираторных, встречаются еще до нашей эры, – у Гиппократа, например. Первым достоверным описанием пандемии принято считать источник ХVI века.

Клиническая картина неспецифична и, в принципе, одинакова для всех ОРВИ. Точный диагноз может быть установлен только лабораторно, с помощью серологического анализа или полимеразной цепной реакции, однако в абсолютном большинстве случаев сезонный грипп диагностируют клинически, с учетом актуальной эпидемиологической обстановки в регионе.

Заболевание разрешается в течение 7-10 дней и, как правило, не требует госпитализации. Лечение до сих пор было сугубо паллиативным и/или косвенным, иммуностимулирующим, хотя в последние годы сообщалось о создании нескольких эффективных этиотропных противогриппозных препаратов.

Основное средство профилактики и сдерживания эпидемий гриппа – вакцинация, поскольку иммунитет является стойким и достаточно надежным. Основной путь передачи инфекции, как и у всех ОРВИ, – воздушно-капельный.

Однако грипп – это все-таки вирусная инфекция, а вирусы, повторим вновь и вновь, опасны своей непредсказуемостью и своими осложнениями.

К гриппу это относится, пожалуй, в самой полной мере. Вирусы Influenzaviridae, особенно тип А, чрезвычайно изменчивы, они постоянно ищут и находят способы обходить иммунитет (в том числе созданный вакциной для прошлогодних штаммов), поэтому нередко мутации оказываются весьма опасными.

Что касается осложнений, то наиболее тяжелые из них развиваются со стороны легких, печени, сердца, периферической и центральной нервной системы. Наибольшая летальность наблюдается в самой младшей и самой старшей возрастных категориях, когда иммунная система либо еще недостаточно сформирована, либо уже ослаблена.

Вирус денге

Вирус денге может колонизировать организм приматов (включая человека) и летучих мышей, а главным фактором трансмиссии служат кровососущие комары Aedes, выступающие также переносчиками многих других инфекционных заболеваний. Поэтому в эндемичных по денге странах борьба с размножением комаров является одной из важнейших государственных задач.

Тяжелый вариант денге протекает в форме геморрагической лихорадки, чаще встречается у многократно инфицированных жителей регионов, наиболее неблагополучных в эпидемиологическом плане.

Летальность при типичной форме лихорадки денге – порядка 2-2.5%, но геморрагическая форма убивает до половины заболевших. Ежегодная заболеваемость составляет 50-500 миллионов новых случаев, до полумиллиона больных госпитализируются и до 20000 человек умирают. Столь высокие показатели обусловлены тем, что в эндемичной зоне земного шара проживает примерно 40% человечества, и в последние годы специалисты ВОЗ с тревогой говорят о том, что по мере глобального потепления это опасное заболевание неизбежно будет подниматься на север. Разработанные к настоящему времени вакцины рекомендуется применять лишь у ранее уже инфицированных и переболевших; иммунная защита вырабатывается лишь к одному типу лихорадки, тогда как к другим серотипам человек остается восприимчивым, – и это главная проблема в аспекте иммунизации. Лечение симптоматическое, этиопатогенетической терапии пока не существует.

Ротавирус

Лечение симптоматическое, основной задачей выступает регидратация и дезинтоксикация. Доступны вакцины. Этиотропных препаратов пока нет.

В эпидемиологическом плане ротавирусные инфекции являются глобальной проблемой: они широко распространены по всему миру. Заболеваемость оценивается на уровне 25 миллионов новых случаев в год, летальность составляет порядка 3% с большим разбросом, – от 600 до 900 тысяч человек ежегодно умирают, из них до полумиллиона – дети в возрасте до пяти лет. Тяжелые формы течения с летальным исходом регистрируются, в основном, в регионах со слаборазвитой медициной, однако встречаются и в развитых странах, т.е. опасность ротавирусов не следует недооценивать в любом случае.

Вирус SARS-CoV

Судя по заголовкам пунктов, статья становится всё актуальнее, не так ли?

Вирус MERS-CoV

Вспышка началась осенью 2012 году в Саудовской Аравии, затем охватила соседние страны; весной 2015 года бетакоронавирус (родовое название) был завезен в Южную Корею, где уже к осени очаг, – а это была самая серьезная вспышка за пределами Ближнего Востока, – удалось локализовать и подавить.

Бетакоронавирусный респираторный синдром характеризуется тяжелым течением, выраженной лихорадкой, кашлем, затруднениями дыхания и общей гипоксией; в случаях развития тяжелой вирусной пневмонии наблюдается прогрессирующая дыхательная и, нередко, почечная недостаточность, – что и приводит к летальным исходам.

Вирус SARS-CoV-2

Ну вот и добрались. В своих публикациях мы обещали обсудить самые наболевшие вопросы, связанные с продолжающейся в настоящее время пандемией коронавирусной болезни CoViD-19 (это официальное и единственно корректное международное наименование). Ситуацию с этим заболеванием мы отслеживаем и освещаем в новостной ленте чуть ли не с самого начала, и мы готовы говорить об этом.

Обратите внимание на редакторский комментарий к ней, датированный мартом 2020 года. Его мы переведем полностью:

Мы не знаем. В штате Лахта Клиники пока, к сожалению, нет высококвалифицированных специалистов в области молекулярной генетики. И было бы верхом безответственности занимать какую бы то ни было позицию и поддерживать какое бы то ни было мнение, не имея на то достаточной информации (вполне возможно, она и впрямь когда-нибудь всплывет) и достаточной компетентности.

Сейчас вообще не это главное.

Пора, кажется, действовать осмотрительно, умно, информированно и, главное, коллективно.

Мы сейчас на осадном положении. Мы все сейчас в одной лодке, – понимаете? – весь земной шар, все человечество.


Если обратиться к статистике, то инфекции – самая частая причина обращения за медицинской помощью. Спровоцировать их могут различные патогены: вирусы, бактерии, грибки и др. Вирусы и бактерии могут стать причиной клинически схожих инфекций, но ситуации требуют разного лечения. Чем бактериальная и вирусная инфекция отличаются?

Основы микробиологии

Бактерии – одноклеточные микроорганизмы, поражающие разнообразием. Они имеют множество форм и особенностей, некоторые из них способны выживать в немыслимых условиях.

Человеческий микробиом насчитывает сотни видов бактерий и каждый выполняет определенные функции, например, сдерживают рост патогенных микроорганизмов, поддерживают обменные процессы и многое другое. Известно, что лишь 1% бактерий вызывают болезни.

Вирусы – еще меньше чем бактерии, для нормальной жизнедеятельности нуждаются в клетках хозяина, где они могут жить и развиваться. Некоторые вирусы могут уничтожать клетки, где они развиваются.

Способы передачи

В путях передачи инфекций много общего. Основной путь передачи — от человека к человеку при близком контакте, например, при поцелуях.

Контакт с биологическими жидкостями человека, например, во время полового акта, при кашле и чихании. Так передаются не только вирусные инфекции, например, ВИЧ, ОРВИ и новая коронавирусная инфекция, но и бактериальные. Некоторые вирусы и бактерии передаются при соприкосновении с зараженными поверхностями, где вирусы и бактерии живут в биологических средах. Еще один возможный путь передачи — при укусах животных и насекомых.

Клиническая картина

Вирусы и бактерии вызывают схожие болезни по симптомам: лихорадка, насморк, кашель, головная боль, слабость и снижение работоспособности. Но при детальном рассмотрении и изучении найдется и масса отличий, которые заметит только врач.

Вирусные инфекции распространены в большей степени, поэтому, при появлении симптомов, часто предполагают именно ее. Дифференцировать одно от другого помогают следующие отличия и критерии:

  • Инкубационный период у вирусов более короткий, в сравнении с бактериями. Например, у бактериальных инфекций – симптомы появляются спустя 7-10-14 дней после заражения, а иногда и больше. Вирусные инфекции проявляются через 1-5 дней после заражения.
  • Клиническая картина вирусных инфекций более четкая, все характерные симптомы проявляются буквально сразу или между их появлением короткий промежуток времени. Если говорить о бактериальной инфекции, то они развиваются медленнее, но с полным набором симптомов.

Вирусные инфекции могут поражать здорового человека, а вот бактериальные развиваются на фоне ослабленного иммунитета или же являются осложнением перенесенного заболевания.

Конечно, главное отличие – способы и методы специфического лечения. Антибиотики никак не действуют на вирусы, а противовирусные на бактерии.

Особенности диагностики

В медицине существует такое понятие, как дифференциальный диагноз – методы диагностики, которые помогут отличить одно заболевание от другого со схожей клинической картиной. Бактериальные и вирусные инфекции способны вызывать респираторные заболевания, и чтобы определить причину, проводят дифференциальный диагноз – анализ симптомов.

Например, выделения из носа при вирусных инфекциях жидкие, прозрачные, часто носят серозный характер. А вот при бактериальных – густые, могут иметь желтый или зеленый оттенок, что говорит о наличии гнойного процесса.

Естественной реакцией организма на проникновение вируса или бактерии является повышение температуры тела. При вирусной инфекции температура повышается резко и быстро,может держаться несколько дней. При бактериальной инфекции — постепенно и начало болезни сложно проследить.

При вирусных инфекциях сложно определить область поражения. Пациенты отмечают, что болит сразу все: горло, грудь, мышцы, голова. Однако при бактериальной инфекции легко определить область поражения: болит горло при ангине, боль в груди при бронхите, боль при мочеиспускании при циститах и др.

Длительность болезни также варьируется. Например, при вирусной инфекции улучшение наступает на 5-7 день болезни, а вот бактериальные инфекции протекают длительнее.

Особенности диагностики

В большинстве случаев, поставить предварительный диагноз удается на основе жалоб, внешнего и инструментального осмотра. Некоторые вирусные и бактериальные инфекции имеют весьма специфичные симптомы. При постановке диагноза учитывают еще и данные об эпидемиологической обстановке.

Но все же чаще при бактериальных инфекциях требуются дополнительные методы обследования, в том числе и лабораторные. В соответствии с этим, врач обязательно назначает следующие анализы:

  • общий анализ крови;
  • изучение слизи, выделяемой мокроты, других выделений и мазков;
  • анализ мочи, стула;
  • соскоб кожи;
  • изучение спинномозговой жидкости при тяжелом течении болезни.

При бактериальных инфекциях такие исследования проводятся с целью определения вида возбудителя, а также его антибиотикочувствительности.

Особенности лечения

Вирусные и бактериальные инфекции – совершенно разные диагнозы, имеющие особенности клинического течения, а также лечения. И, в случае ошибки при назначении лечения, повышается вероятность осложнений, развития основного заболевания. Иногда это представляет угрозу для здоровья и жизни.

Лечение бактериальных инфекций

Антибиотики – группа лекарств, назначаемых исключительно при лечении бактериальных инфекций. Существует разные виды антибиотиков, которые направленно действуют на бактерии определенного класса или же широкого спектра. При формировании острых заболеваний с серьезным и быстрым течением могут назначаться антибиотики широкого спектра действия, а после, когда результаты по определению антибиотикочувствительности дадут результат, могут назначаться узкоспециализированные лекарства.

Неконтролируемый, необоснованный прием антибиотиков, когда пациент бросает их пить раньше срока, это может привести к формированию антибиотикоустойчивой флоры и в дальнейшем лечение окажется неэффективным.

Лечение вирусных инфекций

Для многих вирусных инфекций нет специфического лечения. Обычно разрабатывается симптоматическое, направленное на устранение симптомов, снижения температуры. Но все же лечение определяется конкретным вирусом и болезнью, которое он спровоцировал.

При вирусных инфекциях врач назначает противовирусные препараты, которые подавляют жизненный цикл некоторых вирусов.

Ну и главное, стоит помнить, что некоторые серьезные бактериальные и вирусные инфекции можно предотвратить при помощи вакцинации.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.


Обзор

Реконструкция оболочки вируса Зика. Карта поверхности вириона (разрешение — 3,8 Å), полученная с помощью программной обработки криоэлектронных микрофотографий, позволяет предположить, как именно вирус поражает те или иные клетки, и вычислить потенциальные мишени для терапии или компоненты для вакцины. Симметрически неэквивалентные мономеры вирусного гликопротеина Е окрашены разными цветами.

Автор
Редакторы

В эпоху глобализации из-за свободного перемещения людей по миру проникновение ZIKV в новые регионы становится неизбежным. Там он может длительно сохраняться, передаваясь от животных к животным и изредка вызывая мелкие вспышки болезни у людей, либо циркулировать в человеческой популяции. Угроза, исходящая от любого нового заболевания, зависит от его эпидемиологии, клинических особенностей и способности медицинского сообщества эффективно его контролировать (рис. 1). И сейчас огромные усилия брошены на изучение особенностей вируса Зика и механизмов его воздействия на человеческое здоровье, в особенности — на здоровье беременных [1].

Операция по уничтожению комаров в Бразилии

Рисунок 1. Сотрудник муниципальной службы города Ресифи (Бразилия) во время операции по уничтожению комаров Aedes aegypti, переносящих вирус Зика.

Хронология событий в Зика-эпопее

Микрофотография вируса Зика

Рисунок 2. Микрофотография вируса Зика, полученная с помощью трансмиссионного электронного микроскопа (ТЭМ). Вирусные частицы размером 40 нм окрашены синим цветом.

В Энтеббе расположен Угандийский исследовательский институт вирусологии (Uganda Virus Research Institute, UVRI), чьи сотрудники в 1947 году при изучении желтой лихорадки в лесу Зика выделили из крови макаки до тех пор неизвестный флавивирус. Ученые описали его как вирус Зика (рис. 2). А на следующий год обнаружили вирус в комарах Aedes africanus [3].

В 1952 году вирус выявили уже у людей — в Уганде и Танзании, а в 1954 году — в Нигерии. ZIKV четко ассоциировался с лихорадкой и кожной сыпью, в связи с чем его окончательно объявили патогенным для человека. Тогда же, в 50-е, экспериментальным путем с участием добровольцев установили основного переносчика вируса — комара Aedes aegypti, обычного переносчика желтой лихорадки, лихорадки денге и чикунгуньи. Позже компанию ему составили и другие виды, в том числе Aedes albopictus [1].

В 60–80-е годы легкие формы инфекции выявляли в странах Африки, Азии и в Индии. Длительное присутствие ZIKV в этих регионах подтверждалось обнаружением вируса в комарах и нечеловекообразных обезьянах. У людей до 2007 года фиксировали не так много клинических случаев, и потому система здравоохранения не спешила бить тревогу [4].

Первую крупную вспышку лихорадки Зика зарегистрировали в 2007 году на острове Яп в тихоокеанских Федеративных штатах Микронезии, где инфицированными оказались 73% населения, однако симптомы у подавляющего большинства были умеренными и недолгими. Следующая вспышка охватила в 2013–2014 годах Французскую Полинезию, где заразились 66% жителей. Одновременная волна заболеваемости синдромом Гийена-Барре подняла вопрос о его ассоциации с вирусом Зика: тогда зафиксировали 42 случая — а это на порядок больше, чем в 2012 году, когда синдром диагностировали у троих [1].

К 27 июля ZIKV циркулировал уже в 67 странах и территориях (рис. 3). Крупная вспышка заболевания произошла в Колумбии — там заразились 65 000 человек. У многих из них выявлялись неврологические синдромы, отмечались и случаи микроцефалии [1].

В июле 2016 зафиксировали две смерти, связанные с заражением ZIKV: в США и Пуэрто-Рико. Предполагают, что смерти вызвал не сам вирус, а обострившиеся во время лихорадки симптомы хронических заболеваний.

В середине августа 2016 года в Пуэрто-Рико ввели режим чрезвычайной ситуации, поскольку распространение вируса набирало обороты слишком быстро: за полгода (с декабря 2015 по 12 августа 2016) число заразившихся возросло с одного до 10 000 человек.

К 1 сентября в американской Флориде зарегистрировали 47 случаев заболевания, а в Майами-Бич впервые в США обнаружили трех комаров — переносчиков вируса Зика.

История распространения вируса Зика

Рисунок 3. История распространения вируса Зика по миру.

В Россию впервые вирус завезли в феврале 2016 года из Доминиканской республики. За прошедшие месяцы отмечены еще 7 случаев. Все — у туристов, вернувшихся из стран, где распространяется ZIKV: большинство — из Доминиканской республики, один — с Карибских островов. Все пациенты благополучно перенесли лихорадку.

Патогенез лихорадки Зика

Передача вируса и развитие болезни

Какие-то симптомы появляются у меньшинства инфицированных: на острове Яп лишь 19% заразившихся сообщили о симптомах, а во Французской Полинезии — 26%. Если признаки лихорадки развиваются, то в 95% случаев это происходит через 6–11 суток после заражения (рис. 4). Симптомы сходны с проявлениями других подобных инфекций [1], [4]:

  • повышенная температура тела;
  • кожная сыпь;
  • боль в суставах и мышцах;
  • головная боль;
  • конъюнктивит;
  • отеки;
  • иногда рвота;
  • общее недомогание.

Схема протекания инфекции

Рисунок 4. Схема протекания инфекции у человека и комара. В среднем признаки развиваются на шестой день после инфицирования. Примерно на девятый день начинается выработка иммуноглобулинов (антител): первым обнаруживают IgM, количество которого позже снижается одновременно с ростом концентрации IgG. Последний сохраняется в крови неопределенное время. Виремия, вероятно, возникает до появления симптомов, и ее продолжительность сказывается на риске инфицирования восприимчивых комаров, кусающих зараженного человека. После определенного инкубационного периода комар приобретает способность передавать возбудителя другим людям. Tg — интервал между эпизодами инфицирования первого и второго человека.

Виремия, или вирусемия — медицинское состояние, когда вирусы попадают в кровоток и могут распространяться по всему телу, — аналогично бактериемии, при которой в кровь попадают бактерии [9]. — Ред.

В клетку вирус Зика проникает, взаимодействуя с определенными рецепторами на ее поверхности. Основной из них — AXL. А посредником выступает рецептор TIM-1, который связывает вирусные частицы и транспортирует их к AXL, способствующему проникновению вируса в клетку. Однако TIM-1 не необходимое звено, он лишь повышает концентрацию вирионов на поверхности клетки и ускоряет их взаимодействие с AXL [10].

Когда вирус оказывается внутри клетки, она отвечает повышенной продукцией интерферонов IFN-α и IFN-β, а также хемокинов CXCL10 и CXCL11, которые играют важную роль во врожденном и адаптивном иммунитете. Эти хемокины привлекают Т-клетки и другие лейкоциты к месту воспаления и даже оказывают прямое антимикробное действие, когда их концентрация в кожных фибробластах сильно повышается [10].

Антитела к вирусу обнаруживают в крови уже на девятый день после заражения. Продолжительность иммунитета против ZIKV пока не известна, но, судя по другим флавивирусам, можно предположить, что он пожизненный [1].

Вирус Зика и беременность

Однако установить связь между ZIKV и микроцефалией оказалось достаточно сложно из-за нескольких обстоятельств:

  • остается неясным, сколько беременностей затронул вирус — инфекция ведь часто бессимптомна;
  • до сих пор нет четкого определения микроцефалии;
  • существуют другие инфекционные агенты, вызывающие микроцефалию: цитомегаловирус и Rubella virus (вирус краснухи).

Симптомы инфекции у беременных женщин такие же, как и у остальных, но пока не известно, влияет ли на частоту их проявления иммунодефицит, характерный для этого периода. Результаты исследований, касающихся неблагоприятных последствий заболевания для эмбриона, очень разнородны: где-то у 29% беременных с симптомами болезни развивался эмбрион с микроцефалией, а где-то и у 74%. Возможно, такие расхождения возникли потому, что в исследованиях участвовало недостаточное количество пациентов — меньше 50 человек. С определенной уверенностью можно утверждать лишь то, что ZIKV-ассоциированная микроцефалия разовьется у плода одной из ста инфицированных в первый триместр женщин независимо от наличия симптомов, и этот риск становится незначительным во второй и третий триместры [1].

Помимо микроцефалии с вирусом Зика сейчас связывают и другие эмбриональные патологии [1]:

  • внутричерепной кальциноз; ;
  • дефекты органа зрения;
  • гипоплазию ствола мозга; ; .

Устройство вируса Зика

Организация генома

К концу августа 2016 года в GenBank хранилось 67 полных последовательностей генома ZIKV. Вирус Зика содержит кодирующую молекулу РНК длиной 10,8 т.н. с одной ORF (открытой рамкой считывания), фланкированной нетранслируемыми участками (UTR) — 5′-UTR длиной 106 н. и 3′-UTR длиной 428 н. (рис. 5). ORF кодирует полипротеиновый предшественник, который впоследствии разделяется на три структурных белка (капсидный [С], премембранный [prM] и оболочечный [E]) и семь неструктурных (NS1, NS2A, NS2B, NS3, NS4A, NS4B и NS5). Вирусный полипротеин во время трансляции и/или после нее расщепляется вирусной протеазой, сигнальной пептидазой и неизвестной протеазой клетки-хозяина. Фрагмент pr затем, при производстве зрелых вирионов, обычно отсекается в аппарате Гольджи фурином [17].

Геном вируса

Рисунок 5. Геном вируса (представлен в виде последовательности кодируемых РНК белковых продуктов). Структурные белки окрашены серым цветом, неструктурные синим. Цифрами обозначены длины белков (число аминокислотных остатков). Стрелки указывают на места расщепления полипротеина.

Основные белки

Белок E — главный поверхностный гликопротеин флавивирусов, а неструктурные белки NS3 и NS5 — основные ферменты вирусной репродукции [17]. Структура этих белков показана на рисунке 6.

Структура главных белков ZIKV

Рисунок 6. Структура главных белков ZIKV.

Белок Е разделен на два структурных региона — стволовой и трансмембранный (на рис. 6 — stem и ТМ) — и три функциональных домена: домен I участвует в организации оболочки (рис. 7), домен II отвечает за взаимодействие мономеров, а домен III связывает клеточный рецептор.

NS3 состоит из протеазного и хеликазо-НТФазного доменов, которые осуществляют процессинг вирусного полипротеина и раскручивание структурированных участков во время синтеза вирусной РНК.

NS5 содержит метилтрансферазный домен, который метилирует 5’-CAP-участок геномной РНК, и домен РНК-зависимой-РНК-полимеразы (RNA dependent RNA polymerase, RdRp).

Трехмерная модель вируса Зика

Рисунок 7. Трехмерная модель вируса Зика в атомном разрешении, созданная в студии биомедицинской визуализации Visual Science. Модель построена по данным научных публикаций об организации вируса Зика и родственных вирусов и считается наиболее достоверной на текущий момент.

Известно, что гликозилирование играет важную роль в инфекционности, созревании и вирулентности флавивирусов [18], [19]. Для вируса Зика предсказаны потенциальные участки для N- и O-гликозилирования в белках prM, E, NS1 и NS4B, которые гликозилируются и в других флавивирусах. Исследования, посвященные роли этих сайтов в жизненном цикле вируса Зика, еще только планируются [17]. Правда, уже обнаружено одно структурное отличие белка Е ZIKV от подобных белков других флавивирусов — выставленная на поверхность вирусной частицы аминокислотная петля, с которой в позиции Asn154 связывается гликан (см. видео). Предполагают, что именно эта петля вместе с прикрепленным сахаром может отвечать за тропизм вируса (взаимодействие с рецепторами определенной группы клеток) и патогенез болезни [20].

Отличие в структуре белка Е ZIKV от гомологичных белков других флавивирусов.

исследовательская группа Университета Пердью, США

Борьба с вирусом Зика

Диагностика

Основные проблемы диагностики ZIKV-инфекции — это значительное количество бессимптомных случаев и неспецифичность симптомов: лихорадка денге и чикунгунья, которые тоже переносятся комарами рода Aedes, проявляются подобным образом. Предположить заражение вирусом Зика можно, если симптомы появляются у человека, который недавно побывал или длительно проживал в районе циркуляции ZIKV [1], [4].

Лучшим решением был бы высокоспецифичный тест на антитела, который можно использовать не только для подтверждения инфицированности, но и для проверки иммунитета против вируса Зика в самом начале беременности, что позволило бы женщинам понять степень риска. Однако такое тестирование осложняется кросс-реактивностью с другими флавивирусами. Определенные надежды дает тест ELISA. Например, IgG-ELISA, применяемый во Французской Полинезии, где циркулирует вирус денге, еще до основной вспышки лихорадки Зика выявлял ZIKV-позитивных доноров крови (тогда их было <1%) [1].

Профилактика

Основной способ — это защита от укусов комаров, в том числе и с помощью контроля их распространения.

В регионах циркуляции вируса Зика и потенциально опасных зонах людям рекомендуют носить светлую одежду, закрывающую как можно больше поверхности тела, устанавливать на окна и двери домов противомоскитные сетки, использовать сетку во время сна, а также применять репелленты с ДЭТА, IR3535 или икаридином [4].

Самки комаров Aedes после насыщения кровью откладывают яйца, которые в безводной среде могут сохраняться до года. Даже в минимальном количестве воды из яиц выходят личинки и дальше развиваются во взрослых особей. Потому для контроля численности и распространения комаров необходимо постоянно отслеживать и ликвидировать места их размножения: ведра, бочки, горшки с водой, сточные канавы, использованные автомобильные покрышки. В особых случаях прибегают к распылению инсектицидов [4].

Пример эффективного контроля численности переносчика вирусов — действия Уильяма Горгаса по ликвидации эпидемии желтой лихорадки в Гаване и регионе Панамского канала в начале XX века. Этот американский военврач и его команда устроили жестокую борьбу с антисанитарией и обработали все здания и улицы инсектицидами (от которых, к слову, пострадало и немало жителей). В результате желтая лихорадка была полностью побеждена [21].

В 50-х и 60-х годах в государствах Америки применяли интенсивные меры по контролю переноса возбудителя желтой лихорадки, включая повсеместное распыление ДДТ. Это привело к устранению Aedes aegypti из 18 стран и значительно сократило область распространения заболевания. Позже подобные программы успешно осуществили Сингапур и Куба. Конечно, через некоторое время лихорадка вернулась, но даже краткосрочный период без инфекции имел большое значение для населения [1].

Чтобы сократить риск передачи ZIKV половым путем (особенно во время беременности), мужчинам, проживающим в зонах циркуляции вируса или недавно побывавшим там, ВОЗ рекомендует пользоваться презервативами или воздерживаться от половой активности на всём протяжении беременности партнерши [4].

Лечение

Обычно заболевание протекает в легкой форме и не требует специального лечения. Во время лихорадки необходим отдых и обильное питье, иногда — прием препаратов для устранения боли и других неприятных симптомов [4].

Тем не менее существуют вещества, которые оказывают воздействие и на сам вирус Зика. Например, эффективно подавляет репродукцию вируса in vitro 2′-C-метиладенозин, а 7-деаза-2′-C-метиладенозин (МК-608) ингибирует репликацию ZIKV in vitro и затормаживает развитие болезни в экспериментах на мышах. Препараты 2′-C-метилцитидин, рибавирин, фавипиравир и T-1105 ослабляют цитопатическое действие вируса и снижают его урожай [22], [23].

Разумеется, вакцина решила бы проблему кардинально, но она до сих пор не разработана. Сейчас исследованиями занимаются 18 коммерческих компаний и исследовательских институтов [24–26]. Однако первая фаза клинических испытаний стартует не раньше конца 2016 года, а значит, готовая вакцина появится еще не скоро, и распространение инфекции по миру продолжится [1].

Заключение

Хотя всевозможные случайности в эволюции вирусов делают точный прогноз пандемий практически невозможным, научный мир пытается повышать скорость реакции на новые угрозы. В ближайшее время усилия биологов и медиков сосредоточатся на разработке единой стратегии, которую в любой момент можно было бы применить к той или иной вспышке заболевания. Такая стратегия позволит быстро разобраться в путях передачи, патогенезе и способах контроля инфекции, чтобы предотвратить ее глобальное распространение.

Читайте также: