Филогенетический анализ вирусов для

Обновлено: 25.04.2024

Введение. Вирус клещевого энцефалита (ВКЭ) – важнейший с медицинской точки зрения представитель одноимённой серогруппы рода Flavivirus семейства Flaviviridae. По мнению разных исследователей, существует от 3 до 5 субтипов ВКЭ, самым распространённым из которых является сибирский.

Цель работы – сравнение биологических свойств и выявление филогенетических связей большой группы изолятов ВКЭ сибирского субтипа, циркулирующего в природных очагах юга Восточной Сибири в современный период (2006–2019 гг.).

Материал и методы. Иксодовых клещей (Ixodidae) и мелких млекопитающих (Mammalia) из природных очагов клещевого энцефалита (КЭ) Иркутской области, Республики Бурятия и Республики Тыва, а также материал от пациентов исследовали на маркеры ВКЭ в иммуноферментном анализе (ИФА) и полимераз- ной цепной реакции с обратной транскрипцией (ОТ-ПЦР). Из суспензий, показавших положительные результаты, изолировали вирус и изучали его патогенность для белых мышей (Mus) (БМ) при разных путях введения. Анализ нуклеотидных последовательностей гена Е изолятов проводили на уровне 1 пассажа. Филогенетическое дерево строили в программе MEGA X.

Заключение. Дальнейшие работы по поиску участков генома ВКЭ, ассоциированных с патогенностью, требуют определения и изучения полногеномных последовательностей репрезентативной группы штаммов, обладающих разными биологическими свойствами.

Ключевые слова

Для цитирования:

For citation:

Введение

Штаммы сибирского субтипа способны вызывать весь спектр вариантов клинического течения КЭ у человека – от инаппарантных до тяжёлых очаговых форм с летальным исходом [13][14], что может быть обусловлено в числе других факторов гетерогенностью популяции инфекционного агента по признаку вирулентности.

Цель данного исследования заключалась в сравнении биологических свойств и выявлении филогенетических связей большой группы изолятов ВКЭ сибирского субтипа, циркулирующего в природных очагах
юга Восточной Сибири в современный период.

Материал и методы

Из клещевых и мозговых суспензий, показавших положительный и/или сомнительный результат на наличие антигена (АГ) и РНК ВКЭ изолировали вирус на беспородных белых мышах (БМ) 2–3-дневного возраста [15] со сроком наблюдения 21 сут. Часть клещевых суспензий, отрицательных и/или сомнительных по результатам ИФА, преимущественно полученных с территорий с низкой численностью клещей (Усть-Ордынский Бурятский округ, УОБо), исследовали на микрокультуре клеток СПЭВ (SPEV) по наличию цитопатического действия (ЦПД) вируса [15] с последующим ИФА-тестированием и закреплением в пассажах на мышах.

Для расшифровки нуклеотидных последовательностей штаммы ВКЭ брали в работу не позднее уровня 1 пассажа, поскольку геном вируса может претерпевать изменения при адаптации к лабораторным животным [16]. В 29 случаях удалось секвенировать участок гена Е непосредственно из клещевой суспензии, в 2 случаях – из мозговой суспензии первого заражения БМ (в пассажах штаммы не закрепились).


Рис. 1. Дендрограмма нуклеотидных последовательностей гена Е (1193 п.н.) штаммов и изолятов вируса клещевого энцефалита, выделенных на юге Восточной Сибири (модель GTR+F+I+G4).
Примечание. Условные обозначения в названиях последовательностей в зависимости от источника изоляции: Ip – Ixodes persulcatus, H – human, M – mouse. Указана поддержка основных узлов >0,5.
Цифрами обозначены филогенетические кластеры, связанные с местом изоляции: 1, 2, 5 – Иркутская область, Иркутский район, Байкальский тракт; 3 – Иркутская область, Усть-Ордынский Бурятский округ; 4 – Республика Тыва; 5 – Республика Бурятия.
Fig. 1. Dendrogram for the nucleotide sequences of E gene (1193 bp) of the tick-borne encephalitis virus isolates from Southern East Siberia territory (the GTR+F+I+G4 model).
Note. The symbols in the sequences names indicate the source of isolation: Ip, Ixodes persulcatus; H, human; M, mouse. Main nodes support >0.5.
Numbers mark phylogenetic clusters associated with place of isolation: 1, 2, 5 – Irkutsk Region, Irkutsk district, Baikal road; 3 – Irkutsk Region, Ust’-Orda Buryat area; 4 – Republic of Tuva; 5 – Republic of Buryatia.

В процессе статистической обработки результатов использовали общепринятые методы: определение t-критерия, критерия Манна–Уитни и коэффициента ранговой корреляции Спирмена rs [23]. За уровень статистической значимости принимали величину р < 0,05 при 95% доверительном интервале. Расчёты проводили с помощью программы Microsoft Excel 2007. Карта изолятов создана с использованием программного продукта ArcGIS 9.3 (ESRI, Redlands, CA, США).

Результаты

Таблица 1. Изоляты вируса клещевого энцефалита с территорий юга Восточной Сибири (2006–2019 гг.)
Table 1. The tick-borne encephalitis virus isolates from Southern part of East Siberia (2006–2019)



Примечание. ОТ-ПЦР – полимеразная цепная реакция с обратной транскрипцией.
Note. RT-PCR, reverse transcription polymerase chain reaction.

Таблица 2. Генетическая принадлежность изолятов и биологические свойства групп штаммов вируса клещевого энцефалита с разных территорий Прибайкалья
Table 2. Genetic identity and biological features of strains from different areas of Baikal Region



Примечание. * данные приведены с учётом изолятов РНК; ** – один штамм – сибирский mix.
Note. * the data are given including RNA-isolates; **, one strain, siberian mix.


Рис. 2. Места изоляции вируса клещевого энцефалита на территории Прибайкалья (Иркутская область и Республика Бурятия) (а) и Республики Тыва (б) в 2006–2019 гг.
Fig. 2. Locations of the tick-borne encephalitis virus isolation in the territory of Baikal Region (Irkutsk Region and Republic of Buryatia) (a) and Tyva Republic (b) in 2006–2019.


Гликопротеин Е является основным белком оболочки ВКЭ и содержит штаммо-, типоспецифические, а также комплекс- и группореактивные детерминанты [27]. Филогенетический анализ по фрагменту гена Е не показал связи вирусной нагрузки у пациентов и тяжести течения заболевания у них с положением изолята на дереве [28], равно как и с его зоологическим происхождением; в то же время кластеризация коррелировала с географией штамма [29]. Аналогично этому в нашем исследовании филогенетический анализ последовательностей данного гена продемонстрировал связь штаммов с местом их изоляции, но не с хозяином или патогенностью для БМ.

В то же время полногеномное секвенирование штаммов позволило выявить замены в генах неструктурных белков ВКЭ, вероятно, влияющие на изменение патогенности [30][31]. По всей видимости, продолжение работы в данном направлении требует анализа полногеномных последовательностей репрезентативной группы штаммов с разной патогенностью для человека и лабораторных животных.

Заключение

Полученные нами сведения о молекулярно-генетических и биологических свойствах выделенных штаммов ВКЭ могут иметь как теоретическое, так и прикладное значение для комплексного мониторинга КЭ и планирования профилактических санитарно-противоэпидемических мероприятий, поскольку свойства вирусной популяции в природных очагах данного заболевания могут оказывать влияние на заболеваемость людей. В дополнение к этому данные о современной структуре популяции ВКЭ на юге Восточной Сибири вносят вклад в дальнейшее изучение некоторых аспектов эволюции вируса и вызываемой им инфекции в меняющейся экологической и эпидемиологической обстановке.

Список литературы

8. Карань Л.С., Погодина В.В., Колясникова Н.М., Левина Л.С., Герасимов С.Г., Маленко Г.В., и др. Сибирский подтип вируса клещевого энцефалита, доминирующий на территории России. Генетические кластеры. Медицинская вирусология. 2013; 27(1): 87.

9. Сидорова Е.А., Адельшин Р.В., Мельникова О.В., Борисова Т.И., Андаев Е.И. Анализ полипротеина штаммов вируса клещевого энцефалита, выделенных в 60-х годах ХХ века и в со- временный период на территории Забайкалья и Прибайкалья. В кн.: Покровский В.И., ред. Молекулярная диагностика. Сборник трудов. Том 2. Тамбов: Юлис; 2017: 207–8.

10. Погодина В.В., Фролова М.П., Ерман Б.А. Хронический клещевой энцефалит. Этиология, иммунология, патогенез. Новосибирск: Наука; 1986.

12. Конькова-Рейдман А.Б., Злобин В.И. Патоморфоз клещевого энцефалита на Южном Урале: современное состояние проблемы. Инфекционные болезни. 2016; 14(S1): 141.

13. Погодина В.В., Карань Л.С., Колясникова Н.М., Левина Л.С., Маленко Г.В., Гамова Е.Г., и др. Эволюция клещевого энцефалита и проблема эволюции возбудителя. Вопросы вирусологии. 2007; 52(5): 16–21.

14. Козлова И.В., Верхозина М.М., Дорощенко Е.К., Лисак О.В., Карань Л.С., Ткачев С.Е., и др. Результаты генотипирования штаммов и изолятов РНК вируса клещевого энцефалита, выделенных от больных людей в Иркутской области и Республике Бурятия. В кн.: Покровский В.И., ред. Молекулярная диагностика. Том 1. М.: МБА; 2014; (1): 520–1.

15. Мейхи Б., ред. Вирусология. Методы. Пер. с англ. Москва: Мир; 1988.

16. Якименко В.В., Дрокин Д.А., Калмин О.Б., Богданов И.И., Иванов Д.И. К вопросу о влиянии host-эффекта на штаммовую изменчивость вируса клещевого энцефалита. Вопросы вирусологии. 1996; 41(3): 112–7.

18. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Пер. с англ. Москва: Мир; 1984.

19. Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999; (41): 95–8.

23. Закс Л. Статистическое оценивание. Пер. с нем. Москва: Статистика; 1976.

24. Pogodina V.V., Savinov А.P. Variation in the pathogenicity of viruses of the tick-borne encephalitis complex for different animal species. I. Experimental infection of mice and hamsters. Acta Virol. 1964; 8: 424–34.

25. Леонова Г.Н., Мураткина С.М., Кругляк С.П. Изучение вирулентности штаммов вируса клещевого энцефалита, изолированных на юге советского Дальнего Востока. Вопросы вирусологии. 1990; 35(5): 399–401.

27. Злобин В.И., Горин О.З. Клещевой энцефалит: Этиология. Эпидемиология и профилактика в Сибири. Новосибирск: Наука; 1996.

Об авторах

Мельникова Ольга Витальевна, д-р биол. наук, старший научный сотрудник лаборатории природно-очаговых вирусных инфекций.

664047, Иркутск, Россия

664047, Иркутск, Россия

664003, Иркутск, Россия

664047, Иркутск, Россия

664047, Иркутск, Россия

664047, Иркутск, Россия


Обзор

Кладограмма бактерий и архей, построенная на основании 24-х генов с использованием Байесова вывода

Автор
Редакторы


Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Что такое филогения и филогенетический анализ?

Филогения всех живых существ, или древо жизни, является нашим представлением о степени родства организмов и о том, как шла эволюция живых существ. Кто является ближайшим родственником человека, и каким был наш общий предок? Вымерли ли динозавры, или их потомки до сих пор живут рядом с нами? Произошли ли теплокровность и способность к полету среди позвоночных единожды? Откуда вообще взялись позвоночные? На все эти вопросы уже есть ответы, и получены они были главным образом с помощью филогенетического анализа.

Немного о ДНК

Чтобы понять, как анализируют ДНК, надо вспомнить, как она устроена. ДНК, или дезоксирибонуклиновая кислота, — это очень длинная молекула, которая находится в ядре клетки. ДНК, как правило, состоит из двух закрученных спиралей, а каждая спираль состоит из множества нукеотидов. Нуклеотиды по большей части отличаются друг от друга азотистыми основаниями, которых в ДНК всего четыре: аденин, тимин, гуанин и цитозин. Именно нуклеотиды создают слабые химические связи, которыми соединяются спирали ДНК. Аденин одной спирали связывается с тимином другой спирали, а гуанин связывается с цитозином (рис. 1). Мутация происходит, когда одно основание заменяется на любое другое. Чаще всего замены происходят в парах аденин—гуанин и тимин—цитозин.

Рисунок 1. ДНК. A — аденин, C — цитозин, G — гуанин, T — тимин.

В ДНК есть последовательности нуклеотидов, которые кодируют белки, и есть участки, которые ничего не кодируют. Кодирующие последовательности — это гены. Они могут быть разной длины, но чаще всего имеют определенную структуру, по которой можно сказать — ген это или нет. Именно гены обычно используют для филогенетического анализа.

Основные принципы построения филогений

Методы построения филогений еще в 60-х годах XX века разделились на две основные ветви — фенетические и кладистические. В то время анализ родственных связей основывался на морфологических признаках [12]; с привлечением к построению филогений молекулярных признаков основные принципы анализа родственных связей остались фактически теми же.

  • В фенетике построение филогении основано на общем сходстве двух видов — то есть, чем больше общих признаков, тем ближе они друг к другу;
  • В кладистике же считается, что только уникальные для какой-либо группы признаки можно использовать для оценки родства таксонов. Родоначальником кладистического анализа является немецкий ученый Вилли Хенниг [6]. Этот автор также ввел и терминологию, которая широко используется до сих пор. Уникальные признаки называются апоморфиями; ветви, которые объединяются апоморфиями — это клады; а сама филогения называется кладограммой (рис. 2) [12].

Чтобы было более понятно, представьте три вида животных: домашнюю мышь, сумчатую мышь и кенгуру. Домашняя мышь и сумчатая мышь очень похожи друг на друга внешне, но у сумчатой мыши и кенгуру есть общая апоморфия — сумка, — что говорит о том, что эти два вида родственные. Но, естественно, филогенетический анализ основывается на гораздо большем количестве признаков, и группы могут иметь несколько апоморфий.

Рисунок 2. Полностью разрешенная кладограмма. Каждое ветвление — это клада. Обозначенные признаки являются апоморфиями.

Первые шаги. ДНК—ДНК гибридизация

Рисунок 3. ДНК—ДНК гибридизация. а — Нагревание ДНК двух видов, в результате которого двойная спираль распадается на две части. б — Охлаждение ДНК, в результате которого молекулы ДНК разных видов гибридизуются друг с другом. в — Нагревание ДНК, в результате которого гибридные молекулы ДНК распадаются.

ThinkQuest, рисунок с изменениями

Очень быстро стало понятно, что такой метод не может быть очень точным. Дело в том, что гены могут гибридизоваться не только с гомологичными им генами (гены-ортологи), но и с копиями этих генов, которых в геноме может быть довольно много (гены-паралоги) [15]. Постепенно, с развитием методики секвенирования генов , главным источником для построения филогений стали последовательности ДНК или белков, записанные в виде компьютерных файлов. В последние годы скорость накопления генетической информации растет все увеличивающимися темпами, что окончательно утверждает филогению как метод анализа и обработки биологических текстов.

Метод матрицы расстояний (distance matrix)

Рисунок 4. Метод ближайшего соседа

Разные авторы, однако, перечисляют некоторые минусы метода ближайших соседей. Например, есть мнение, что этот метод хуже работает с таксонами, которые филогенетически далеки друг от друга [4], [17]. Также недостатком можно считать и то, что метод всегда выдает дерево с одним-единственным возможным вариантом ветвления [3]. Это происходит потому, что алгоритм подразумевает построение одной филогении без сравнения с другими, тогда как в кладистических методах оцениваются деревья с различным порядком ветвления. Несмотря на то, что в серьезных филогенетических анализах методы матрицы расстояний сейчас почти не используются, они применяются, например, для быстрого построения филогений близкородственных бактерий и вирусов [18].

Метод наибольшей экономии (maximum parsimony)

Эволюция признака — тоже событие нечастое, и когда мы видим два похожих по строению органа, то мы предполагаем, что орган произошел один раз [3]. Это не означает, что признак действительно произошел только один раз, просто это наиболее вероятно. Кладограмма строится на основании многих признаков, и чем больше апоморфий характеризует ту или иную ветвь, тем больше доверия она вызывает.

Другой минус в том, что метод не учитывает разные модели замены нуклеотидов [17]. Например, в методе наибольшей экономии аденин имеет одинаковую вероятность уступить место как тимину, так и цитозину, хотя, как уже отмечалось выше, в организме аденин скорее заменится на цитозин, чем на тимин.

Методы, основанные на моделях эволюции

Наиболее часто используемые методы построения филогений на основе молекулярных данных основываются на моделях эволюции. Один из первых стал метод максимального правдоподобия (maximum likelihood). Для расчета кладограммы, помимо последовательности ДНК, надо выбрать модель замены нуклеотидов, на основании которой будут рассчитываться вероятности. Также в расчет берется длина ветви или эволюционная дистанция между двумя таксонами. Во время анализа рассчитывается, какая длина ветви наиболее вероятна с точки зрения выбранной модели, вероятности всех ветвей кладограммы умножаются, и кладограмма, имеющая наибольшую вероятность, считается правильной [3], [16], [17].

Последний и, наверное, самый популярный в наше время метод — это Байесовский вывод (Bayesian inference). Он, в общем, похож на метод максимального правдоподобия, поскольку также основывается на модели и длине ветвей. Но отличие Байесовского вывода в том, что тут берется в расчет еще один фактор — апостериорная вероятность (posterior probablity), которая рассчитывается на основании как исходных данных, так и полученных результатов анализа [3], [16], [17]. Это не очень понятно интуитивно, но суть в том, что в ходе анализа исследователь получает новые данные, которые тоже можно применить.

Приведу очень простой пример. Пусть у нас есть мешок с сотней шариков, половина их которых красные и половина — белые. Изначально вероятность вытащить шарик как белого, так и красного цвета равна 50%. Но, допустим, мы вытащили 20 красных и 40 белых шариков, и в мешке остались 30 красных и 10 белых шариков. Это означает, что к текущему моменту шанс вытащить красный шарик равен 75%, а белый — 25%, что кардинальным образом отличается от исходного состояния. В Байесовском выводе используются похожая логика, хотя, конечно же, расчеты там гораздо сложнее.

Все же насколько достоверны филогении?

Думаю, что внимательный читатель заметил, что многие перечисленные методы основаны на вероятностях, и у него может возникнуть закономерный вопрос: как можно доверять филогении, если всегда есть шанс, что построенное дерево ошибочно и не соответствует действительному ходу эволюции? Действительно, методы несовершенны, но на этот вопрос ответ есть.

Во-первых, в филогенетических методах есть понятие «поддержка: чем больше уникальных признаков поддерживают дерево или какую-то его ветвь, тем больше доверия они вызывают [12]. Само дерево может иметь низкую поддержку, зато свидетельств в пользу отдельных его ветвей может быть так много, что корректность не вызовет сомнений. Для подтверждения результата исследователи могут использовать совокупности признаков: последовательности ДНК, РНК и белков, морфологические данные, особенности поведения организмов и многое другое [11]. Когда независимые признаки подтверждают друг друга, уверенность в результате гораздо выше.

Второй ответ на поставленный вопрос еще более обнадеживающий. Его дают эксперименты, проведенные на разных организмах, для которых известна генеалогия, то есть настоящая эволюционная история [1], [5], [7], [10]. Можно привести в пример опыт с мышами, когда филогенетический анализ провели на основе ДНК 24-х линий этих животных. Оказалось, что наблюдаемая последовательность поколений и полученная филогения почти полностью соответствуют друг другу [1]. Это значит, что используемые методы как минимум способны правильно отображать эволюцию.

Плюсы и минусы молекулярных методов построения филогений

У молекулярных методов есть много преимуществ перед морфологическим анализом. Во-первых, ДНК содержит в себе множество данных, которые можно использовать в расчетах, — ведь в генах могут содержаться сотни нуклеотидов. Чаще всего для оценки родства используют больше одного гена, тогда как для анализа на основе морфологических данных используют несколько десятков признаков. Во-вторых, анализ ДНК считается более объективным. Дело в том, что морфологические признаки разные люди могут трактовать и кодировать по-разному, тогда как нуклеотиды всегда одинаковы . В-третьих, ДНК можно использовать как для анализа групп высоких рангов, так и для выяснения отношений между видами, и даже между отдельными индивидами. Морфологический же анализ более достоверен при работе с таксонами высоких рангов, чем на уровне видов, — просто потому, что чем выше ранг, тем лучше отличаются группы, и тем легче отличить аналогичный признак от гомологичного.

Первая причина заключается в том, что не каждый организм подходит для выделения ДНК. Он должен быть собран и сохранен специальным образом, иначе эта молекула просто разрушается. Множество редких и интересных видов было описано много десятков лет назад, когда еще даже про ДНК ничего не знали, и в наши дни не очень понятно, где их искать и как собирать. В первую очередь это касается мелких членистоногих, — особенно насекомых, которых чаще всего хранят сухими. То же самое можно сказать и о палеонтологических находках вымерших видов. Для оценки родства таких групп можно использовать только морфологические методы.

Третья причина — это высокая стоимость секвенирования генов. Для построения филогении одного небольшого рода можно легко потратить пару тысяч долларов. А если учесть, что гены не всегда подбирают правильно с первого раза, или некоторые экземпляры оказываются непригодными для секвенирования, то анализ надо проводить повторно, и цена может быть больше, чем предполагалось изначально. Анализ же на основе морфологических признаков обходится гораздо дешевле.


Обзор

Человеческая Т-клетка (синий), атакованная ВИЧ (желтый). Вирус ориентирован на Т-клетки, которые играют важную роль в иммунной реакции организма против вторжений, таких как бактерии и вирусы.

Автор
Редакторы


Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?

Схема трехдоменной классификации

Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA).

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].

Строение мембранных липидов бактерий и архей

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева)

Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Сценарий вирусного мира

Рисунок 3. Сценарий вирусного мира в гипотезе доклеточного происхождения вирусов подпись

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).

Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса

Схематическое представление структуры модели эволюции РНК-подобной системы

Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте.

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами .

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.

Схема общей трансдукции

Рисунок 5. Схема общей трансдукции

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].

Роль гена Peg10 в эмбриональном развитии

Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24].

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).

Горизонтальный перенос генов в рамках трехдоменного дерева

Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.


Обзор

Известны примеры, когда гены вирусов покидали вирусный мир и были отобраны для выполнения важных функций в организме хозяина. Таков оказался ген Arc, ставший ключевым игроком в обеспечении синаптической пластичности мозга млекопитающих.

коллаж автора статьи с использованием изображения с сайта Miray

Автор
Редакторы


Центр наук о жизни Сколтеха

BioVitrum

Спонсором приза зрительских симпатий выступила компания BioVitrum.

Вездесущие убийцы

Вирусы являются самой распространенной формой жизни в окружающей среде.

В океанах вирусы составляют около 90% объектов, содержащих нуклеиновые кислоты [3]. Однако в связи с их размером, который на порядки уступает таковому у клеточных форм жизни, их вклад в биомассу океана оценивается всего пятью процентами. В то время как на прокариот, количественно составляющих около 10% объектов, содержащих нуклеиновые кислоты, приходится более 90% океанической биомассы (рис. 1). По оценкам, только в мировом океане содержится 10 30 вирусных частиц, которые непрерывно инфицируют самые разные клеточные формы жизни. Так, свыше 20% инфицированных микроорганизмов ежедневно погибает от вирусов [3].

Относительные биомасса и количество прокариот, протистов и вирусов в океанах

Рисунок 1. Относительные биомасса и количество прокариот, протистов и вирусов в океанах. Приведены усредненные данные по всей толще океанических вод.

Атмосфера Земли также полна вирусами. Показано, что в нижних слоях тропосферы сквозь квадратный метр проносятся несколько миллиардов вирусных частиц в течение суток (плотность потока колеблется в диапазоне от 0,26×10 9 до >7×10 9 шт. в м 2 за сутки). В то же время аналогичный показатель для бактерий на два порядка меньше [4]. По оценкам авторов, большинство вирусов и бактерий (~69% и ~97% соответственно) путешествуют в атмосфере, будучи прикрепленными к частицам пыли или органическим агрегатам. Этот способ глобального распространения вирусов через воздух объясняет тот факт, что идентичные или очень схожие последовательности вирусных нуклеиновых кислот были обнаружены в самых различных экосистемах планеты.

Кроме того, что вирусы являются самой распространенной формой жизни на Земле, они также обладают потрясающим генетическим разнообразием и различными механизмами репродукции в клетке хозяина. Жизненный цикл некоторых из них проходит через этап встраивания своих генов в геном клетки-хозяина. И иногда эти гены, передаваясь от поколения к поколению, остаются в нем на многие миллионы лет. Таковы некоторые ретровирусы — РНК-содержащие вирусы, чей жизненный цикл проходит через стадию интеграции своего генетического материала в геном хозяина.

Неупокоенное кладбище вирусных генов

Геномы эукариот, и в особенности многоклеточных организмов, таких как растения и животные, содержат большое количество генов, принадлежащих в прошлом ретровирусам, инфицировавшим зародышевые линии предковых видов и наследуемым вертикально от родителя к потомку. По всей видимости, обнаруженные в геномах эукариот ретротранспозоны, содержащие длинные концевые повторы (long terminal repeats, LTRs), произошли именно таким образом. LTR-ретротранспозоны включают в себя три семейства: Bel/Pao (Belpaoviridae), Ty3/gypsy (Metaviridae) и Ty1/copia (Pseudoviridae). Эти мобильные генетические элементы имеют явное сходство организации генов с таковым у ретровирусов. В общем случае они содержат ген gag, кодирующий белок (group-specific antigen, группоспецифический антиген), сходный с белком капсида ретровирусов; а также гены, необходимые для репликации и последующего встраивания ретротранспозона в новый сайт-мишень. Вдобавок у семейства Ty3/gypsy также обнаружен ген вирусной оболочки (env). Недавно, на основании накопленных филогенетических данных и схожести механизмов репликации Международным комитетом по таксономии вирусов все эти три семейства ретротранспозонов были объединены с семейством Retroviridae в один порядок Ortervirales [5].

Представленность различных мобильных генетических элементов в геномах млекопитающих и других позвоночных животных

Рисунок 2. Представленность различных мобильных генетических элементов в геномах млекопитающих и других позвоночных животных. По оси ординат указан размер генома в гигабазах (Гб) (10 9 млрд пар оснований). Красной рамкой в легенде выделены LTR-ретротранспозоны. Звездой обозначен вид Homo sapiens.

С одной стороны, сохранившие активность ретротранспозоны являются геномными паразитами, которые могут приводить к дестабилизации генома. Поэтому организмы выработали эпигенетические способы сдерживания подобных угроз, включая метилирование ДНК, модификацию гистонов и малые некодирующие РНК [11]. С другой стороны, активность LTR-ретротранспозонов приводит к дополнительной изменчивости в генофонде популяций, обеспечивая новый материал для отбора [12], [13]. Чаще речь идет об изменении регуляторных участков (промоторов и энхансеров, к примеру) эукариотических генов. Однако даже целые гены ретровирусов могут в процессе эволюции организма отбираться для выполнения определенной функции этого организма. Например, гены ретровирусной оболочки (env) способствовали возникновению класса млекопитающих (Mammalia) в том виде, в каком мы наблюдаем его сейчас . Закрепившаяся за ними функция состоит в обеспечении клеточного слияния, приводящего к формированию синцитиотрофобласта в развивающейся плаценте [14].

Другим удивительным примером вирусного гена, вставшего на службу животным, является ген Arc (другое название Arg 3.1). О нем и пойдет речь в статье.

В название этой главы легла цитата из заголовка обзорной статьи 2011 года, которую опубликовали Джейсон Шеферд и Марк Бэр на основании накопленных данных о роли Arc в обеспечении синаптической пластичности нервной системы млекопитающих [16]. Ген Arc был независимо открыт в середине 90-х годов прошлого века двумя группами ученых, одной из которых руководил Пол Уорли из США, другой — Дитмар Куль из Германии. Они обнаружили, что вскоре после судорожной активности или индукции долговременной потенциации (long-term potentiation (LTP) — устойчивого усиления синаптической передачи между двумя нейронами, возникающего после высокочастотной электрической стимуляции одного из них) происходит быстрое накопление продуктов экспрессии Arc в дендритах активированных нейронов [17], [18].

Динамика накопления мРНК Arc

Рисунок 3. Динамика накопления мРНК Arc в активированных дендритах нейронов зубчатой извилины крысы (Rattus norvegicus domestica). а — Животные, не получавшие стимуляции. б — Спустя 30 мин после стимуляции. в — 1 час после стимуляции. г — 2 часа после стимуляции. На рисунке видно, что с течением времени после стимуляции мРНК Arc распространяется от тел нейронов (темно-коричневая полоса) к их удаленным дендритам (светло-коричневая полоса). Условные обозначения: DG — зубчатая извилина; GCL — гранулярный клеточный слой; CA1 — анатомическая область гиппокампа (от лат. Cornu Ammonis 1).

Подобный характер экспрессии Arc позволил отнести его к так называемым немедленным ранним генам. Немедленные ранние гены (immediate early genes, IEGs) — разнородная группа генов, способных быстро и кратковременно активироваться в течение нескольких минут после воздействия различных экстраклеточных агентов, включая факторы роста, нейромедиаторы и деполяризацию клеточной мембраны .

Позже, на нокаутных по Arc мышам (ген инактивировали во всех клетках организма) было показано нарушение извлечения долговременной памяти в разнообразных поведенческих задачах, среди которых — водный лабиринт Морриса (задача на пространственное обучение и память), условно-рефлекторное замирание на обстановку, условно-рефлекторное замирание на звуковой сигнал, задача на распознавание новых объектов и обусловленная вкусовая аверсия. В последней из перечисленных задач животное учится ассоциировать вкус определенного вещества с последующим наступлением ухудшения самочувствия. Уровень предпочтения этого вещества после нескольких сеансов обучения говорит о сформированной памяти. В то же время, ни в одной из этих задач у нокаутных животных, по сравнению с животными дикого типа, не была нарушена кратковременная память [21]. С помощью введения в миндалевидное тело (структуру лимбической системы мозга, играющюю важную роль в формировании эмоций) антисмысловых олигонуклеотидов к мРНК Arc для ингибирования ее трансляции удалось показать нарушение извлечения долговременной памяти у мышей в задаче условно-рефлекторного замирания на звуковой сигнал. Опять же, кратковременная память нарушена не была [22].

Используя оптогенетическое ингибирование нейронов гиппокампа, экспреcсировавших Arc при обучении условно-рефлекторному замиранию на обстановку, ученые смогли блокировать извлечение сформированной памяти об этой обстановке в тестировании спустя две недели [23]. С другой стороны, локальное увеличение экспрессии Arc в зрительной коре мышей за счет введения Arc-содержащих лентивирусов, восстанавливало пластичность зрительной коры, характерную для ювенильных особей этого вида [24].

Эти и многие другие результаты с очевидностью говорят о ключевой роли гена Arc в процессе формирования долговременной памяти. А теперь вернемся к его эволюционной истории.

Arc: наследие древних ретровирусов

В 2006 году по результатам широкомасштабного анализа генома человека было выявлено 85 генов, кодирующих 103 белковые изоформы, схожие с ретровирусными белками Gag. К сожалению, на тот момент лишь немногие из этих белков были охарактеризованы и исследованы экспериментально, однако в число тех немногих входил Arc, к тому времени активно исследуемый в связи со своей ролью в синаптической пластичности мозга млекопитающих [27].

Лишь спустя без малого 10 лет это наблюдение привлекло внимание нейробиологов. Научный коллектив под руководством Пола Уорли, одного из первооткрывателей Arc, с помощью рентгеноструктурного анализа установил трехмерную структуру N- и C-доменов (относительно стабильных фрагментов третичной структуры белка, укладка которых проходит независимо от остальных частей этого белка) белка Arc. Выяснилось, что трехмерная структура этих доменов имеет значительное сходство с доменом капсидного белка Gag вируса иммунодефицита человека, принадлежащего к семейству Retroviridae (рис. 4). Ученые предположили, что Arc может происходить от Ty3/gypsy ретротранспозонов [28]. Кроме того, N-домен имеет функциональный сайт связывания субъединицы ɣ2 трансмембранного пептида, регулирующего AMPA-рецепторы (transmembrane AMPAR regulatory protein gamma subunit 2, TARPɣ2, или старгазин). Известно, что AMPA-рецепторы — самый распространенный тип рецепторов, передающих быстрые возбуждающие сигналы в синапсах нервной системы позвоночных. Таким образом, структура N-домена белка Arc может опосредовать его роль в приобретении долговременной памяти, о которой шла речь выше.

Трехмерная структура доменов белка Arc

Рисунок 4. Трехмерная структура доменов белка Arc. 3D-совмещение N- и C-доменов (синий (а) и оранжевый (б) соответственно) с соответствующими доменами капсида вируса иммунодефицита человека (HIV). Розовым цветом показана субъединица ɣ2 трансмембранного пептида, регулирующего AMPA-рецепторы.

В том же году появились первые указания на то, что рекомбинантный человеческий белок Arc, как и белки вирусных капсидов, способен к обратимой самоолигомеризации при физиологических условиях [29]. Но самое интересное ждало исследователей впереди. После того, как было открыто вирусное происхождение гена Arc, учитывая его важную роль в обеспечении синаптической пластичности, резонно было задаться вопросом: какими свойствами ретровирусов он может обладать?

Для начала авторы провели масштабный филогенетический анализ и обнаружили высоко консервативные ортологи мышиного гена Arc у всех исследованных наземных позвоночных, но не у рыб и других вторичноротых. Ортологи и паралоги гена Arc плодовой мушки Drosophila melanogaster, darc1 и darc2, были обнаружены у так называемых настоящих мух (секция Schizophora), но отсутствовали у других исследованных первичноротых (рис. 5) [30].

Филогененетическое дерево Arc

Рисунок 5. Филогененетическое дерево, отражающее эволюционные связи гена Arc наземных позвоночных (четвероногих), darc1 мух и gag, родственных Ty3/gypsy ретротранспозонам. Указаны следующие ретровирусные гены: группоспецифического антигена Gag (обозначен зеленым), белка капсида; полимеразы Pol (обозначен оранжевым), необходимой для репликации и последующего встраивания вирусной ДНК в геном хозяина; белка вирусной оболочки Env (обозначен голубым).

Интересно, что в этом же номере журнала вышла не менее потрясающая статья, в которой был описан механизм транс-синаптической передачи белка dArc1 и его мРНК в нейро-мышечном контакте у личинок плодовых мушек [31]. По всей видимости, наземные позвоночные, обладающие лишь одной копией гена Arc, приобрели его независимо от генов darc настоящих мух, у которых произошло несколько раундов дупликаций этого гена. Однако и тот, и другой имеют значительную гомологию в ретровирусном Gag-домене [30].

Капсидоподобные структуры, формируемые белком Arc

Взаимодействие Arc с РНК

Эндогенный Arc способствует переносу мРНК Arc от нейрона к нейрону

Однако самым удивительным в этой истории оказалось, что перенесенная мРНК Arc начинает транслироваться в дендритах нейронов при деполяризации их мембраны. Ранее было показано, что мРНК Arc транслируется при активации метаботропных глутаматных рецепторов mGluR1/5 (обеспечивающих медленную, опосредуемую метаболическими путями, реакцию на глутаматергические сигналы), например, их агонистом DHPG (3,5-дигидроксифенилглицином) [32]. Авторы повторили выше описанные эксперименты по переносу мРНК Arc в нейроны гиппокампа нокаутных по Arc мышей, но в этот раз добавили в культуральную среду DHPG, вызвав деполяризацию мембраны их дендритов. В итоге в дендритах этих нейронов количество белка Arc достоверно значимо увеличивалось (рис. 9). В свою очередь ингибитор трансляции циклогексимид (CHX) блокировал эффект увеличения количества белка Arc в дендритах, вызванный добавлением DHPG в культуральную среду.

Трансляция экзогенной мРНК Arc при деполяризации мембраны дендритов

Полученные результаты сложно переоценить: по сути, был открыт новый механизм коммуникации между нейронами, непосредственно связанный с их электрической активностью. И это открытие, как и любое другое в естественных науках, рождает множество новых вопросов, требующих дальнейших исследований.

Например, какие молекулярные механизмы опосредуют выход капсидоподобных структур Arc из нейрона-донора и их проникновение в нейрон-акцептор? Или, учитывая гомологию Arc млекопитающих и darc1 мух, является ли это результатом конвергентной эволюции? Если да, то какие эволюционные требования привели к отбору этих генов для обеспечения функций нервной системы в столь далеких друг от друга таксонах? Вне всяких сомнений в ближайшем будущем нас ждет еще немало удивительных открытий, связанных с геном Arc, потомком древних ретровирусов.

Подробнее эти и другие вопросы, связанные с геном Arc, обсуждаются в обзоре [33].

Читайте также: