Что за вирус черная дыра

Обновлено: 19.04.2024

Чёрные дыры в теории относительности

Наиболее полное описание чёрной дыры появилось лишь в 1915 году — с публикацией общей теории относительности Альберта Эйнштейна.

Учёные чаще всего описывают чёрную дыру как область с колоссальным по силе гравитационным полем, по форме напоминающим чашу.

Выводы астрофизиков, изучавших чёрные дыры, долгое время сводились к тому, что любой тесный контакт предмета или организма с этой областью пространства-времени, вероятнее всего, приведёт к их уничтожению.

Астрономы из Университета Колорадо в Боулдере (США) обнаружили, что сверхмассивная чёрная дыра в центре галактики J1354, расположенной.

Небольшие чёрные дыры, как правило, вращаются. И в этих условиях шанс, что попавший туда живой организм выживет, фактически нулевой. Поскольку на объект кроме продольных приливных сил будут действовать ещё и скручивающие силы.

Сингулярность и горизонт Коши

Современные физики, работающие в различных областях теории относительности, считают, что помимо горизонта событий у чёрных дыр есть внутренний горизонт Коши. Это гипотетическая граница, за которой перестаёт работать привычная теория детерминизма (учение о закономерности и причинной обусловленности всех событий и явлений. — RT).

Учёные из Калифорнийского университета в Беркли (США) провели детальное исследование чёрных дыр и всего, что с ними связано, и представили ряд любопытных выводов.

Американские физики говорят, что за горизонт Коши им пока заглянуть не удалось, но математические модели демонстрируют, что события там могут разворачиваться по совершенно непредсказуемым сценариям.

Согласно труду Эйнштейна, в центре чёрной дыры находится так называемая сингулярность — точка пространства-времени, в которой привычные законы физики перестают работать. При этом гравитация в ней велика настолько, что всё попадающее туда сразу же уничтожается.

Новая теория

Однако физики из Калифорнийского университета в Беркли предположили, что вблизи сверхмассивных заряженных чёрных дыр заглянуть в сингулярность всё-таки можно благодаря тому, что гравитация у их краёв более слабая. А значит, их горизонт событий можно пересечь.

По словам авторов исследования, Вселенная быстро расширяется. Это означает, что энергия может распределяться равномернее, чем считалось раньше. Если предположения американских физиков верны, то в сверхмассивной чёрной дыре можно очень быстро пройти через горизонт Коши и избежать сингулярности в её центре.


Полёт к внеземным океанам: ЕКА построит аппарат для поиска воды на спутниках Юпитера

Олег Заславский в беседе с RT пояснил гипотезу американцев о возможности выживания в чёрной дыре. По словам эксперта, при достижении горизонта событий массивной чёрной дыры человек или любой другой объект действительно будут находиться в относительной безопасности.

Физик также подтвердил, что пройти через горизонт Коши в заряженных чёрных дырах теоретически возможно, и этот процесс можно сравнить с воздействием ударной волны на поверхность жидкости.

Авторы исследования отмечают, что их выводы касаются только чёрных дыр с электрическим зарядом. Однако при этом они подчёркивают, что поведение и состав этих объектов такие же, как и у существующих вращающихся чёрных дыр.

Пребывание на карантине ничуть не уменьшило интереса обывателей к происходящему в космосе. Скорее наоборот. Земные приключения вируса некоторые головы склонны связывать с далекими и близкими галактиками. Особенный интерес вызывают вспышки черных дыр и пролетающие рядом с Землей астероиды.

Астероид и черная дыра привлекли внимание землян

Новая вспышка уснувшей черной дыры

1 апреля 2020 года в центральной части Галактики телескоп ART-XC российской орбитальной обсерватории "Спектр-РГ" отметил яркий рентгеновский источник. Как сказано в пресс-бюллетене Института космических исследований (ИКИ) РАН, им оказался объект, попавший в "черную дыру 4U 1755-338, которая была открыта рентгеновской обсерваторией Uhuru, однако в 1996 году "замолчала" и не проявляла признаков активности более 20 лет".

В госкорпорации "Роскосмос" отметили, что вспышка "связана с возобновлением аккреции на черную дыру вещества с обычной звезды". Под термином аккреция (от латинского accretio - "приращение, увеличение") астрофизики понимают перетекание вещества в тесных двойных системах на компактную звезду. В Большой российской энциклопедии сказано, что "в Солнечной системе аккреция играла важную роль при формировании планет из вещества протопланетного диска".

"Черные дыры замечают по окружающей среде, к которой можно отнести и звезды. Они, притягиваясь этой черной дырой, начинают светиться. Именно свечение погибающей окружающей среды и регистрируют. Когда истощился материал, который падает в черную дыру, свечение прекращается. Иногда такие явления возобновляются, и это представляет интерес для астрофизиков, потому что позволяет им ответить на массу вопросов к черным дырам", — сказал в эфире радио Sputnik ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт.

По одной из гипотез в отношении столь малоизученного объекта, каковым является черная дыра, из-за искажения времени и пространства она может быть входом в другую Вселенную, стать так называемой "кротовой норой". По причине отсутствия надежных фактов и наличия вороха домыслов черные дыры в массовом сознании представляются в совершенно фантастическом виде.

Астероид

На минимальное расстояние к нашей планете 29 апреля приблизится 4-километровый — открытый в 1998 году — астероид OR2 из околоземного класса Амуров. Этот космический объект приблизится на расстояние чуть больше, чем 16 расстояний от Земли до Луны. Ученые посчитали, что в ближайшие 160 лет этот астероид не столкнется с Землей.

Вероятность столкновения астероида с Землей, по прикидкам NАSА, составляет 1 к 50 000, впрочем, специалисты американского Национального управления по аэронавтике и исследованию космического пространства не исключают столкновения этого небесного посланца с Землей.

Несмотря на отсутствие какой-либо опасности со стороны космического "оружия пролетария", американцы собираются отработать на нем удары, чтобы впредь неповадно было подобным "булыжникам" залетать в наше пространство. Ближайшее столкновение с Землей космического тела астрофизики прогнозируют не ранее 2043 года. По этой причине, чтобы посмотреть на результат, необходимо отработать несколько ударов. Однако пока никто не собирается снимать пресловутые санкции с России. Западные элиты готовы погибнуть от вирусов или космических пришельцев, но помощь от нас примут только в самый последний момент. Потом, по своему обычаю, все равно нагадят.

Когда-то давно одна из веток в популяции гоминид, все больше отделяясь, стала постепенно обретать морфологию и образ жизни человека нынешнего, – так сказать, разумного. Но история вирусов началась задолго до нашей. Задолго до того, как наш мозг развился к способности задавать вопросы. И задолго до того, как мы стали сначала догадываться, а потом и понимать, – от чего, собственно, болеем и умираем. Сегодня на одной планете с нами живет неисчислимое количество вирусов; по некоторым оценкам, их здесь сформировалось более ста миллионов разновидностей (представляете себе, например, сто миллионов человеческих рас?), и если каким-то чудом пересчитать все вирусы поштучно, то численность этой популяции значительно превзойдет состав всех прочих популяций, вместе взятых, включая даже бактерии и насекомых. Вирусы фантастически разнообразны во всех аспектах своего существования, особенно в размерах, форме и предпочтениях. А мы до сих пор не решили даже, можно ли их считать живыми.

Любое живое существо на Земле, – во всей биомассе от бактерий и простейших до слона и баобаба, – заражается теми или иными вирусами. Некоторые вирусы колонизируют представителей какого-то одного вида, другие не столь привередливы. К человеку абсолютное большинство из них относится нейтрально. Но все они, – внутриклеточные паразиты, которые перестраивают геном зараженной клетки на свой лад, на репликацию все новых и новых своих копий. Активно существовать и размножаться вне живой клетки вирусы не могут. Пассивное же их существование и, вообще, этот странный вирусный мир, где даже гравитация работает как-то не так, нам представить довольно сложно.

В целом, при заражении наша судьба зависит от общего состояния здоровья и актуального иммунного статуса, от инфицирующей дозы (численность попавшей в организм колонии) и поведения самого вируса. Клетки-то не просто инфицируются; какое-то время они работают как фабрика вирусов, а при разрушении мембраны неизбежно погибают, и если это происходит в массовом порядке, да в жизненно важном органе, который не восстанавливается…

Для Homo sapiens’а, который привык считать себя центром мироздания и венцом творения, Великая вирусная война как-то… оскорбительна, что ли. Действительно, в ней ведь нет ничего личного. Вообще ничего. Враг попросту не знает о том, что он – враг, что существуем такие себе высокоразвитые мы, что нам не нравится болеть и умирать. Когда на человека нападал опасный хищник-людоед (например, другой Homo sapiens), это всегда была какая-то схватка, какая-то ярость, хоть какие-то шансы. А этого врага даже не увидишь в лицо, потому что лица у него нет. Ему нечем и незачем нас ненавидеть, нечем о нас знать и думать, нечем испытывать к нам аппетит. Его и самого-то, врага этого, практически нет, настолько он мал. Наш организм для него – нечто вроде Галактики, с которой из-за разности в масштабах невозможно пребывать в каких-то личных отношениях. Мы – просто мир обитания, место и способ существования. Вот они и существуют в своем измерении, пока им существуется. Кстати говоря: когда мы своими бензопилами, заводами и фабриками, потребностями и отходами уничтожаем породившую нас природу, – мы ведь делаем это не потому, что мы плохие, ненавидим свою планету и целенаправленно торопимся довести ее до нежилого состояния. Вовсе нет. Просто вот такой у нас получается course of events, как сказал бы англичанин. Такой ход событий, курс нашего (паразитического, выходит?!) развития. И, кстати, не случайно мы в последние годы все чаще сравниваем с вирусами самих себя, – в пересчете на масштабы, конечно. Сравнив, неприятно удивляемся: а и правда, много ведь общего. Только мы, пожалуй, поагрессивней будем, подеструктивней, покатастрофичней для своей экосистемы в целом. И природа, возможно, пытается сдерживать нас с помощью мелких и мельчайших, – есть и такая теория. Именно сдерживать. Если бы от нас по-настоящему хотели избавиться, уже давно избавились бы, так что полное вымирание нам, видимо, не грозит, – во всяком случае, вымирание от инфекционных болезней. Это по отдельности мы теперь стали нежны и уязвимы, а как вид мы остаемся очень цепкими, живучими, плодовитыми и настырными. Даже теряя сотни миллионов, быстро восстанавливаемся в миллиардах. К тому же известно, что ни один паразит не заинтересован в том, чтобы уничтожить своих хозяев как вид, вывести его вчистую. Даже если этот вид опасен для всех.

А кто из них по-настоящему опасен для нас?

Вакцины уже есть, но никаких ощутимых результатов пока нет, да и вообще не очень понятно, как там у нас обстоят дела с иммунитетом к коронавирусу.

В целом, пока совсем не похоже, что пандемия идет (или пойдет в ближайшем будущем) на спад. Более вероятным представляется дальнейшее развитие.

Учитывая все вышесказанное, наверное, лучше бы нам понимать, с чем мы имеем дело.

Далее – о двенадцати самых опасных для человека вирусах (по версии экспертов ресурса Live Science).

Марбургский вирус

Вирус Эбола

Широко известный вирус, вызывающий геморрагическую лихорадку. Ее клинические проявления и пути распространения в целом подобны описанным выше; сам вирус также имеет генетическую структуру, аналогичную Марбургскому вирусу, однако представляет собой отдельный серотип (т.е. вызывает несколько отличный иммунный отклик). По состоянию на 2018 год было известно шесть видов эболавируса, каждый из которых имеет собственную специфику. Наиболее опасным является заирский штамм; эпоним Эбола – название реки в Заире (ныне Демократическая республика Конго), где этот вид впервые был идентифицирован.

Вирус бешенства

Вирус иммунодефицита человека

Заболевание, известное сегодня во всем мире как AIDS (СПИД, синдром приобретенного иммунодефицита), появилось и стало объектом исследований с начала 1980 годов, – сначала на выборках гомосексуалистов и инъекционных наркоманов, затем в других категориях населения (в частности, у пациентов, получавших переливание препаратов крови). Инфекционная этиология предполагалась с самого начала; в 1985 году возбудитель был выделен и идентифицирован как ВИЧ, вирус иммунодефицита человека. ВИЧ относится к семейству ретровирусов, отличается продолжительным инкубационным периодом и, как следует из названия, приводит к постепенному ослаблению иммунной системы. СПИД – это терминальная стадия ВИЧ-инфекции, когда организм становится абсолютно беззащитным перед любыми, в том числе условными патогенами, – как внешними, так и внутренними (например, раковыми клетками).

Современные молекулярно-генетические исследования свидетельствуют о том, что правирус иммунодефицита появился в животном мире Африки сто с небольшим лет назад, и, неоднократно мутировав, за несколько десятилетий эволюции обрел способность инфицировать и вызывать заболевание у человека. Быстрому распространению вируса сначала в африканских странах, а затем и по всему миру, способствовал ряд социально-экономических факторов. По оценкам ВОЗ, с момента идентификации ВИЧ-СПИД различные типы и подтипы вируса унесли жизни более чем 32 миллионов человек, что является наибольшими потерями от инфекционных болезней на современном этапе. До 95% новых случаев заражения приходится на беднейшие страны; более двух третей всех инфицированных проживает в Африканском регионе ВОЗ (каждый двадцать пятый взрослый там является, как минимум, носителем).

Вирус оспы

Вирус характеризуется… вернее, характеризовался, поскольку натуральная оспа теперь уже относится к побежденным болезням: естественного вируса оспы в природе не существует. Он характеризовался очень высокой контагиозностью (заразностью), вирулентностью (способностью вызывать заболевание у носителя) и летальностью, – что в совокупности делало оспу одной из опаснейших инфекционных болезней в истории человечества. Эволюция вируса Variola насчитывает десятки тысяч лет, но способность инфицировать человека, как считают современные исследователи, у вируса развилась не ранее, чем две тысячи лет назад; произошло это, видимо, на Ближнем Востоке или в Северной Африке. В начале нашей эры от эпидемий черной оспы страдала, прежде всего, Европа и Азия (Китай, Корея, Индия, Япония), где у выживших вырабатывался устойчивый иммунитет. В тех регионах, куда вирус был занесен позднее, эпидемии носили катастрофический характер: например, 90% коренного населения Америки было уничтожено не мушкетами и винчестерами, а вирусом оспы, и затем уже другими инфекциями, вирусными и бактериальными.

Оспа побеждена, теперь это лишь история, и мы очень надеемся, что никто и никогда из землян уже не будет инфицирован этим вирусом.

Тем не менее, продолжаются работы по созданию противооспенных вакцин; совсем недавно появился даже этиотропный препарат. Уместно повторить: никогда и ни в чем нельзя быть уверенным до конца (даже в высшей защите, которая была и в Ухане), если речь идет о вирусах. К сожалению, есть все основания опасаться, – особенно в нашем неспокойном мире с его терроризмом и ползучими идеями о биологическом оружии. Попади вирус оспы в беспечные, алчные или, хуже того, в недобрые руки (особенно если эти руки окажутся еще и умелыми по части генетической модификации) – и последствия будут… в общем, лучше не думать. С другой стороны, а как об этом не думать, если в 2014 году в одном из американских Национальных институтов здоровья кто-то из сотрудников в очередной раз открыл никем не охраняемый лабораторный холодильник, вдруг заинтересовался давно и невостребованно стоящей пробиркой, вынул ее (слава богу, со всеми необходимыми предосторожностями) – и вот, пожалуйста: пробирочка с черной оспой, забытая, как потом оказалось, еще в 50-е годы. А этот вирус, в отличие от многих других, очень устойчив, и за все шестьдесят лет он так и не утратил жизнеспособность.

Этот образец уничтожен. Но действительно ли он был последним?

Хантавирус

Вирус изолирован и описан Хо Вангом Ли в 1976 году. В дальнейшем было выделено множество разновидностей хантавируса, которые условно можно разделить на две крупные группы – евразийскую и американскую.

Первая группа, широко распространенная в Азии и Европе (в том числе в 61 субъекте Российской Федерации по обе стороны от Урала), при инфицировании человека вызывает ГЛПС, геморрагическую лихорадку с почечным синдромом. Это наиболее частая из всех острых природно-очаговых инфекций. Протекает с высокой температурой, кровотечениями, серьезным поражением почек и рядом тяжелых сопутствующих дисфункций в различных системах организма. Летальность выше в азиатских регионах (до 10-12%).

Все хантавирусы переносятся грызунами и, реже, рукокрылыми. Человек инфицируется при вдыхании, попадании с пищей или при прямом контакте с продуктами жизнедеятельности либо иным биоматериалом зараженного грызуна. Передача от человека к человеку зафиксирована лишь в единичных случаях в Южной Америке.

Этиотропные средства на данном этапе находятся в стадии разработки, вакцины – в стадии клинических испытаний и внедрения. Лечение на сегодняшний день всегда паллиативное, сугубо симптоматическое. Эпидемиологические данные по хантавирусным инфекциям постоянно отслеживаются и уточняются соответствующими службами.

Вирус гриппа

Но даже в те годы, когда сезонная эпидемия гриппа вызывается не самым агрессивным штаммом, она протекает тяжело у нескольких миллионов человек и уносит от 300 до 500 тысяч жизней. Это при летальности менее одного процента для гриппа А. Грипп В более смертоносен, но он реже приобретает размах эпидемий и пандемий.

Первые упоминания или описания похожих на грипп болезней, явно инфекционных и явно респираторных, встречаются еще до нашей эры, – у Гиппократа, например. Первым достоверным описанием пандемии принято считать источник ХVI века.

Клиническая картина неспецифична и, в принципе, одинакова для всех ОРВИ. Точный диагноз может быть установлен только лабораторно, с помощью серологического анализа или полимеразной цепной реакции, однако в абсолютном большинстве случаев сезонный грипп диагностируют клинически, с учетом актуальной эпидемиологической обстановки в регионе.

Заболевание разрешается в течение 7-10 дней и, как правило, не требует госпитализации. Лечение до сих пор было сугубо паллиативным и/или косвенным, иммуностимулирующим, хотя в последние годы сообщалось о создании нескольких эффективных этиотропных противогриппозных препаратов.

Основное средство профилактики и сдерживания эпидемий гриппа – вакцинация, поскольку иммунитет является стойким и достаточно надежным. Основной путь передачи инфекции, как и у всех ОРВИ, – воздушно-капельный.

Однако грипп – это все-таки вирусная инфекция, а вирусы, повторим вновь и вновь, опасны своей непредсказуемостью и своими осложнениями.

К гриппу это относится, пожалуй, в самой полной мере. Вирусы Influenzaviridae, особенно тип А, чрезвычайно изменчивы, они постоянно ищут и находят способы обходить иммунитет (в том числе созданный вакциной для прошлогодних штаммов), поэтому нередко мутации оказываются весьма опасными.

Что касается осложнений, то наиболее тяжелые из них развиваются со стороны легких, печени, сердца, периферической и центральной нервной системы. Наибольшая летальность наблюдается в самой младшей и самой старшей возрастных категориях, когда иммунная система либо еще недостаточно сформирована, либо уже ослаблена.

Вирус денге

Вирус денге может колонизировать организм приматов (включая человека) и летучих мышей, а главным фактором трансмиссии служат кровососущие комары Aedes, выступающие также переносчиками многих других инфекционных заболеваний. Поэтому в эндемичных по денге странах борьба с размножением комаров является одной из важнейших государственных задач.

Тяжелый вариант денге протекает в форме геморрагической лихорадки, чаще встречается у многократно инфицированных жителей регионов, наиболее неблагополучных в эпидемиологическом плане.

Летальность при типичной форме лихорадки денге – порядка 2-2.5%, но геморрагическая форма убивает до половины заболевших. Ежегодная заболеваемость составляет 50-500 миллионов новых случаев, до полумиллиона больных госпитализируются и до 20000 человек умирают. Столь высокие показатели обусловлены тем, что в эндемичной зоне земного шара проживает примерно 40% человечества, и в последние годы специалисты ВОЗ с тревогой говорят о том, что по мере глобального потепления это опасное заболевание неизбежно будет подниматься на север. Разработанные к настоящему времени вакцины рекомендуется применять лишь у ранее уже инфицированных и переболевших; иммунная защита вырабатывается лишь к одному типу лихорадки, тогда как к другим серотипам человек остается восприимчивым, – и это главная проблема в аспекте иммунизации. Лечение симптоматическое, этиопатогенетической терапии пока не существует.

Ротавирус

Лечение симптоматическое, основной задачей выступает регидратация и дезинтоксикация. Доступны вакцины. Этиотропных препаратов пока нет.

В эпидемиологическом плане ротавирусные инфекции являются глобальной проблемой: они широко распространены по всему миру. Заболеваемость оценивается на уровне 25 миллионов новых случаев в год, летальность составляет порядка 3% с большим разбросом, – от 600 до 900 тысяч человек ежегодно умирают, из них до полумиллиона – дети в возрасте до пяти лет. Тяжелые формы течения с летальным исходом регистрируются, в основном, в регионах со слаборазвитой медициной, однако встречаются и в развитых странах, т.е. опасность ротавирусов не следует недооценивать в любом случае.

Вирус SARS-CoV

Судя по заголовкам пунктов, статья становится всё актуальнее, не так ли?

Вирус MERS-CoV

Вспышка началась осенью 2012 году в Саудовской Аравии, затем охватила соседние страны; весной 2015 года бетакоронавирус (родовое название) был завезен в Южную Корею, где уже к осени очаг, – а это была самая серьезная вспышка за пределами Ближнего Востока, – удалось локализовать и подавить.

Бетакоронавирусный респираторный синдром характеризуется тяжелым течением, выраженной лихорадкой, кашлем, затруднениями дыхания и общей гипоксией; в случаях развития тяжелой вирусной пневмонии наблюдается прогрессирующая дыхательная и, нередко, почечная недостаточность, – что и приводит к летальным исходам.

Вирус SARS-CoV-2

Ну вот и добрались. В своих публикациях мы обещали обсудить самые наболевшие вопросы, связанные с продолжающейся в настоящее время пандемией коронавирусной болезни CoViD-19 (это официальное и единственно корректное международное наименование). Ситуацию с этим заболеванием мы отслеживаем и освещаем в новостной ленте чуть ли не с самого начала, и мы готовы говорить об этом.

Обратите внимание на редакторский комментарий к ней, датированный мартом 2020 года. Его мы переведем полностью:

Мы не знаем. В штате Лахта Клиники пока, к сожалению, нет высококвалифицированных специалистов в области молекулярной генетики. И было бы верхом безответственности занимать какую бы то ни было позицию и поддерживать какое бы то ни было мнение, не имея на то достаточной информации (вполне возможно, она и впрямь когда-нибудь всплывет) и достаточной компетентности.

Сейчас вообще не это главное.

Пора, кажется, действовать осмотрительно, умно, информированно и, главное, коллективно.

Мы сейчас на осадном положении. Мы все сейчас в одной лодке, – понимаете? – весь земной шар, все человечество.

Астрономы добились огромного успеха — впервые получили изображение сверхмассивной чёрной дыры в центре галактики. Но что мы видим на полученном изображении, как оно получено и почему выбрана именно галактика М87?

Если чёрная дыра сферически симметрична и не вращается, её гравитационный радиус можно вычислить по формуле, полученной в 1916 году немецким физиком Карлом Шварцшильдом из общей теории относительности Эйнштейна. Эту расчётную величину называют радиусом Шварцшильда (RS). Чтобы возникла чёрная дыра, массивное тело должно быть сжато до размера, меньшего RS. Для Солнца RS около 3 км, а для сверхмассивной чёрной дыры в центре Млечного Пути (Sgr A*) он составляет примерно 12,7 миллиона километров. Это всего лишь в 20 раз больше Солнца. Сверхмассивная чёрная дыра в центре галактики М87 — одна из самых больших среди известных. Для неё радиус Шварцшильда около 20 миллиардов километров, что примерно в четыре раза больше орбиты Нептуна.

По происхождению выделяют два вида чёрных дыр. Первый — чёрные дыры звёздной массы, они представляют собой остатки массивных звёзд (массой более 20 масс Солнца), которые взорвались как сверхновые. Это последний этап эволюции звёзд. Второй вид — сверхмассивные чёрные дыры с массами более 100 тысяч масс Солнца. Как они образовались, пока не ясно. По одной из гипотез, они сформировались из огромных облаков материи одновременно с галактиками. Другая гипотеза предполагает, что они возникли в результате слияния сталкивающихся чёрных дыр звёздной массы.

Фотография гигантской эллиптической галактики Мессье 87, расположенной примерно в 55 миллионах световых лет от Земли в созвездии Девы. Хорошо виден джет. Фото сделано на Очень большом телескопе (VLT) в Чили. Фото: ESO

Чёрные дыры ранее обнаруживали по мощному излучению из их окрестностей. Благодаря своей чудовищной гравитации они стягивают к себе вещество из окружающего пространства. Падающее на чёрную дыру вещество разгоняется до околосветовых скоростей и закручивается вокруг неё, образуя аккреционный диск. Температура плазмы в нём из-за трения достигает миллионов градусов. Поэтому аккреционный диск испускает тепловое излучение. Движение же релятивистских электронов в искривлённом магнитном поле порождает так называемое синхротронное излучение. Часто у таких чёрных дыр возникают выбрасываемые струи плазмы — джеты, тоже движущиеся с огромной скоростью. Диск и джеты — сильнейшие источники излучения во всех диапазонах электромагнитных волн. Аккреционные диски, возникшие около сверхмассивных чёрных дыр в центрах некоторых галактик, — невероятно яркие и могут затмить все остальные миллиарды звёзд этой галактики, вместе взятые.

Что такое Телескоп горизонта событий и как он работает?

Даже сверхмассивные чёрные дыры, обнаруженные в центрах многих галактик, в том числе и нашего Млечного Пути, представляют собой сравнительно малые объекты, что до сих пор делало невозможным их прямое наблюдение. Ни один земной телескоп не обладает достаточным разрешением, чтобы разглядеть области такого размера. Напомним, что разрешающая способность зависит от отношения λ/D, где λ — длина волны принимаемого излучения, а D — размер телескопа. Чем меньше длина волны и больше размер телескопа, тем лучше угловое разрешение, тем более мелкие детали он может рассмотреть.

Телескоп горизонта событий (Event Horizon Telescope, EHT) предназначен именно для получения изображений чёрных дыр. Он представляет собой систему из нескольких наземных радиотелескопов, расположенных в разных местах Земли. Использование метода интерферометрии со сверхдлинной базой и вращения нашей планеты позволяет объединить их в единый гигантский телескоп размером с земной шар. Благодаря современным алгоритмам обработки данных EHT достиг углового разрешения порядка 20 микросекунд, что соответствует способности читать заголовки газет на Луне. Для сравнения: разрешение телескопа Хаббла диаметром 2,4 метра составляет около 0,05 угловой секунды, что в 2500 раз хуже.

Создание EHT было технической задачей величайшей сложности, решение которой потребовало организации и отладки всемирной сети телескопов. Хотя телескопы не связаны друг с другом физически, получаемые ими наблюдательные данные необходимо было очень точно синхронизировать при помощи атомных часов. На подготовительную работу потребовалось 10 лет и 290 миллионов долларов.

Проект EHT — это не только телескопы, но и международный коллектив, в который входят более 200 астрономов из 60 исследовательских организаций Европы, Азии, Африки, Северной и Южной Америки. Чтобы на основе наблюдений получить изображение чёрной дыры, требовались теоретические и имитационные исследования, разработка алгоритмов обработки данных.

В период с 5 по 11 апреля 2017 года EHT наблюдал M87 в течение четырёх дней. В работе участвовали восемь радиотелескопов: ALMA, APEX (Чили), 30-метровый телескоп IRAM (Испания), телескоп Джеймса Клерка Максвелла JCMT и Субмиллиметровая решётка SMA (Гавайи), Большой миллиметровый телескоп Альфонсо Серрано (LMT, Мексика), Субмиллиметровый телескоп (SMT, США) и телескоп на Южном полюсе (SPT, Антарктида).

Расположение телескопов ЕНТ, участвовавших в наблюдениях в апреле 2017 года: SMA и JCMT — Гавайи, SMT — США, LMT — Мексика, ALMA и APEX — Чили, SPT — Антарктида и PV (IRAM) — Испания. Сплошные линии показывают пары телескопов, следивших за М87, пунктирные — за квазаром 3C 279, который использовали для калибровки измерений. Иллюстрация из статьи в The Astrophysical Journal Letters, V. 875, N. 1, CC BY 3.0

Наблюдения велись на длине волны 1,3 мм. Это практически минимальная длина волны, на которой можно на Земле наблюдать космические объекты в радиодиапазоне. Дело в том, что атмосфера Земли прозрачна не для всех длин волн электромагнитного излучения. Радиоастрономия работает в окне прозрачности атмосферы от 1 мм до примерно 30 м. Меньшие длины волн практически полностью поглощаются молекулами газов атмосферы, в первую очередь водяного пара, а большие — отражаются обратно в космос ионосферой. Напомним, что малая длина волны нужна для получения высокого разрешения.

Работа на таких коротких волнах связана со множеством проблем: повышенный шум в электронике, поглощение излучения в атмосфере, повышенные фазовые флуктуации, вызванные атмосферной турбулентностью.

Каждый телескоп EHT в ходе кампании получил громадное количество данных: 350 терабайт в день. Их записывали на высокопроизводительные жёсткие диски, которые отсылали для обработки на специализированных суперкомпьютерах — корреляторах, установленных в Институте радиоастрономии Общества Макса Планка (Германия) и обсерватории Хэйстек (MIT, США). После сложнейших процедур с использованием новейших вычислительных методов, разработанных участниками проекта, эти данные преобразовывались в изображения. На обработку нескольких петабайтов данных, полученных всеми телескопами, потребовалось два с половиной года. Кстати, такое количество музыки, записанное в формате mp3, пришлось бы слушать не одну тысячу лет.

Для объективности в 2018 году команда разделилась на четыре группы, каждая из которых обрабатывала данные независимо от других, разными методами. Чтобы защититься от предвзятости, группы не имели контакта друг с другом. Все группы получили похожие результаты, что говорит об их надёжности.

Заметим, что в радиодиапазоне, где длина волны достаточно велика, невозможно получить фотографию объекта в привычном смысле. Информация об отдельных фрагментах изображения сложным образом зашифрована в данных интерферометра. С помощью сложных вычислений эту информацию извлекают и из фрагментов получают изображение. Однако неправы те, кто говорят, что это не реальные изображения. Вспомним, что в магнитно-резонансной томографии (МРТ) изображения тоже формируются с помощью компьютерной обработки данных, однако они объективно отображают реальное состояние организма и успешно используются в медицине для диагностики.

Почему М87?

Предполагается, что в любой галактике существует множество чёрных дыр с массой, близкой к массе звёзд, однако их размеры слишком малы для наблюдений. Сверхмассивные чёрные дыры в центрах галактик значительно крупнее, но и расположены они значительно дальше. В настоящее время для наблюдений доступны две сверхмассивные чёрные дыры: одна — в центре нашей Галактики (Sgr A*), другая — в гигантской эллиптической галактике M87 из скопления галактик в созвездии Девы.

Галактика М87 находится в созвездии Девы. Открыта Шарлем Мессье в 1781 году. Карта создана в программе Stellarium

Чёрная дыра в центре галактики М87 находится на расстоянии 55 миллионов световых лет от Земли — в две тысячи раз дальше, чем Sgr A*, однако по астрономическим меркам это совсем рядом. Размеры горизонта событий чёрной дыры пропорциональны её массе. Чёрная дыра в М87 имеет массу 6,5 миллиарда солнечных масс, в 1500 раз больше, чем Sgr A*. Благодаря огромной массе и относительной близости к Земле чёрная дыра в центре галактики M87 для земного наблюдателя — одна из крупнейших по своим угловым размерам, что и сделало её идеальной мишенью для исследования. Размер её горизонта событий — 22 микросекунды, лишь немного меньше, чем у Sgr A*, — 53 микросекунды. Он сопоставим с угловым размером спичечного коробка, помещённого на Луну.

Другая причина выбора М87 в том, что она видна и из Северного, и из Южного полушария Земли. Поэтому её могут наблюдать большое число наземных телескопов, что, в свою очередь, позволяет увеличить разрешение получаемых изображений.

Стоит отметить, что из-за большой массы чёрная дыра в М87 менее изменчива, чем Sgr A* (характерное время изменчивости — дни против минут). Изменчивость мешает наблюдениям, поскольку ограничивает время приёма стабильного сигнала. Кроме того, Sgr A* лежит для нас в галактической плоскости и скрывается газопылевыми облаками. Эти проблемы исследователям ещё придётся решать для получения изображения Sgr A*.

Что мы видим на изображении чёрной дыры?

Как уже отмечалось, саму чёрную дыру увидеть нельзя, она практически не излучает. Но если её окружает светящееся вещество, то должна наблюдаться картина в виде светящегося кольца с тёмной областью в центре, которую называют тенью чёрной дыры. Название неудачное, поскольку тёмная область — не тень. Скорее, надо говорить о силуэте чёрной дыры. Правда, размер этого силуэта примерно в 2,6 раза больше размера горизонта событий. Вид силуэта определяется сильной гравитацией чёрной дыры. Разберёмся с этим подробнее.

Гравитация чёрной дыры не отпускает от неё свет. Однако на расстоянии 1,5RS существуют орбиты, по которым свет может двигаться вокруг чёрной дыры по окружности. Все пойманные в своеобразную ловушку фотоны образуют так называемую фотонную сферу. Эти орбиты неустойчивы. Фотоны, приблизившиеся к чёрной дыре, поглощаются ею, а удалившиеся от неё — убегают в космос. Благодаря последним наблюдатель со стороны может увидеть в области тени узкое светящееся кольцо, соответствующее фотонной сфере. Правда, пока изображение получено с недостаточным разрешением, и рассмотреть на нём это кольцо невозможно.

У чёрной дыры в центре галактики M87 излучающий аккреционный диск располагается под небольшим углом к плоскости, перпендикулярной направлению на Землю. В этом случае на полученном изображении как раз и будет видно светящееся кольцо с тёмной тенью в центре, но каким будет её радиус?

Художественное изображение чёрной дыры с аккреционным диском, повёрнутым к Земле ребром. Иллюстрация: ESO

Чтобы разобраться, проще рассмотреть обратный процесс: будем обстреливать чёрную дыру фотонами. Прохождение фотона мимо чёрной дыры можно охарактеризовать прицельным параметром b — минимальным расстоянием, на которое он бы приблизился к центру чёрной дыры, если бы двигался по прямой без учёта её гравитации. Геометрически это длина перпендикуляра из центра чёрной дыры на эту прямую. Вдали от чёрной дыры фотон и движется по этой прямой. Гравитация искривляет его траекторию, причём тем сильнее, чем меньше b. Если прицельный параметр станет меньше

27 R S 2 ≈ 2,6 R S ,

Отчётливо видно, что полученное ЕНТ изображение несимметрично — снизу оно значительно ярче. Это результат так называемого доплеровского усиления, из-за которого излучение вещества, движущегося на нас, будет ярче, чем удаляющегося от нас.

Почему изображение нечёткое?

В первую очередь это связано с тем, что разрешение всё же недостаточно высоко, оно сопоставимо с размером самой чёрной дыры. Представьте себе небольшую картину, нарисованную толстой кистью. Впрочем, высокое разрешение в данном случае не означает высокого качества изображения.

Дело в том, что EHT собирал информацию от чёрной дыры с помощью небольшого количества телескопов, работавших достаточно короткое время. Эти телескопы заняты ещё множеством других исследований. При каждом измерении была получена информация лишь о небольшом участке исследуемой области. К тому же при интерферометрии изображение с высоким разрешением получается только в направлении прямой, соединяющей два используемых телескопа. Поскольку измерений было недостаточно, чтобы исследовать всю область, между полученными фрагментами осталось много неисследованных мест. Так что затем исследователи должны были восстановить полное изображение, заполнив пробелы. Это похоже на частично осыпавшуюся мозаичную картину на стене, от которой осталось лишь некоторое количество отдельных фрагментов, и теперь реставраторам по ним надо восстановить исходное изображение. Разработанные алгоритмы визуализации заполняют эти пробелы, формируя изображение чёрной дыры. Разумеется, невозможно получить реальные детали изображения, попавшие в заполняемую область, ведь, по сути, она просто определённым образом закрашивается. Естественно, изображение получается размытым, лишённым мелких деталей.

Кстати, с подобными алгоритмами можно встретиться в компьютерных программах, работающих с фотографиями. При увеличении фотографии программа раздвигает её пиксели, заполняя промежутки между ними по определённому алгоритму. Легко увидеть, что фотография при этом теряет чёткость, становится размытой.

Но тогда возникает вопрос, а насколько восстановленное изображение соответствует реальности, ведь по фрагментам мозаики можно создать множество возможных картин? Здесь на помощь учёным приходит моделирование, которое позволяет из всех возможных изображений отобрать те, которые выглядят наиболее разумными.

Ещё одна проблема — неоптимальное расположение уже существующих телескопов для использования их для исследования данного объекта методом интерферометрии.

Но успешное решение этой задачи даёт надежду на то, что к исследованиям присоединятся другие телескопы и на измерения будет выделено достаточно времени, чтобы получить чёткое и детальное изображение чёрной дыры.

Почему это событие важно?

Астрофизики уже давно не сомневаются в существовании чёрных дыр, но до сих пор это была лишь модель, которая очень хорошо описывала целый ряд астрофизических явлений: излучение ядер галактик, двойные рентгеновские системы и т. д. Да, без неё трудно объяснить наблюдаемые явления, но это была всё же модель. А вот теперь мы увидели чёрную дыру воочию, это наблюдаемый факт. Кроме того, впервые получено экспериментальное подтверждение вращения чёрных дыр.

Новых результатов работа EHT в целом не принесла. Многие свойства полученного изображения даже неожиданно хорошо соответствуют теоретическим представлениям. Но, с другой стороны, это даёт уверенность в правильности методов измерения и интерпретации результатов, в том числе и оценок массы чёрной дыры.

Одна из дальнейших целей EHT — понять, почему, в отличие от других галактик, сверхмассивная чёрная дыра в центре Млечного Пути сравнительно тусклый объект — её яркость всего в несколько сотен раз больше яркости Солнца.

Примет ли Россия участие в проекте?

В случае ввода в строй этих телескопов Россия, возможно, сможет принять участие в проекте EHT.

Читайте также: