Есть ядро у вируса спида

Обновлено: 27.03.2024

Проведя тщательный анализ этого образца, группа ученых во главе с Майклом Уороби (Michael Worobey) из университета Аризоны показала, что этот мужчина был инфицирован ВИЧ — вирусом, вызывающим синдром приобретенного иммунодефицита.

При жизни ни сам мужчина, ни его лечащие врачи об этом не знали. Формально вирус будет открыт лишь 17 лет спустя.

Извлекая крошечные генетические фрагменты из образца ткани, команда Уороби практически полностью реконструировала геном ВИЧ в том виде, в котором он существовал в те годы. А сама работа ученого помогла пролить свет на возникновение того, что станет причиной одной из самых важных пандемий в истории человечества.

В погоне за образцами

Вирус иммунодефицита человека был выявлен в 1980-х, после того как таинственный новый синдром затронул жителей США, и, как казалось, тогда он появился из ниоткуда. На самом деле эпидемия зародилась за несколько десятилетий до этого, просто на совсем другом континенте. В Африке.

Теперь мы можем с уверенностью утверждать, что по мере распространения геном вируса претерпевал постоянные изменения: сравнивая накопившиеся мутации и оценивая время, за которое они произошли, ученые могут проследить историю эволюции вируса вплоть до самого момента возникновения.

по теме


Общество

Наиболее вероятное место его появления — южный Камерун. А приблизительное время — 1920-е годы. Именно там и тогда вирус от шимпанзе перешел к человеку, перед тем как вскоре перебраться в город, известный в наше время как Киншаса.

В густонаселенном и быстрорастущем регионе с множеством потенциальных реципиентов вирус и обосновался, чтобы затем распространиться по всему миру.

Очевидно, что огромное количество людей тогда было инфицировано ВИЧ еще прежде, чем кто-то узнал о его существовании. Образцы тканей некоторых из погибших сохранились до наших дней: они рутинно собирались для исследований патологоанатомами, обрабатывались химическим фиксатором, располагались на восковых подложках, изучались под микроскопом (скорее всего, безрезультатно), а затем отправлялись в хранилище.

Но поскольку вирус до своего появления на Западе не был идентифицирован, определить заранее, какой именно образец ткани, взятый в то время, может содержать его следы, невозможно. Искать следы вируса в таких условиях — все равно что искать иголку в тысяче стогов сена.

Более того, процесс обработки химическим фиксатором и условия хранения образцов, дошедших до нашего времени, были таковы, что негативно влияли на содержащиеся в них РНК — молекулы, составляющие геном ВИЧ.


Вирус ВИЧ под микроскопом. Компьютерная Модель.

Однако нет ничего странного в том, что за два десятилетия поисков ученым удалось найти лишь два образца со следами вируса, собранных в Киншасе в период до его открытия.

Дэвид Хо (David Ho) из университета Рокфеллера (Rockefeller University) нашел следы вируса в образце крови, взятой в 1959 году; Уороби обнаружил их в кусочке лимфатического узла из 1960 года.

В обоих случаях от молекул РНК в целом сохранилось около одного процента. Но даже этих крошечных кусочков оказалось достаточно, чтобы доказать: именно ВИЧ блуждал по Киншасе за десятилетия до его открытия, а также чтобы наметить основные вехи истории его эволюции.

В то же время, ввиду ненадежности фрагментарных свидетельств, Уороби хотел собрать геном полностью. Целиком.

Его коллеги Софи Грисилс и Том Уоттс (Sophie Gryseels and Tom Watts) для этого разработали более точную технологию извлечения РНК и применили ее к более чем 1600 образцам тканей из Университета Киншасы (University of Kinshasa). И один из них, как оказалось, действительно содержал следы вируса.


Скрытая эпидемия. Пути распространения ВИЧ в Африке до того, как вирус попал в США.

Место и время

Извлеченные образцы оказались больше всего похожи на подтип С, наиболее распространенный тип ВИЧ в Африке. Тот, что и сейчас доминирует в южной части континента.

На поверку генетический материал, попавший в руки ученых, является лишь малой частью того разнообразия, которое существовало в Киншасе в 1960-е.

А стало быть, из всех подтипов вируса лишь некоторые из тех, что в то время можно было обнаружить в городе, вырвались наружу, дабы стать общемировой проблемой.

История ВИЧ в датах

1930-е

Исследователи полагают, что приблизительно в 1930-х некая форма вируса иммунодефицита обезьян (SIV) перебралась к людям во время разделки или поедания мяса шимпанзе в Демократической Республике Конго. Этот вирус стали называть ВИЧ-1, и это самый распространенный тип вируса на сегодняшний день.

1959

Первый известный случай заболевания СПИДом выявлен при исследовании образцов плазмы крови мужчины, умершего в Демократической Республике Конго в 1959 году.

1960-е

ВИЧ-2, ареал распространения которого ограничен западной частью Африки, перешел к людям от обезьян вида дымчатый мангобей в Гвинее-Бисау в 1960-х.

Генетический анализ вируса, проведенный в 2003 году, говорит, что именно этот тип, вероятно, впервые перебрался в Соединенные Штаты примерно в 1968 году.

1970-е

На протяжении 1970-х вирус, оставаясь незамеченным, продолжает распространяться по США и остальному миру, начинается эпидемия.

1981

Высокая распространенность двух редких заболеваний — саркомы Капоши и пневмонии — отмечена среди молодых гомосексуальных мужчин в Нью-Йорке и Калифорнии в США. Это первый задокументированный случаи СПИДа. К концу года уже 121 человек умер от таинственного заболевания.

1982

Ученые центра по контролю и профилактике заболеваний (Centers for Disease Control and Prevention, CDC) в Атланте, США, предположили, что нарушение работы иммунной системы среди гей-сообщества вызвано инфекционным заболеванием. Они ввели термин Синдром приобретенного иммунодефицита (СПИД) и установили, что помимо геев в группу риска входят потребители инъекционных наркотиков, люди гаитянского происхождения и больные гемофилией. К концу 1982 года СПИД был обнаружен на пяти континентах.

1983

Эпидемия СПИДа бурно развивается в Европе: в первую очередь среди гей-сообщества, а также среди людей, имеющих тесные связи с центральной Африкой.

Начинается расследование случаев СПИДа в Руанде, Заире и других африканских странах.

1984

Используя недавно разработанные техники, в ходе нескольких исследований независимо друг от друга Люк Монтанье (Luc Montagnier) из Института Пастера в Париже (the Pasteur Institute in Paris), Франция, и Роберт Галло (Robert Gallo) из Национального института раковых заболеваний (the National Cancer Institute) в Вашингтоне, округ Колумбия, США, обнаруживают ретровирус, ответственный за развитие заболевания, известного как СПИД. Позднее он будет назван вирусом иммунодефицита человека (ВИЧ).

Случаи заболевания СПИДом все чаще начинают появляться в среде гетеросексуалов.

1985

В Атланте, США, проведена первая конференция, посвященная проблемам СПИДа.

Вслед за прошлогодним открытием вируса на рынке появляется первый метод тестирования на ВИЧ, одобренный Управлением по контролю за продуктами и лекарствами США (US Food and Drug Administration, FDA).

В США начинается тестирование крови в донорских пунктах.

1987

Азидотимидин (AZT), также известный как Зидовудин, первый противовирусный препарат, становится доступным для лечения ВИЧ после клинических испытаний. Препарат работает, блокируя действие обратной транскриптазы фермента ВИЧ, не давая вирусу размножаться в клетках. AZT замедляет развитие СПИДа, отдаляя смерть.

К 1987 году 16908 человек умерли от СПИДа в США. Всего Всемирная организация здравоохранения (ВОЗ) сообщила о 71571 случае заболевания СПИДом, из которых 47022 — в США.

По оценкам Всемирной организации здравоохранения, по всему миру носителями ВИЧ являются от 5 до 10 миллионов человек, ВОЗ запускает глобальную программу по борьбе со СПИДом.

1988

ВОЗ объявила 1 декабря всемирным днем борьбы с ВИЧ/СПИДом.

1991

Красная лента стала международным символом борьбы с ВИЧ/СПИДом.

1992

В США СПИД вышел на первое место среди причин смертности мужчин в возрасте от 24 до 44 лет.

Первые комбинированные лекарственные препараты для лечения ВИЧ появляются на рынке, после того как FDA наряду с AZT одобрило использование Zalcitabine (ddC), который также блокирует обратную транскриптазу.

Комбинированные препараты против ВИЧ оказываются более эффективными, а комплексное лечение замедляет развитие лекарственной резистентности.

1994

Использование AZT для предотвращения передачи ВИЧ от матери ребенку во время беременности рекомендовано в США. Исследование показало, что подобная терапия снижает шанс передачи вируса во время беременности до 8 %, в контрольной группе вероятность передачи составляла 25 %.

Через 12 лет после открытия вируса правительство США впервые запускает кампанию в медиа по пропаганде использования барьерных контрацептивов.

1995

ВОЗ объявила о достижении количеством зараженных миллионной отметки, всего же с начала эпидемии ВИЧ вирусом заразились более 19,5 миллиона человек.

1996

Международная инициатива по вакцинации против СПИДа (IAVI) — некоммерческая организация, базирующаяся в Нью-Йорке, — создана для ускорения поиска вакцины против ВИЧ.

90 % всех заболевших теперь проживают в развивающихся и развитых странах.

1997

Впервые благодаря появлению ВААРТ отмечено резкое падение смертности от СПИДа.

ООН объявляет, что к 2010 году 40 миллионов детей могут потерять одного или обоих родителей из-за СПИДа.

1998

Первые полномасштабные испытания вакцины против ВИЧ начинаются в США.

Две команды исследователей начинают разработку вакцин против штаммов ВИЧ, распространенных в странах Африки к югу от Сахары

В Сан-Франциско обнаружен штамм ВИЧ, устойчивый ко всем лекарственным средствам, подавляющим протеазу, которые в то время существовали на рынке. У некоторых пациентов, использующих для лечения ингибиторы протеазы, встречаются необычные побочные эффекты, такие как рост жировых отложений и проблемы с сердцем.

1999

33 миллиона человек инфицированы ВИЧ, а 14 миллионов умерли от СПИДа по всему миру.

СПИД становится одним из четырех самых массовых убийц современности.

2001

Индийская компания начинает продавать копии дорогих запатентованных лекарств против СПИДа через медицинскую благотворительную организацию в Африке. Этот шаг заставляет некоторые фармацевтические компании снижать цены.

2003

5 миллионов новых случаев СПИДа выявлены на протяжении 2003 года — самое большое количество с начала эпидемии. 3 миллиона человек умерли от СПИДа в этом же году.

2005

Около 40 миллионов человек инфицированы ВИЧ по всему миру.

Высокорезистивный штамм вируса, вызывающий быстрое развитие СПИДа, обнаружен в Нью-Йорке, США.

По оценкам ученых, сам ВИЧ возник где-то между 1896 и 1905 годом. Далеко не все вирусы так молоды. Когда ученые впервые обнаружили следы гепатита B времен Бронзового века, они подсчитали, что вирус менялся в 100 раз медленнее, чем предполагалось до этого. Открытие кардинально изменило предполагаемый период его возникновения. Даже ВИО (вирусы иммунодефицита обезьян), ближайшие родственники ВИЧ, поражающие шимпанзе, эволюционировали с разной скоростью в далеком прошлом и в новейшей истории, что делает оценку времени возникновения очень сложной.

В целом именно благодаря этому факту статистическими методами ученым удалось достаточно точно локализовать время и место начала пандемии. Установить, что с 1920-х годов именно Киншаса, ныне столица Демократической Республики Конго, стала центром первого очага эпидемии ВИЧ, а также положила начало эпидемии 1960-х годов в других частях континента.

Отсюда, из Киншасы, вирус прибыл на Гаити примерно в 1964 году. Причиной тому стало возвращение на родину жителей этого островного государства. До середины 60-х многие жители Гаити работали в только что получившем свою независимость Конго в качестве специалистов. И значительная часть гаитянских работников проживала именно в Киншасе.


Миграция из Гаити в США. Вторая половина 60-х тут наблюдается резкий рост. ВИЧ попадет в США именно в этот период.

Уже с Гаити вирус вместе с мигрантами перебрался на материк — в Соединенные Штаты Америки. Где очень быстро распространился среди гомосексуалов, воспользовавшись относительной уязвимостью перед ВИЧ именно этой группы.

Первые смерти от симптомов, крайне похожих на СПИД, будут зафиксированы здесь (преимущественно среди афроамериканских геев) уже в конце 60-х. Накануне знаменитых Стоунвольских бунтов, органично связанных с борьбой за права черного населения Америки и ставших отправной точкой эмансипации ЛГБТ-движения, завершившегося нынешней либерализаций законодательства относительной однополых браков и партнерств практически во всех западных странах.

Работа Уороби подтвердила эти и некоторые другие тезисы. Не на моделях, а на реальном генетическом материале.

pic

В настоящее время описаны 2 серотипа вируса: ВИЧ-1 и ВИЧ-2, различающиеся по структурным и антигенным характеристикам. Наибольшее эпидемиологическое значение имеет ВИЧ-1, который доминирует в современной пандемии и имеет наибольшее распространение на территории Российской Федерации. По данным электронной микроскопии, вирионы ВИЧ имеют округлую форму диаметром 100-120 нм. Наружная мембрана вируса построена из белков клетки хозяина и пронизана собственными белками вируса, которые обозначены как оболочечные белки.

Вирусная частица представляет собой ядро (cor), окруженное оболочкой. Ядро содержит двойную вирусную РНК, обратную транскриптазу (ревертазу), интегразу, протеазу. Различают два основных белка оболочки - трансмембранный гликопротеин с молекулярной массой 41 кД (gр41) и внешний гликопротеин - 120 кД (gр120) (табл. 1).

Таблица 1. Группы белков ВИЧ-1 и ВИЧ-2

Группа белков ВИЧ -1 ВИЧ -2
Белки оболочки вируса gр160, 120, 41 кД gp140, 105, 36 кД
Белки сердцевины p55, 24, 17 кД p56, 26, 18 кД
Ферменты вируса p66, 51, 31 кД p68 кД

Примечание. Молекулярная масса белков выражена в килодальтонах - кД; gp - гликопротеины; р - протеины.

Нуклеоид вируса имеет округлую форму, но принимает продолговатую после отпочковывания вирусной частицы от клетки. Оболочка нуклеотида содержит протеин с молекулярной массой 24кд (р24). Между наружной оболочкой вириона и нуклеоидом существует каркас, состоящий из матриксного белка 17кд (р17).

В естественных условиях ВИЧ может сохраняться в высушенном биосубстрате в течение нескольких часов в жидкостях, содержащих большое количество вирусных частиц, таких как кровь и эякулят - в течение нескольких дней, а в замороженной сыворотке крови активность вируса сохраняется до нескольких лет.

Нагревание до температуры 56°С в течение 30 мин приводит к снижению инфекционного титра вируса в 100 раз, при 70°- 80°С вирус гибнет через 10 мин; через 1 мин инактивируется 70% этиловым спиртом, 0,5% раствором гипохлорита натрия, 1% глутаральдегидом, 6% перекисью водорода. ВИЧ относительно мало чувствителен к УФ-облучению, ионизирующей радиации.

env gp120 Самый наружный белок обеспечивает связывание с клетками-мишенями. Лиганды - молекула CD4 + ; галактозилцерамиды; рецепторы для цитокинов

gp41 Обеспечивает интернализацию вириона в клетку
gag р24 Составляет оболочку ядра вируса (нуклеокапсида)

р17 Составляет матриксное вещество вируса

р9 Связан с геномной РНК

р7 То же
pol р66 Обратная транскриптаза (синтез ДНК на матрице РНК)

р31 Интеграза (встраивает ДНК вируса в клеточный геном)

р10 Протеаза (расщепляет большие белковые трансляты на дифинитивные белки вируса)
tat p14 Существенен для экспрессии белков оболочки (Env)
nef p27 Может усиливать и ингибировать репликацию ВИЧ
vif p23 Необходим для выхода новорожденных вирусов из клетки-мишени (вероятно, участвует в фолдинге белков Env)
vpu p16 Необязателен для жизненного цикла вируса; усиливает отпочковывание вируса из клетки-мишени

Гликопротеин gр120 обусловливает присоединение ВИЧ к рецепторам СD4 клеток человека. При попадании ВИЧ в клетку под действием обратной транскриптазы синтезируется ДНК ВИЧ, встраиваемая в ДНК клетки-хозяина, которая в дальнейшем начинает продуцировать вирусные частицы.

Основа естественного иммунитета - это действие неспецифических механизмов, в большинстве своем реагирующих на повреждение тканей воспалительными реакциями. Некоторые клетки (макрофаги - МФ) и гуморальные факторы (комплемент, лизоцим) направлены на уничтожение бактерий. Другие клетки могут секретировать интерферон, действие которого в основном направлено против вирусов.

Адаптивный иммунитет основан на свойствах Т- и В-лимфоцитов избирательно отвечать на чужеродные вещества (антигены) с образованием специфической памяти и продукцией антител.

Попадая в организм человека, ВИЧ поражает различные органы и ткани, но, в первую очередь, клетки, несущие маркер СD4 + . В таблице 3 приведены основные типы клеток, поражаемых ВИЧ. В цитоплазме пораженных клеток освобождается вирусная РНК, и с помощью фермента обратной транскриптазы на основе вирусной РНК синтезируется ДНК - копия, которая встраивается в ДНК клетки хозяина (провирус). При каждом новом делении клетки все ее потомство содержит ретровирусную ДНК. В пораженной клетке начинают создаваться структурные элементы ВИЧ, из которых при помощи другого фермента - протеазы, собираются новые полноценные вирусы, в свою очередь поражающие новые клетки-мишени. С течением времени большинство зараженных клеток погибает.

Таблица 3. Типы клеток, поражаемых ВИЧ

Тип клеток Ткани и органы
Т-лимфоциты, макрофаги Кровь
Клетки Лангерганса Кожа
Фолликулярные дендритные клетки Лимфоузлы
Альвеолярные макрофаги Легкие
пителиальные клетки Толстая кишка, почки
Клетки шейки матки Шейка матки
Клетки олигодендроглии, астроциты Мозг

Уменьшение клеток, несущих рецептор СD4 + , приводит к ослаблению цитотоксической активности CD8+ Т-лимфоцитов, уничтожающих инфицированные вирусом клетки. В результате теряется контроль за проникающими в организм возбудителями бактериальных, вирусных, грибковых, протозойных и других инфекций (оппортунистических), а также за клетками злокачественных опухолей. Одновременно происходит нарушение функции В-лимфоцитов, поликлональная активация которых приводит, с одной стороны, к гипергаммаглобулинемии, а с другой - к ослаблению их способности продуцировать вируснейтрализующие антитела. Повышается количество циркулирующих иммунных комплексов, появляются антитела к лимфоцитам, что еще больше снижает число CD4 + Т-лимфоцитов. Возникают аутоиммунные процессы.

Оппортунистические инфекции, как правило, имеют эндогенное происхождение и возникают за счет активации собственной микрофлоры человека вследствие снижения напряженности иммунитета (например, эндогенная активация микобактерий туберкулеза из очагов Гона).

Цитопатическое действие ВИЧ приводит к поражению клеток крови, нервной, сердечно-сосудистой, костно-мышечной, эндокринной и других систем, что определяет развитие полиорганной недостаточности, характеризующейся разнообразием клинических проявлений и неуклонным прогрессированием ВИЧ-инфекции.

pic

Вместе с Британским Советом в России мы подготовили проект "Британские ученые", посвященный истории британской науки. В этой лекции профессор молекулярной вирусологии Университетского колледжа Лондона Грег Тауэрс рассказывает о репликации ВИЧ и поисках противовирусной вакцины.

За эту работу они получили Нобелевскую премию, и большой вклад в нее также внесли исследователи из США, например Роберт Галло. Для диагностики этого вируса был разработан тест, мы научились диагностировать наличие этого вируса, и оказалось, что им было заражено большое количество людей, но лечения тогда еще не было. И оказалось, что вирус распространяется через сексуальный контакт, то есть это заболевание, передающееся половым путем, а также через препараты крови, и в то время люди, которым вводились препараты крови, например люди с гемофилией, могли быть заражены этим вирусом. Также можно заразиться, например, через контакт с кровью - таким образом, потребители инъекционных наркотиков оказываются в группе риска: среди них часто бывает, что несколько человек используют одну иглу, и если один из них был заражен, то заражены будут и все остальные, кто использовал ту же иглу. Так что в те дни все это очень пугало: появился совершенно новый вирус, люди умирали, и никто не знал, что делать. Но, к счастью, мы довольно много знали о ретровирусах, потому что проводили исследования ретровирусов у других видов, в частности у мышей, так что довольно быстро был разработан новый тип препаратов для лечения ВИЧ, и они применяются и сейчас.

К 2016 году уже можно лечить ВИЧ коктейлем из антивирусных препаратов, которые в теории должны предотвратить заражение новых клеток тела. А это значит, что вирус в большинстве случаев становится невозможно обнаружить, и мы думаем, что пациент может прожить достаточно долгую жизнь, если будет принимать антиретровирусные препараты. Так что если вы можете себе их позволить, то все в порядке, и на Западе все хорошо, но в бедных ресурсами регионах, таких как Тропическая Африка, где меньше денег и сложнее купить довольно дорогие антиретровирусные препараты, это проблематично. Но они доступны, и сейчас существуют широкие программы по распространению антиретровирусной терапии, чтобы каждый больной мог получить доступ к необходимым препаратам.

Когда вы впервые подхватываете ВИЧ, вы получаете инфекционный синдром, очень похожий на другие вирусные инфекции, например грипп. Тогда вирус реплицируется в вашем теле до очень высоких титров, то есть очень большого количества вируса в теле, и вы чувствуете себя очень больным. У вас может появиться сыпь и температура, и вы, возможно, проведете несколько дней в постели и будете чувствовать себя так, как будто подхватили какую-то вирусную инфекцию. А затем все проходит, ваша иммунная система подавляет репликацию вируса и может даже подавить ее до очень низкого уровня, такого, что спустя несколько недель после заражения вирус в вашем теле обнаружить невозможно.

Что происходит затем - не вполне ясно, но точно известно, что ваша иммунная система постоянно сражается с вирусом. В течение этого периода времени вы не чувствуете особых симптомов, так что возникает ощущение, что вам стало лучше, вы выздоровели, но в случае с ВИЧ это не так. Он по-прежнему реплицируется в вашем теле, а это значит, что со временем по причинам, которые мы до конца не понимаем, ваша иммунная система оказывается истощенной и перестает работать. В этот момент вирус берет верх и уничтожает вашу иммунную систему, и вся эта долгая битва между вирусом и иммунной системой заканчивается полным поражением последней. Из-за этого вы заболеваете, и болезни, вызванные ВИЧ, - это в основном оппортунистические инфекции.

Сейчас считается, что если вы заражены ВИЧ, то вам нужно начать медикаментозное лечение как можно скорее, хотя раньше, если мы видели, что вы не страдаете от каких-то симптомов, мы думали, что нет нужды принимать препараты, пока симптомы не проявятся. Сейчас мы можем измерять количество клеток CD4, являющихся целью вируса, и мы можем мониторить, как себя чувствует ваша иммунная система. Раньше мы начинали лечить людей, только когда они достигали определенной точки, после которой их иммунная система выходила из строя. Сейчас мы считаем, что чем раньше начать лечение, тем лучше, так как оно помогает защитить вашу иммунную систему от урона, который она возьмет на себя, даже пока вы сами не страдаете от каких-либо серьезных симптомов. Так что цель современной терапии состоит в том, чтобы помешать вирусу размножиться. Но это, к сожалению, не приводит к излечению, и мы не вполне понимаем почему. Так что если вы принимаете антиретровирусные препараты, то вы можете подавить репликацию вируса до такого состояния, что он будет незаметен: его будет невозможно обнаружить в вашем теле. Но все же, если вы прекратите принимать препарат, за короткий промежуток времени - около нескольких месяцев - вирус вернется. Так что мы знаем, что препараты не позволяют полностью избавиться от вируса и иммунная система тоже не может избавиться от вируса, но мы не понимаем почему.

Я думаю, есть два объяснения, и в настоящее время проводится много исследований в попытках выяснить, какое из них верно (а может быть, верны оба). Объяснение первое - что вирус по-прежнему находится в вашем теле где-то в органах (возможно, в лимфоидной ткани пищеварительной системы) и тихо там себе размножается. Объяснение второе - что он действительно перестает реплицироваться, а препараты позволяют избавиться от всех клеток, которые производят вирус. В этом случае в теле остаются только те клетки, которые содержат вирус, но активно его не производят, так что, пока они не начнут производить вирус, избавиться от них не получится. Поэтому если вы перестанете принимать препараты, то рано или поздно эти клетки начнут производить вирус, и все начнется заново. Так что мы не до конца понимаем, нужно ли нам улучшать препараты, чтобы уничтожить вирус, включая его остатки в организме, или нам нужна стратегия для пробуждения клеток, которые содержат вирус, но не производят его, чтобы уничтожить и их тоже. И это задает повестку исследований, цель которых - найти лучший способ до конца вылечивать людей.

Есть две большие области исследований ВИЧ. В США, как мне кажется, сейчас пытаются сосредоточить все исследования на поиске лечения. Есть ощущение, что нам надо не валять дурака, а просто сосредоточиться на лечении больных, и это единственный способ искоренить болезнь. Конечно же, есть попытки также и изобрести вакцину, но мы не понимаем, как ее сделать, и мы недостаточно много знаем о вакцинах, чтобы понять, почему у нас не получается сделать вакцину от ВИЧ. Мы пробовали классические способы получения вакцины, и все они с ВИЧ просто не работают. Есть множество возможных причин, почему это так, но до конца мы их не понимаем. И я не думаю, что кто-то верит, что в ближайшее время вакцина появится, так что, мне кажется, произошел сдвиг в сторону идеи, что нужно искать новые способы лечения, возможно, с новыми стратегиями терапии. Это одна область исследований.

Вторая глобальная область исследований ВИЧ - использование ВИЧ как инструмента. ВИЧ очень маленький вирус, он состоит из девяти генов - это девять белков. Часть из этих белков довольно сложны и могут быть разбиты еще на несколько, но все-таки это простой вирус. Для сравнения: вирус герпеса состоит из более чем двухсот генов, тогда как у ВИЧ их всего девять. И из-за этого ВИЧ становится очень легко управляемым генетическим инструментом.

Мы можем использовать этот вирус, чтобы изучать клеточную биологию, и это оказался очень мощный инструмент для понимания, что происходит в клетках нашего тела, как они работают, как они делятся, как движется вещество, как они организованы, и ВИЧ - потрясающий инструмент в этой области. Например, мы многое узнали об экспорте РНК из клеточного ядра, как регулируется экспорт РНК из ядра, как регулируется сплайсинг. ВИЧ должен управлять этими процессами, и, изучая, как он это делает, мы узнали об этом очень многое. Мы многое поняли о контроле за транскрипцией: ВИЧ обладает своим активатором транскрипции, но он работает не так, как другие активаторы, и изучение этого процесса позволило нам понять многое о том, как транскрипция работает в целом. Так что это потрясающий инструмент для решения разных научных вопросов, и в моей лаборатории мы используем ВИЧ именно как инструмент для исследования иммунной системы.

Нас часто спрашивают: действительно ли изучение ВИЧ и того, как он работает, помогает лечить его или другие болезни? И я думаю, что ответ - да. Очень важно понимать: когда в начале 1980-х годов ВИЧ только появился, единственное, как мы могли разработать лечение, - это основываясь на понимании биологии ретровирусов, которое мы получили, изучая ретровирусы мышей. Все лечение ВИЧ основано на твердом понимании того, как он работает. И если мы расширим наше понимание, мне кажется, оно поможет нам разработать и новые препараты. Вопрос в том, нужны ли нам новые препараты: те, которые мы используем сейчас, уже достаточно эффективны. Устойчивость к препаратам - вот это проблема. Если вы лечите кого-то одним препаратом, вирус может мутировать, измениться и перестать быть чувствительным к нему. Но если вы используете несколько препаратов, то эта проблема уменьшается, так что люди обычно принимают по три препарата. Но все же устойчивость к препаратам растет, становится более распространенной, и вполне возможно, что все закончится так же, как в ситуации с устойчивостью к антибиотикам, что наши препараты станут менее эффективны в борьбе с ВИЧ. И в таком случае знание, как работает ВИЧ и как создать новый препарат, будет очень полезным. Также возможно, что, действительно хорошо поняв, как работает ВИЧ, мы сможем найти уязвимые места у всех вирусов, так что некоторые считают, что мы сможем разработать антивирусные препараты более широкого спектра действия.

Изучение вирусных инфекций в целом очень важно, так как есть вероятность, что если мы больше узнаем о том, как вирусы реплицируются, как клетки обычно защищают себя от инфекции и как вирусы преодолевают эти защитные стратегии, то мы сможем понять, какими приемами должны пользоваться разные вирусы, чтобы заразить клетки человека. И если мы начнем разрабатывать препараты, влияющие на эти процессы, есть очень высокие шансы, что мы сможем разработать антивирусные препараты широкого спектра действия. Например, можно будет разработать один препарат, который будет противодействовать большому количеству вирусов. Думаю, это только сейчас становится реалистичной перспективой, и все мы из-за этого полны энтузиазма.

Вирусы могут размножаться только внутри клетки-хозяина, перестраивая ее работу так, что клетка начинает производить новые вирусные частицы. Это серьезно нарушает работу самой клетки и в большинстве случаев ведет к ее гибели. Процесс проникновения и размножения вируса в ней сложный и содержит много стадий, а значит, специальные лекарства могут тормозить его на различных этапах.

В случае с ВИЧ это выглядит так.


по теме


Лечение

Лучшие научпоп-статьи 2018 года

После того как вирусная частица приклеилась к рецепторам CD4 и CCR5/CXCR4 и закрепилась на поверхности клетки, другой специальный белок вируса gp41 соединяет оболочку вируса с мембраной клетки-мишени и помогает вирусу проникнуть внутрь клетки (цифра 2 на схеме). На этом этапе остановить вирус может другая группа препаратов — ингибиторы слияния, например, энфувиртид. Препарат связывается с вирусным белком gp41 и нарушает его работу.


На этом этапе размножение вируса блокирует очень большое количество препаратов из двух классов — нуклеозидные ингибиторы обратной транскриптазы (НИОТ — ламивудин, абакавир, тенофовир) и ненуклеозидные ингибиторы обратной транскриптазы (ННИОТ — эфавиренз, рилпивирин). Принцип действия у веществ из обеих групп похожий: молекула лекарства связывается с обратной транскриптазой вируса, нарушает ее работу и так блокирует перенос генов вируса из РНК в ДНК. Это не позволяет генам вируса встроиться в ДНК клетки-хозяина и начать производство новых вирусных частиц.

На следующем этапе инфицирования (цифра 4 на схеме) готовая вирусная ДНК проникает в ядро и встраивается в ДНК клетки-хозяина с помощью специального вирусного фермента — интегразы. Работу этого фермента блокируют ингибиторы интегразы, например, долутегравир, не позволяя ДНК вируса встроиться в наши гены.

После того как вирусная ДНК встраивается в ДНК клетки-хозяина, клетка получает неправильную программу и начинает производить вирусные белки и РНК, необходимые для сборки новых частиц вируса (цифра 5 на схеме), используя для этого структуры, которые в норме производят собственные белки клетки. Такая перенастройка производства белка сильно нарушает работу клетки и через некоторое время вызывает ее гибель. Лекарств, которые бы влияли на этот этап размножения вируса, нет, так как здесь вирус использует собственные ферментные системы клетки-хозяина и блокирование их работы какими-то веществами навредит здоровым клеткам.

по теме


Лечение

Ошибка системы. Почему в регионах опять не хватает таблеток от ВИЧ

После синтеза вирусных белков клеткой-хозяином в работу вступает еще один фермент вируса — протеаза (цифра 6 на схеме). Дело в том, что белки ВИЧ синтезируются в виде длинных цепочек белков-предшественников, но они неактивные. Протеаза разрезает эти цепочки на более короткие фрагменты, которые становятся активными белками вируса: из одних собирается вирусная оболочка, другие выполняют функции ферментов (обратная транскриптаза, интеграза, протеаза, о которых мы говорили выше). Класс лекарств, нарушающих работу вирусной протеазы, включает большое количество препаратов от достаточно старого лопинавира до современного дарунавира. Основной недостаток препаратов этого класса — высокая степень перекрестной устойчивости: если вирус приобретает устойчивость к одному препарату, скорее всего, на него не подействует ни один другой препарат из этого класса.

На последнем этапе (цифра 7 на схеме) вирусные частицы собираются из готовых компонентов (синтезированных клеткой вирусных белков и РНК), как конструктор, и покидают клетку-хозяина. Лекарств, которые бы тормозили эти процессы, пока не существует.

ВИЧ имеет высокую склонность к мутациям, что позволяет ему быстро приобретать устойчивость к лекарствам. Мутации изменяют форму молекул ферментов вируса. Если при этом форма изменится существенно, то фермент не сможет нормально работать и такой вирус размножаться перестанет — это вредная для вируса мутация. Однако в некоторых случаях — при полезных мутациях — форма молекулы фермента меняется не сильно, а так, что сам фермент продолжает нормально работать, но молекула лекарства уже не может с ним связаться.

Поэтому для эффективного подавления размножения ВИЧ обычно назначают три разных препарата из разных групп, влияющих на разные ферменты вируса, блокируя его воспроизводство на разных этапах. Исключением является группа ингибиторов обратной транскриптазы (НИОТ и ННИОТ) — эти лекарства связываются с разными участками молекулы вирусного фермента, поэтому могут назначаться вместе, несмотря на то, что относятся к одной группе. В условиях такой терапии вирусу очень трудно выработать устойчивость, потому что одновременно должно произойти несколько полезных мутаций в разных генах вируса, а это бывает крайне редко.

Есть несколько перспективных технологий, например, CRISPR/Cas9, которые могут позволить полностью удалить вирусную ДНК из организма человека, но пока ни одна из них не прошла все необходимые исследования для подтверждения эффективности и безопасности. Исследования продолжаются.

Одни вирусы способны интегрироваться в геном клетки-мишени и таким образом оставаться во всех дочерних клетках, которые будут в будущем получены после ее деления. К таким вирусам относятся гаммаретровирусы и лентивирусы. Другие делать этого не умеют (например, адено- и аденоассоциированные вирусы). Но для производства белков и репликации (размножения) все они используют клетку и ее синтетический аппарат.

Как это работает?

Для того чтобы вирус мог проникнуть в клетку, белки его оболочки должны связаться с мембранными белками клетки-мишени. Важно отметить, что проникает вирус только в те клетки, которые могут в дальнейшем помочь его репликации. Вирус ВИЧ живет в клетках иммунной системы, вирус гепатита С — в клетках печени. Есть особые вирусы, которые поражают только растения или даже только бактерии.


Строение вируса гриппа. Под оболочкой вириома - генетический материал вируса, необходимый для его воспроизводства в клетке.

Содержащие неактивный вирус и оставшиеся в живых клетки иногда сохраняют возможность нормального функционирования. В этом случае клетки могут быть заражены, но вирус проявит себя спустя длительный период времени. Так устроен герпес.

В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусы и РНК-содержащие вирусы. И тут стоит остановиться на классификации.

Типы вирусов. Коротко о главном

Современная типология вирусов содержит 7 классов и была предложена Дэвидом Балтимором еще в 1971 году. С тех пор, впрочем, она была уточнена и расширена, в том числе советскими учеными. И выглядит в настоящее время таким образом:

Вирусы, содержащие двухцепочечную ДНК

Описание

Для репликации вирусу необходимо попасть в ядро клетки-мишени и воспользоваться ее ДНК-полимеразой. Иногда вирус вызывает незапланированное деление самое клетки, то есть становится онкогенным. Эти вирусы хорошо изучены.

Пример: Вирус герпеса, адено- и папилломавирусы

Вирусы, содержащие одноцепочечную ДНК

Описание

Попадая в ядро клетки, вирусы образуют двухцепочечную ДНК, после чего реплицируются так же, как вирусы класса I.

Пример: Парво- и цирковирусы

Вирусы, в которых РНК способна к репликации (редупликации)

Описание

Вирусы этого класса могут размножаться в цитоплазме клетки, им не нужна молекула ДНК. Каждый ген, находящийся в РНК вируса, кодирует только один вирусный белок.

Пример: Бирна- и реовирусы

Вирусы, содержащие одноцепочечную (+) РНК

Описание

Из геномной (+) РНК на рибосомах хозяина создаются вирусные белки. В одном фрагменте РНК могут быть закодированы разные белки, что увеличивает сложность вируса без удлинения генов.

Пример: Пикорнавирусы (полиомиелит, гепатит А) и коронавирусы

Вирусы, содержащие одноцепочечную (–) РНК

Описание

(–) РНК этих вирусов предварительно должна быть транскрибирована в (+) РНК вирусными РНК-полимеразами, после чего может начаться синтез вирусных белков. Вирусы этого класса делятся еще на две группы, в зависимости от их генома и места его репликации (цитоплазма или ядро).

Пример: Филовирусы, аренавирусы (геморрагическая лихорадка Ласса), ортомиксовирусы (вирусы гриппа) и так далее.

Вирусы, содержащие одноцепочечную (+) РНК, реплицирующиеся через стадию ДНК

Описание

Такие вирусы используют фермент обратную транскриптазу для превращения (+) РНК в ДНК, которая встраивается в геном хозяина ферментом интегразой. Дальнейшая репликация происходит при помощи полимераз клетки хозяина.

Пример: Ретровирусы (в том числе ВИЧ)

Вирусы, содержащие двухцепочечную ДНК, реплицирующиеся через стадию одноцепочечной РНК

Описание

Молекула ДНК замкнута в кольцо и является матрицей для синтеза мРНК и дополнительных молекул РНК, которые используются при репликации вирусного генома обратными транскриптазами.

Пример: Колимовирусы (вызывают инфекции растений) и гепаднавирусы (например, гепатит В)

Вакцинация и лечение

Как правило, организмы умеют бороться с паразитирующими на них вирусами. На примере млекопитающих и человека мы обычно говорим о главном инструменте — врожденном иммунитете.

Впрочем, наиболее эффективен этот вид защиты в отношении бактериальных инфекций и не может обеспечить продолжительную и надежную защиту, особенно от инфекций вирусных.

Именно поэтому огромное значение имеет приобретенный иммунитет, в результате которого клетки иммунной системы обучаются вырабатывать специфические к вирусу антитела, способные уничтожать как саму вирусную частицу, так и зараженные ею клетки.

Еще одна врожденная система борьбы с вирусными инфекциями — внутриклеточная. Как правило, клетка способна распознать чужеродную РНК в своей цитоплазме, куда ее сперва и доставляют многие вирусы, и имеет специальные комплексы для ее деградации. Но часть вирусов научились обходить и эту ловушку. К примеру, ротавирусы, которые даже внутри клетки сохраняют капсид с геномной РНК.

Миссия: уничтожить

Основная сложность в лечении вирусных заболеваний заключается в том, что они используют естественные функции клеток-мишеней для своего размножения, поэтому ученым зачастую оказывается не так-то просто придумать препарат, который будет токсичен для вируса и безопасен для самой клетки. Если такой безопасности достичь не удастся, лекарство будет иметь слишком много побочных эффектов, повреждающих сам организм, что окажется нецелесообразно для использования.


Сравнение жизненных циклов ВИЧ и вируса гриппа. Если первый использует обратную транскрипцию и живет в клетках иммунной стистемы, вирион второго, проникая в эпительные клетки дыхательных путей целиком - а именно там он и обитает - распадается уже внутри клетки, а репликация вирусной РНК происходит в ядре с помощью вирусных полимераз PA, PB1 и PB2 путем комплементарного копирования.

По принципу действия противовирусные препараты подразделяются на две группы: стимулирующие иммунную систему атаковать вирусы (например, за счет индукции синтеза белков-интерферонов) и атакующие вирусы напрямую. Препараты второй группы различаются по этапу жизненного цикла вируса, на котором они активны: это препараты, препятствующие проникновению вируса в клетку, препятствующие размножению вируса внутри клетки и препятствующие выходу копий вируса из клетки.

Еще один класс противовирусных препаратов блокирует ферменты, необходимые для создания и модификаций белков вируса. Такие лекарства называют протеазными ингибиторами.

Вместо заключения: а могут ли вирусы приносить пользу?

Безусловно, да. Несмотря на то, что вирусы ассоциируются у большинства людей с однозначным вредом, они могут приносить и пользу — если речь идет о так называемых вирусных векторах и терапевтических подходах на их основе.

Исследователи давно научились помещать в белковую оболочку вируса интересующие их нуклеиновые кислоты, чтобы доставлять нужный ген в клетки, а также убирать те гены, которые делают вирус опасным для организма.

Это позволило сделать возможной генную терапию, помогающую бороться с заболеваниями, вызванными известными генетическими мутациями. Создание вирусных векторов — достаточно непростая задача, к тому же ограниченная свойствами самих вирусных частиц: количеством помещающейся генетической информации, местом ее вставки, стабильностью. Кроме того, вирусный вектор, используемый в медицине, не должен вызывать иммунного ответа или критично влиять на жизнедеятельность клетки. Тем не менее эти сложности решаются, поэтому уже одобрен ряд вполне успешных и безопасных генных терапий. А в качестве основы для вирусных векторов чаще всего используются ретро-, ленти-, адено- и аденоассоциированные вирусы.

Читайте также: