Имеет нуклеотид вирус или бактерия

Обновлено: 24.04.2024

Структура и типы РНК человека: транспортная, ядерная, рибосомальная, митохондриальная и т.д.

Гетерогенная ядерная и информационная РНК

ГяРНК и её производное — информационная (или матричная) РНК переносят генетическую информацию от ядерной ДНК к цитоплазме.

Количество видов гяРНК равно количеству генов, так как она служит прямой копией кодирующих последовательностей генома. В процессе транскрипции РНК с ДНК ключевую роль играет фермент РНК-полимераза II. Информационная РНК образуется в результате процессинга гяРНК, при котором происходят вырезание некодирующих участков (интронов) и склеивание кодирующих экзонов. Таким образом, в состав иРНК входят кодирующая информация соответствующих видов гяРНК, а также фланкирующий лидерный и трейлерный участки, по этой причине она значительно короче.

Транспортная РНК

Так, например, тРНК, антикодон которой имеет последовательность 5'-ЦЦА-3', может нести только аминокислоту триптофан. Следует отметить, что данная зависимость лежит в основе передачи генетической информации, носителем которой выступает тРНК.

Транскрипция молекул тРНК происходит с кодирующих её последовательностей в ДНК при участии фермента РНК-полимеразы III. Различают более 40 семейств тРНК, которые, в свою очередь, подразделяют на несколько видов.

РНК человека

Рибосомальная РНК

Существует несколько субъединиц рРНК, которые различаются по коэффициенту седиментации (осаждения), измеряемому в единицах Сведберга (S). Данный коэффициент зависит от скорости осаждения субъединиц при центрифугировании в насыщенной водной среде.

Траскрипция рРНК с ДНК происходит при помощи двух дополнительных РНК-полимераз. РНК-полимераза I транскрибирует 5S, 5,8S и 28S в виде одного длинного 45S-тpaнскрипта, который затем разделяется на необходимые части. Таким образом обеспечивается равное количество молекул. В организме человека в каждом гаплоидном геноме присутствует примерно 250 копий последовательности ДНК, кодирующей 45S-транскрипт. Они расположены в пяти кластерных тандемных повторах в коротких плечах хромосом 13, 14, 15, 21 и 22.
Данные участки известны как ядрышковые организаторы, так как их транскрипция и последующий процессинг 45S-транскрипта происходят внутри ядрышка.

Не менее чем в трёх кластерах хромосомы 1 существует 2000 копий 5S-pPHK гена. Их транскрипция протекает в присутствии РНК-полимеразы III снаружи ядрышка. Затем они доставляются к местам сборки рибосом при помощи рибосомальных белков.
В рРНК насчитывают около 95 псевдоуридиновых участков, образованных посредством изомеризации уридина малой ядрышковой РНК.

Малая ядерная РНК. Превращение гяРНК в иРНК путём удаления интронов проходит в ядерном комплексе РНК-белков, называемом сплайсомой. У каждой сплайсомы есть ядро, состоящее из трёх малых (низкомолекулярных) ядерных рибонуклео-протеинов, или снурпов. Каждый снурп содержит хотя бы одну малую ядерную РНК и несколько белков. Существует несколько сотен различных малых ядерных РНК, транскрибируемых в основном РНК-полимеразой II.
Считают, что их основная функция — распознавание специфических рибонуклеиновых последовательностей посредством спаривания оснований по типу РНК—РНК. Для процессинга гяРНК наиболее важны Ul, U2, U4/U6 и U5.

Малая ядрышковая РНК. Малая (низкомолекулярная) ядрышковая РНК в основном участвует в направлении или проведении модификаций оснований в рРНК и малой ядерной РНК, таких, как, например, метилирование и псевдоуридинизация. Большинство малых ядрышковых РНК находятся в интронах других генов.

Сигналраспознающая РНК. Сигналраспознающая РНК распознаёт сигнальную последовательность белков, предназначенных для экспрессии, и участвует в их переносе через цитоплазматическую мембрану.

Митохондриальная РНК

Митохондриальная ДНК представляет собой непрерывную петлю и кодирует 13 полипептидов, 22 тРНК и 2 рРНК (16S и 23S). Большинство генов находятся на одной (тяжёлой) цепи, однако некоторое их количество расположено и на комплементарной ей лёгкой. При этом обе цепи транскрибируются в виде непрерывных транскриптов при помощи митохондриоспецифической РНК-полимеразы. Данный фермент кодируется ядерным геном. Длинные молекулы РНК затем расщепляются на 37 отдельных видов, а мРНК, рРНК и тРНК совместно транслируют 13 мРНК. Большое количество дополнительных белков, которые поступают в митохондрию из цитоплазмы, транслируются с ядерных генов.

У пациентов с системной красной волчанкой обнаруживают антитела к снурп-белкам собственного организма. Кроме того, считают, что определённый набор генов малой ядерной РНК хромосомы 15q играет важную роль в патогенезе синдрома Прадера—Вилли (наследственное сочетание олигофрении, низкого роста, ожирения, гипотонии мышц).

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Вирусы открыты Д.И.Ивановским (1892 г., вирус табачной мозаики).

Вирусы – это внутриклеточные паразиты, они могут жить и размножаться только в живых клетках. Вирусы паразитируют на клетках организмов всех царств живой природы. Вирусы бактерий называются бактериофаги.

Если вирусы выделить в чистом виде, то они существуют в форме кристаллов (у них нет собственного обмена веществ, размножения и других свойств живого). Из-за этого многие ученые считают вирусы промежуточной стадией между живыми и неживыми объектами.

Вирусы – это неклеточная форма жизни. Вирусные частицы (вирионы) – это не клетки:

  • вирусы гораздо меньше клеток;
  • вирусы гораздо проще клеток по строению – состоят только из нуклеиновой кислоты и белковой оболочки, состоящей из множества одинаковых молекул белка.
  • вирусы содержат либо ДНК, либо РНК.

Синтез компонентов вируса:

  • В нуклеиновой кислоте вируса содержится информация о вирусных белках. Клетка делает эти белки сама, на своих рибосомах.
  • Нуклеиновую кислоту вируса клетка размножает сама, с помощью своих ферментов.
  • Затем происходит самосборка вирусных частиц.

Значение вирусов:

  • вызывают инфекционные заболевания (грипп, герпес, СПИД и т.д.)
  • некоторые вирусы могут встраивать свою ДНК в хромосомы клетки-хозяина, вызывая мутации.

Синдром приобретенного иммунного дефицита вызывается вирусом иммунодефицита человека (ВИЧ). ВИЧ паразитирует на белых клетках крови (лейкоцитах лимфоцитах), это приводит к разрушению иммунной системы.

Вирус СПИДа очень нестоек, на воздухе легко разрушается. Заразиться им можно только при половых контактах без презерватива и при переливании зараженной крови.

Ещё можно почитать

Задания части1

Выберите один, наиболее правильный вариант. Доклеточные формы жизни изучает наука
1) вирусология
2) микология
3) бактериология
4) гистология

Выберите один, наиболее правильный вариант. Клетки каких организмов поражаются бактериофагом?
1) лишайников
2) грибов
3) прокариот
4) простейших

Выберите один, наиболее правильный вариант. Вирус иммунодефицита поражает в первую очередь
1) эритроциты
2) тромбоциты
3) фагоциты
4) лимфоциты

Выберите один, наиболее правильный вариант. В какой среде вирус СПИДа, как правило, погибает
1) в лимфе
2) в грудном молоке
3) в слюне
4) на воздухе

Выберите один, наиболее правильный вариант. Вирусы обладают такими признаками живого, как
1) питание
2) рост
3) обмен веществ
4) наследственность

ВИРУСЫ
Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. Вирусы:
1) не обладают собственным обменом веществ
2) являются внутриклеточными паразитами
3) способны размножаться только внутри животных клеток
4) не содержат нуклеиновых кислот
5) могут быть уничтожены применением антибиотиков
6) не способны к самостоятельному синтезу белка

Бактериофаг


ВИРУС РИС
1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие признаки характерны для указанного природного объекта?
1) характерен хемотрофный тип питания
2) образован нуклеиновой кислотой и белками
3) ведет паразитический образ жизни
4) образует споры при неблагоприятных условиях среды
5) отсутствует собственный обмен веществ
6) образует симбиоз с бактериальной клеткой

Бактериофаг


2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Какие признаки характерны для биологического объекта, изображённого на рисунке?
1) генетический материал представлен молекулами РНК
2) клеточная стенка из муреина
3) наличие мелких рибосом
4) наличие клеточного центра
5) является возбудителем СПИДа
6) имеет наружную белково-липидную мембрану

ВИРУС - БАКТЕРИЯ
1. Установите соответствие между особенностями организмов и представителями: 1) Вирус иммунодефицита, 2) Кишечная палочка. Запишите цифры 1 и 2 в правильном порядке.
А) Нет клеточной стенки
Б) Наследственный материал заключён в кольцевой ДНК
В) Наследственный материал заключён в РНК
Г) Может иметь жгутик
Д) Внутриклеточный паразит
Е) Симбионт человека

2. Установите соответствие между признаками биологического объекта и объектом, к которому относится данный признак: 1) бактериофаг, 2) кишечная палочка. Запишите цифры 1 и 2 в правильном порядке.
А) состоит из нуклеиновой кислоты и капсида
Б) клеточная стенка из муреина
В) вне организма находится в виде кристаллов
Г) может находиться в симбиозе с человеком
Д) имеет рибосомы
Е) имеет хвостовой канал

3. Установите соответствие между признаком организма и группой, для которой он характерен: 1) прокариоты, 2) вирусы.
А) клеточное строение тела
Б) наличие собственного обмена веществ
В) встраивание собственной ДНК в ДНК клетки хозяина
Г) состоит из нуклеиновой кислоты и белковой оболочки
Д) размножение делением надвое
Е) способность к обратной транскрипции

4. Установите соответствие между характеристиками и природными объектами: 1) вирусы, 2) бактерии. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) только паразитический образ жизни
Б) способность к синтезу белковых молекул
В) образование спор для перенесения неблагоприятных условий среды
Г) отсутствие собственного обмена веществ
Д) наличие клеточной стенки
Е) деление клетки надвое

Бактериофаг и бактерия


ВИРУС-БАКТЕРИЯ РИС.
1. Установите соответствие между функциями и организмами, для которых они характерны. Запишите цифры 1 и 2 в правильном порядке.
А) имеет оболочку из муреина
Б) является облигатным клеточным паразитом
В) способен к спорообразованию
Г) размножается бинарным делением
Д) состоит из ДНК или РНК и капсида
Е) способен кристаллизоваться

Вирус и бактерия


2. Установите соответствие между характеристиками и формами жизни, изображенными на рисунке. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) при неблагоприятном воздействии образует споры
Б) является облигатным внутриклеточным паразитом
В) имеет нуклеоид
Г) цитоплазматическая мембрана образует мезосомы
Д) генетический аппарат представлен молекулами ДНК или РНК
Е) имеет белково-липидную мембрану и капсид

Вирус и бактерия


3. Установите соответствие между характеристиками и формами жизни, представленными на рисунках. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) не имеет собственного метаболизма
Б) поддерживает собственный гомеостаз
В) может быть автотрофной и гетеротрофной
Г) содержит ДНК или РНК в качестве носителя наследственной информации
Д) размножается только внутри клеток хозяина
Е) может самостоятельно передвигаться

Вирус и бактерия


4. Установите соответствие между характеристиками и формами жизни, представленными на рисунках 1 и 2. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) представляет собой неклеточную форму жизни
Б) имеет нуклеоид и рибосомы
В) размножается только в живых клетках
Г) размножается делением
Д) не имеет собственного обмена веществ
Е) неблагоприятные условия переживает в состоянии споры

Вирус и бактерия


5. Установите соответствие между характеристиками и формами жизни, представленными на рисунках. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) нахождение нуклеиновой кислоты внутри белкового капсида
Б) размножение в клетках бактерий
В) может быть автотрофом или гетеротрофом
Г) не имеет рибосом
Д) размножается делением надвое
Е) не имеет собственного обмена веществ

Вирус и бактерия


Установите соответствие между признаками и организмами, обозначенными на рисунке цифрами 1-3. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) содержит линейные хромосомы
Б) имеет белковый капсид
В) клеточная стенка из муреина
Г) содержит хроматофор
Д) способен к обратной транскрипции
Е) мелкие рибосомы 70S типа

ВИРУС В ОТЛ. ОТ БАКТЕРИЙ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Вирусы, в отличие от бактерий
1) имеют неоформленное ядро
2) размножаются только в других клетках
3) не имеют мембранных органоидов
4) осуществляют хемосинтез
5) способны кристаллизоваться
6) образованы белковой оболочкой и нуклеиновой кислотой

СОБИРАЕМ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Вирусы, в отличие от бактерий
1) имеют неоформленное ядро
2) образованы белковой оболочкой и нуклеиновой кислотой
3) относятся к свободноживущим формам
4) размножаются только в других клетках

ПОСЛЕДОВАТЕЛЬНОСТЬ
1. Установите правильную последовательность стадий размножения ДНК-содержащих вирусов. Запишите в таблицу соответствующую последовательность цифр.
1) выход вируса в окружающую среду
2) синтез белка вируса в клетке
3) внедрение ДНК в клетку
4) синтез ДНК вируса в клетке
5) прикрепление вируса к клетке

2. Установите последовательность этапов жизненного цикла бактериофага. Запишите соответствующую последовательность цифр.
1) биосинтез ДНК и белков бактериофага бактериальной клеткой
2) разрыв оболочки бактерии, выход бактериофагов и заражение новых бактериальных клеток
3) проникновение ДНК бактериофага в клетку и встраивание его в кольцевую ДНК бактерии
4) прикрепление бактериофага к оболочке бактериальной клетки
5) сборка новых бактериофагов

3. Установите последовательность этапов проникновения и паразитирования в клетке вирусных частиц. В ответе запишите соответствующую последовательность цифр.
1) прикрепление вируса своими отростками к оболочке клетки
2) проникновение ДНК вируса в клетку
3) растворение оболочки клетки в месте прикрепления вируса
4) синтез вирусной ДНК и белков
5) выход вирусных частиц из клетки-хозяина
6) формирование новых вирионов

4. Установите последовательность процессов, происходящих при заражении человека вирусом иммунодефицита человека (ВИЧ). Запишите соответствующую последовательность цифр.
1) высвобождение РНК из капсида
2) трансляция вирусных белков
3) проникновение вируса в лейкоциты
4) встраивание ДНК в хромосому лейкоцита
5) обратная транскрипция

5. Установите последовательность этапов развития РНК-содержащего вируса иммунодефицита человека (ВИЧ) с момента его проникновения в лимфоцит. Запишите соответствующую последовательность цифр.
1) синтез вирусной ДНК на РНК вируса (обратная транскрипция)
2) проникновение вирусной РНК в цитоплазму лимфоцита
3) синтез иРНК и вирусных белков в лимфоците
4) самосборка вирусных частиц
5) встраивание вирусной ДНК в хромосому лимфоцита

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Обмен веществ как свойство живого характерен для
1) вирусов растений
2) простейших
3) почвенных бактерий
4) вирусов животных
5) бактериофагов

БОЛЕЗНИ
1. Установите соответствие между инфекционным заболеванием и его возбудителем: 1) бактерии, 2) вирусы, 3) простейшие. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) лямблиоз
Б) куриная холера
В) мозаичная болезнь табака
Г) коровья оспа
Д) малярия
Е) туберкулез

2. Установите соответствие между заболеванием и его возбудителем: 1) грибы, 2) гельминты, 3) вирусы. Запишите цифры 1-3 в правильном порядке.
А) аскаридоз
Б) головня злаков
В) мучнистая роса
Г) ветряная оспа
Д) грипп

Какие из перечисленных симптомов характерны для гриппа? Выберите три верных признака из шести и запишите цифры, под которыми они указаны.
1) высокая температура
2) воспалённые глаза
3) головная боль
4) выпадение волос
5) повышенный аппетит
6) слабость

• Нуклеоид бактерий выглядит как диффузная масса ДНК, однако для него характерна высокая упорядоченность и неслучайное расположение генов

• У бактерий нет нуклеосом, однако организации ДНК способствуют различные белки, связанные с нуклеоидом

• Подобно тому как это имеет место для ядра и цитоплазмы эукариотической клетки, у бактерий транскрипция происходит по всей массе нуклеоида, трансляция — на его периферической зоне

• Важную роль в организации нуклеоида играет РНК полимераза

Фундаментальное отличие клеток прокариот от клеток эукариот заключается в отсутствии у них ядерной оболочки. Присутствие ядерной мембраны у эукариот обеспечивает существование компартментов, которые разделяют процессы транскрипции и трансляции. У прокариот эти процессы не разделены мембраной, и мРНК может транслироваться во время транскрипции. Одновременное протекание этих процессов имеет важные последствия для регуляции активности некоторых генов.

Как показано на рисунке ниже, хромосомальная ДНК бактерий имеет вид аморфной массы, нуклеоида, занимающего большую часть объема в центре цитоплазмы. Нуклеоид состоит из хромосомальной ДНК и связанных с ней белков. Бактерии не содержат нуклеосом, которые участвуют в упаковке ДНК хромосом эукариотов и архей. Однако бактериальная ДНК компактна и упакована с участием многочисленных белков, ассоциированных с нуклеоидом, которые перчислены на рисунке ниже.

Нуклеоид бактерий

Электронная микрофотография, демонстрирующая,
что нуклеоид представляет собой диффузную массу, находящуюся внутри клетки бактерии.

К числу наиболее важных из этих белков относятся топоизомеразы. Они контролируют суперспирализацию ДНК, которая играет важную роль в ее компактизации, и обеспечивают протекание таких процессов, как репликация и транскрипция, для которых требуется раскручивание молекулы ДНК. Белки семейства SMC, поддерживающие структурную организацию хромосом, также участвуют в организации нуклеоида. Об этом свидетельствует фенотип соответствующих мутантов, однако конкретный механизм их участия остается неясным.

В клетках эукариот белки, близкие к SMC, участвуют в скреплении хромосом между собой и их конденсации в митозе и мейозе. Эти белки различной природы, связанные с нуклеоидом, участвуют в поддержании необходимого уровня его суперспирализации и компактизации. Однако предстоит еще выяснить, каким образом достигается и поддерживается такое состояние гомеостаза нуклеоида.

Хотя нуклеоид обладает аморфной структурой, отдельные гены располагаются в нем упорядоченно. Положение генов в нуклеоиде отражает их относительное расположение на карте хромосомы. По счастью, первое подтверждение этого было получено при исследовании свойств мутантов бактерий В. subtilis, дефектных по гену spoIIIE. Мутант этого организма не способен правильно сегрегировать хромосому при асимметрическом делении, которое сопровождает ранние стадии образования споры. Вместо этого септа деления замыкается вокруг одной копии хромосомы. У этого мутанта определенные гены почти всегда попадают в небольшой компартмент, поблизости от полюса, в то время как другие из него всегда исключаются.

Это наблюдение позволяет предполагать, что до деления хромосома всегда находится в определенном месте и в определенной ориентации.

Прямые данные были получены в исследованиях с использованием гибридизации in situ и флуоресцентной метки (FISH). Этот метод позволяет непосредственно отслеживать положение в клетке определенных генов. Однако при его использовании, перед гибридизацией зонда с ДНК, необходима фиксация препаратов и проведение других жестких воздействий. Еще один подход заключается в использовании конъюгата зеленого флуоресцирующего белка с белком LacI, связывающимся с ДНК. Этот конъюгат может присоединяться к сайтам связывания, находящимся в разных местах клетки. На основании всех этих экспериментов было показано, что гены не диффундируют по бактериальной клетке свободно, а локализованы в определенных, строго ограниченных местах.

Вообще говоря, область хромосомы, содержащая oriC, находится на одном конце нуклеоида, а область, содержащая terC, — на противоположном. Гены, которые на генетической карте расположены между двумя этими точками, распределены по нуклеоиду более или менее пропорционально.

У бактерий в аппарате транскрипции используется одна каталитическая основная РНК-полимераза, состоящая из двух а-, одной b- и одной b-субъединиц. Специфичность промотора определяется на начальном уровне различными сигма (а) факторами, которые также необходимы для инициации транскрипции, однако после этого отщепляются от кора. Регуляция транскрипции осуществляется большим набором дополнительных регуляторов, которые обычно связываются с ДНК вблизи от промотора, с тем чтобы активировать или подавлять инициацию транскрипции. Другие факторы регуляции действуют на уровне терминации (прекращения) транскрипции или изменения стабильности мРНК.

Большая часть молекул основной РНК-полимеразы находится в нуклеоиде в центре клетки. Поэтому, вероятно, здесь в основном происходит транскрипция. Напротив, рибосомы и различные белки, принимающие участие в трансляции, сосредоточены по периферии клетки. Таким образом, даже при отсутствии ядерной оболочки, в бактериальной клетке транскрипция и трансляция пространственно разобщены, подобно тому как это имеет место в клетке эукариот. Однако существуют различные данные в пользу того, что иногда у бактерий транскрипция и трансляция тесно сопряжены друг с другом.

Эти данные не противоречат имеющимся результатам, которые свидетельствуют о том, что РНК-полимеразы и рибосомы локализованы в разных местах клетки. Возможно, что оба процесса происходят на границе центральной, или сердцевинной, и периферийной областях клетки. Пока мы мало знаем об организации центральной, или сердцевинной, и периферийной областей нуклеоида, так же как и о деталях общей организации этой структуры.

Белки, участвующие в организации нуклеоида Escherichia coli.
У большинства других бактерий вместо белков MukB, MukE и MukF присутствуют белки SMC (белки, поддерживающие структуру хромосом),
а также связанные с ними факторы, родственные когезину и конденсинам эукариот.
Сегрегация хромосом после образования полярной септы при наступлении споруляции.
В холе споруляции В. subtilis клетки делятся асимметрично, образуя материнскую клетку и небольшую преспору.
Каждая клетка получает одну копию хромосомы. Сегрегация хромосом с образованием преспоры представляет собой двухэтапный процесс.
Вначале полярная разделительная септа замыкается вокруг хромосомы,
а затем белок SpoIIIE активно транспортирует оставшиеся 2/3 хромосомы в преспоровый компартмент.
У мутантов по гену spoIIIE только 1/3 хромосомы сегрегирует в преспору.
Анализ ДНК, захваченной в небольшой компартмент клеток мутанта по гену spoIIIE, показывает, что всегда захватывается специфический участок ДНК.
Это указывает на то, что до деления хромосома должна быть строго ориентирована и упорядочена.
На фотографиях, полученных во флуоресцентном микроскопе, представлены клетки спорулирующих spoIIIE-мутантов и клетки дикого типа, окрашенные на ДНК.
Несмотря на отсутствие ядерной оболочки, аппараты транскрипции и трансляции локализуются в отдельных частях бактериальной клетки.
Представлены делящиеся клетки В. subtilis.
Они экспрессируют конъюгаты белка рибосомальной субъединицы RpsB с зеленым флуоресцирующим белком (GFP)
и субъединицы РНК-полимеразы RpoC с GFP-UV, обладающие зеленой и красной флуоресценцией соответственно.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов.

Вирусы [от лат. virus, яд] — наименьшие по размерам агенты, имеющие геном, окружённый белковой оболочкой. Вирусы не воспроизводятся самостоятельно, они — облигатные внутриклеточные паразиты, репродуцирующиеся только в живых клетках. Все вирусы существуют в двух формах. В настоящее время известны вирусы бактерий (бактериофаги), грибов, растений и животных.

Внеклеточная форма — вирион — включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма — вирус — может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов. Классификация вирусов.

Морфология вирусов. Размеры вирусов.

Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пуле-видные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму (рис. 2-1). При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр — ДНК-содержащие, а тогавирусы, пикорнавирусы — РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный — более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине.

Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, — своеобразные маркёры вирусной ДНК.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов. Классификация вирусов.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека.

Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными — от 2 сегментов у ареновирусов до 11 — у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) — +РНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: