К доядерным организмам относятся вирусы и бактериофаги

Обновлено: 15.04.2024

Рабочие листы и материалы для учителей и воспитателей

Более 300 дидактических материалов для школьного и домашнего обучения

  • Онлайн
    формат
  • Диплом
    гособразца
  • Помощь в трудоустройстве

Бактерии, вызывающие ангину, относят к группе

1) автотрофных бактерий

2) бактерий гниения

Гнилостные бактерии по типу питания относят к

Ответ: 3 – питаются органическими веществами отмерших организмов.

Сахар при приготовлении варенья из фруктов используется для того, чтобы

1) сделать продукт недоступным для бактерий

2) продукт был ещё более вкусным

3) его легко было транспортировать

4) продукт был более полезным для здоровья

К царству Бактерии относят

1) сенную палочку

Ответ: 1, все остальные относятся к грибам.

К доядерным организмам (прокариотам) относят

4) туберкулезную палочку

Ответ: 4. 1 и 2 – относят вирусы, 3 – простейшие.

Сходство жизнедеятельности цианобактерий и цветковых растений проявляется в способности к

1) гетеротрофному питанию

2) автотрофному питанию

3) образованию семян

4) двойному оплодотворению

Ответ: 2, цианобактерии способны к фотосинтезу также как и цветковые растения.

По способу питания молочнокислые бактерии относят к

1) автотрофным бактериям

4) фотосинтезирующим бактериям

У бактериальной клетки отсутствует(-ют)

1) клеточное ядро

2) клеточная оболочка

3) нуклеиновые кислоты

Ответ: 1, бактерии относятся к прокариотам (доядерным)

Прочитайте текст и выполните задание 29.

БИФИДОБАКТЕРИИ И ЛАКТОБАКТЕРИИ

Бифидобактерии и лактобактерии – это часть микрофлоры желудочно-кишечного тракта человека, способствующая полноценному пищеварению.

Бифидобактерии составляют 85 – 90% микроорганизмов, населяющих кишечник ребёнка. Они способствуют перевариванию сложных углеводов, так как используют их в своём обмене веществ. Эти бактерии участвуют в синтезе и всасывании многих витаминов, способствуют синтезу незаменимых аминокислот, лучшему усвоению кальция и витамина Д, что очень важно для растущего организма. Однако важнейшим свойством бифидобактерий является угнетение роста болезнетворных, гнилостных и газообразующих бактерий. Для выполнения этой функции они обладают комплексом специальных ферментов. Бифидобактерии выделяют органические кислоты, способствующие вымиранию болезнетворных бактерий; являются иммуномодуляторами; активизируют синтез иммуноглобулинов и интерферона.

Лактобактерии встречаются в кишечнике в меньшем количестве, зато преобладают в других отделах желудочно-кишечного тракта (в ротовой полости, желудке). Они превращают молочный сахар лактозу и другие углеводы в молочную кислоту, которая подавляет рост возбудителей острых кишечных инфекций. Кроме того, лактобактерии участвуют в обмене белков, жиров, углеводов, нуклеиновых и желчных кислот; усиливают синтез витаминов и гормонов. Подобно бифидобактериям, они активизируют работу иммунной системы.

Вместе с бифидобактериями лактобактерии образуют белки, обладающие свойствами антибиотиков, избирательно действующих только против болезнетворных бактерий, и активные даже в малых дозах. В то же время бифидобактерии и лактобактерии очень уязвимы. При неправильном питании они быстро погибают, и развивается дисбактериоз.

1) Чем питаются лактобактерии?

ОТВЕТ: лактобактерии питаются молочным сахаром лактозой.

2) Что производят в организме человека бифидобактерии?

ОТВЕТ: бифидобактерии выделяют органические кислоты, способствующие вымиранию болезнетворных бактерий, участвуют в синтезе витаминов.

3) Какое значение для иммунитета человека имеют лактобактерии?

ОТВЕТ: образуют белки, обладающие свойствами антибиотиков, избирательно действующих только против болезнетворных бактерий, и активные даже в малых дозах

1) Чем питаются бифидобактерии?

ОТВЕТ: сложными углеводами.

2) Что производят в организме человека лактобактерии?

ОТВЕТ: молочную кислоту, которая подавляет рост возбудителей острых кишечных инфекций, образуют белки, обладающие свойствами антибиотиков

3) Какое значение для иммунитета человека имеют бифидобактерии?

ОТВЕТ: Бифидобактерии выделяют органические кислоты, способствующие вымиранию болезнетворных бактерий; являются иммуномодуляторами; активизируют синтез иммуноглобулинов и интерферона.

1) Какова роль бифидобактерий в организме?

ОТВЕТ: Они способствуют перевариванию сложных углеводов, так как используют их в своём обмене веществ. Эти бактерии участвуют в синтезе и всасывании многих витаминов, способствуют синтезу незаменимых аминокислот, лучшему усвоению кальция и витамина Д, что очень важно для растущего организма. Однако важнейшим свойством бифидобактерий является угнетение роста болезнетворных, гнилостных и газообразующих бактерий.

2) Почему бифидо- и лактобактерии относят к прокариотам?

ОТВЕТ: Потому что в их клетках нет оформленного ядра.

Размножение бактерий происходит

4) делением клетки надвое

Чем характеризуются бактерии гниения?

1) используют готовые органические вещества живых организмов

2) синтезируют органические вещества из неорганических, используя энергию солнца

3) используют органические вещества отмерших организмов

4) синтезируют органические вещества из неорганических, используя энергию химических реакций

Что характерно для бактериальной клетки?

1) кольцевая хромосома находится в цитоплазме

2) ядро обособлено от цитоплазмы двумя мембранами

3) транспорт веществ по ЭПС клетки

4) окисление и запасание энергии в митохондриях

Ответ: 1, бактерии не имеют мембранных органоидов таких как митохондрии, ЭПС, яро.

Какой из приёмов борьбы с болезнетворными бактериями наиболее эффективен в операционном блоке?

2) регулярное проветривание

3) мытье полов горячей водой

4) облучение ультрафиолетовыми лучами

Ответ: 4, ультрафиолетовые лучи губительны для бактерий.

К доядерным организмам (прокариотам) относят

2) кишечную палочку

3) дизентерийную амёбу

4) малярийного плазмодия

Какую часть клетки из перечисленных нельзя увидеть в электронный микроскоп, изучая бактериальную клетку?

4) клеточную стенку

Ответ: 1, бактерии – прокариоты, не имеют ядра.

Ответ: 3, благодаря им происходит переработка отмерших частей растений, трупов животных и т.д.

Укажите случай симбиоза бактерии с другим организмом.

1) вибрион холеры и человека

2) сальмонелла и курица

3) бацилла сибирской язвы и овца

4) кишечная палочка и человек

Ответ: 4, остальные примеры – паразитизм.

Какое из перечисленных ископаемых образовалось без участия бактерий?

1) каменный уголь

3) поваренная соль

Прочитайте текст и выполните задание 29.

Болгарская палочка – вид молочнокислой бактерии, известный во всём мире; она превращает молоко во вкусный и полезный йогурт. Всемирную славу этой бактерии принёс русский учёный И.И. Мечников. Он заинтересовался причиной необычного долголетия в некоторых деревнях Болгарии. Мечников выяснил, что основным продуктом питания долгожителей был йогурт. Учёному удалось выделить из продукта молочнокислую бактерию, а затем он использовал её для создания особой простокваши. Он показал, что достаточно добавить в свежее молоко немного этих бактерий, и через несколько часов в тёплом помещении из молока получится простокваша.

Болгарская палочка сбраживает лактозу молока, т.е. расщепляет молекулу молочного сахара на молекулы молочной кислоты. Молочнокислые бактерии для своей работы могут использовать не только сахар молока, но и многие другие сахара, содержащиеся в овощах и фруктах. Бактерии свежую капусту превращают в квашеную, яблоки – в мочёные, а огурцы – в солёные. В любом случае из сахара образуется молочная кислота, а энергия распада молекул сахара обеспечивает жизнедеятельность бактерий. Процесс расщепления сахара без участия кислорода относят к реакциям брожения. Расщепление веществ при участии кислорода более эффективно, так как выделяется гораздо больше энергии, чем при брожении. Поскольку энергия реакций бескислородного окисления заметно меньше, чем кислородного, бактериям приходится перерабатывать бóльшие количества веществ и выделять много продуктов обмена веществ.

Болгарскую палочку относят к факультативным (необязательным) анаэробам. Это означает, что они могут использовать и кислород для окисления углеводов.

1) Какие условия необходимы для получения простокваши?

ОТВЕТ: необходимо добавить в молоко культуру молочнокислых бактерий, тепло.

2) Откуда берётся энергия для жизнедеятельности молочнокислых бактерий?

ОТВЕТ: при расщеплении молочного сахара.

3) Почему молочнокислой бактерии для получения такого же количества энергии необходимо переработать больше веществ, чем обыкновенной амёбе?

ОТВЕТ: энергия реакций бескислородного окисления заметно меньше, чем кислородного, бактериям приходится перерабатывать бóльшие количества веществ и выделять много продуктов обмена веществ

Чем бактериальная спора отличается от свободной бактерии?

1) Спора имеет более плотную оболочку, чем свободная бактерия.

2) Спора – многоклеточное образование, а свободная бактерия – одноклеточное.

3) Спора менее долговечна, чем свободная бактерия.

4) Спора питается автотрофно, а свободная бактерия – гетеротрофно.

По способу питания цианобактерии (синезелёные) относят к

1) автотрофным бактериям

4) гетеротрофным бактериям

Ответ: 1, у них в клетках происходит фотосинтез.

Какой признак характерен для бактерий?

1) проходят через бактериальные фильтры

2) ядерное вещество не отделено от цитоплазмы

3) имеют хлоропласты

4) размножаются спорами

Некоторые бактерии выживают в условиях вечной мерзлоты в виде

1) симбиоза с грибами

3) вегетативных клеток

4) множественных колоний

Ответ: 2, при неблагоприятных условиях бактерии образуют споры.

Представитель какой группы организмов изображён на рисунке?

К прокариотическим организмам относят

2) туберкулёзную палочку

Среди бактерий имеется группа организмов, живущая в бескислородной среде, т.е. являющаяся __________ (А). При неблагоприятных условиях они могут образовывать __________ (Б). Многие бактерии имеют __________ (В), с помощью которых они передвигаются. Наследственная информация у этих микроорганизмов хранится
в __________ (Г).

Формы жизни Выделяют две основные формы жизни: клеточные и неклеточные. Подавляющее большинство организмов относится к клеточным формам жизни, к неклеточным – только вирусы. Клеточные формы делятся на прокариот (доядерные) и эукариот (собственно ядерные). Прокариоты не имеют оформленного ядра, у эукариот ядро четко выражено. К прокариотам относятся бактерии и сине-зеленые водоросли, к эукариотам — растения, животные и грибы.

Вирусы Вирусы (от лат. virus — яд) не проявляют признаков жизни вне других организмов и являются внутриклеточными облигатными паразитами. Они поражают любые организмы. Вирусы — это самые мелкие организмы Земли: их молекулы видны только под электронным микроскопом. Вирусы бактерий имеют специальное название: бактериофаги или просто фаги. Изучением вирусов занимается вирусология. Вирусы были открыты в XIX в. Д. И. Ивановским: он обнаружил и описал вирус табачной мозаики. Этот вирус поражает табак, вызывая разрушение хлорофилла, из-за чего некоторые участки органов становятся более светлыми по сравнению со здоровыми. Внешне такой орган (чаще всего лист) действительно напоминает мозаику: темные участки чередуются со светлыми. Вирус — это генетический элемент, покрытый защитной белковой оболочкой. Отдельные вирусные частицы (вирионы) представляют собой симметричные тела, состоящие из повторяющихся элементов . В центре вируса находится генетический материал — ДНК (ДНК-содержащие вирусы) или РНК (РНК-содержащие вирусы). ДНК может быть двухцепочечной или одноцепочечной, кольцевой или линейной; РНК — одно- или двухцепочечной. Генетический материал вируса окружен капсидом — белковой оболочкой, выполняющей защитную функцию. Эта оболочка состоит из многократно повторяющихся полипептидных цепочек одного или нескольких белков. Снаружи от белковой оболочки может образовываться еще одна оболочка — внешняя.

Цикл вирусов. Сначала вирус прикрепляется к клетке хозяина, затем его генетический материал проникает внутрь клетки хозяина. Если вирус содержит ДНК, то она встраивается в ДНК клетки хозяина. Далее происходит образование и-РНК вируса, синтез его белков и образование новых вирусных частиц, т. е. клетка хозяина начинает работать на вирус. РНК-содержащие вирусы ведут себя немного по-другому. Если РНК вируса состоит из двух цепей, то на одной из них синтезируется и-РНК, затем происходит синтез белков вируса и т.д. У ретровирусов, также относящихся к РНК-содержащим (например, вирус иммунодефицита человека – ВИЧ), с помощью фермента обратной транскриптазы на РНК синтезируется сначала одна цепь ДНК, а затем и вторая. После этого ДНК вируса встраивается в ДНК клетки хозяина. Весь цикл может занимать несколько минут.

Вирусы вызывают различные заболевания человека: грипп, СПИД, гепатит, полиомиелит, оспу, корь, бешенство (водобоязнь), герпес, геморрагическую лихорадку.

Прокариоты К прокариотам относятся бактерии и цианобактерии, которые объединяются в царство Дробянки. У них отсутствует оформленное ядро и мембранные органоиды, генетический материал представлен нуклеоидом (молекулой хромосомной ДНК, замкнутой в кольцо) и плазмидами (небольшими внехромосомными ДНК). Характерны мелкие рибосомы (70S), расположенные в цитоплазме, и мезосомы (впячивание мембраны внутрь клетки), выполняющие функции митохондрий.

У бактерий – из муреина, у цианобактерий — из целлюлозы

У животных нет, у грибов из хитина, у растений из целлюлозы

Ядро и генетический материал

Ядра нет; кольцевая ДНК в цитоплазме, хромосом нет. Гистонов нет

Ядро есть; двуцепочечная ДНК находится в ядре, соединена с белками-гистонами и образует хромосомы


Обзор

Многообразие мобильных генетических элементов

Автор
Редакторы


Организмы и геномы можно таким образом расценивать как секции биосферы, по которым гены глобально циркулируют с различной интенсивностью, и в которые персональные гены и опероны могут включаться, если они предоставляют достаточные преимущества.
K. Jeon и J. Danielli [1]


Основные сокращения

МГЭ мобильные генетические элементы ГГП горизонтальный генетический перенос ОРС открытая рамка считывания, последовательность нуклеотидов между инициирующим и терминирующим кодонами гена ori T место начала переноса цепи плазмидной ДНК при мобилизации ori V место начала репликации (копирования, воспроизводства) плазмидной ДНК rep ген белка-инициатора репликации многих бактериальных плазмид

Вирусы: суперпаразиты и помощники


В 2012 году охарактеризовали интегрированную в ДНК мимивирусов форму вирофага и даже новый класс МГЭ — трансповироны, способные встраиваться в ДНК и мимимирусов, и вирофагов [7]. Подобно бактериофагам, переносящим гены от одних бактерий к другим, вирофаги могут играть важную роль в ГГП между разными группами вирусов и их хозяевами.

Многие профаги кодируют факторы вирулентности, трансформируя нетоксигенные бактерии в агентов-убийц: профаг CTXphi из Vibrio cholerae кодирует холерный токсин, а упомянутый выше P22 — ферменты конверсии О-антигена сальмонеллы, позволяя ей уходить от иммунного надзора.

В составе фагов обнаруживают другие МГЭ (например, транспозоны, несущие гены антибиотикорезистентности) и их модули (системы репликации и переноса конъюгативных плазмид). Самый известный пример слияния модулей фагового и плазмидного происхождения — фаг Р1, способный реплицироваться и длительно поддерживаться вне хромосомы, ничем не отличаясь от плазмиды. Профаги разных бактерий детально рассмотрены в обзоре [8].

Плазмиды — маленькие гиганты больших процессов

Плазмиды — внехромосомные двуцепочечные молекулы ДНК, способные к длительному автономному существованию в клетках прокариот и некоторых эукариот. Чаще всего плазмидные ДНК суперскручены и ковалентно замкнуты в кольцо, однако у актиномицетов и спирохет встречаются и линейные формы, что обычно сочетается с линейной организацией хромосом. Размер плазмид обычно варьирует от 0,85 т.п.н. (pRKU1 из Thermotoga petrophila) до 600 т.п.н., но у бруцелл и ризобий описаны мегаплазмиды размером более 1 млн п.н., что иногда делает вопрос их дифференцировки от дополнительных хромосом риторическим [9]. Элиминация мегаплазмид, в отличие от хромосом, обычно не вызывает фатальных для бактериальной клетки последствий, однако вместе с плазмидами могут утратиться такие важные функции, как способность к фиксации азота и формированию симбиотических клубеньков (у ризобий).

На долю плазмидной ДНК может приходиться 1–15% наследственной информации бактериальной клетки, однако известны случаи, когда плазмидами контролируется до 25% (у некоторых Archaea) и даже до 40% информации (2 мегаплазмиды размером около 1,4 и 1,6 млн п.н. у Sinorhizobium meliloti).

Плазмидами часто мобилизуются сосуществующие с ними в одной клетке неконъюгативные МГЭ (но обладающие как минимум сайтом начала переноса oriT, а чаще и генами mob) и даже хромосомы. Мобилизация генов хромосомы возможна в случае интеграции в неё конъюгативной плазмиды. Это возможно, когда в обеих молекулах присутствуют одинаковые инсерционные последовательности (IS-элементы), обеспечивающие гомологичную рекомбинацию (типичный пример — F-фактор E.coli). Однако интеграция может быть и RecA-независимой, если плазмида кодирует тирозиновую интегразу (плазмиды стрептомицетов pSE101, pSAM2 и псевдомонад pKLK106). В этом случае интеграция чаще происходит в гены тРНК, но в некоторых хозяевах эта закономерность нарушается [3].

Транспозоны — универсальные генетические челноки

Транспозоны — МГЭ, перемещающиеся как в пределах одной молекулы ДНК, так и между разными репликонами одного генома (конъюгативные транспозоны — и между геномами). Фланкированы инвертированными повторами, а в центральной части содержат гены, ответственные за перемещение. Транспозоны прокариот подразделяют на IS-элементы, Tn-элементы и Mu-подобные фаги [10].

Интегроны — природные системы клонирования и экспрессии

В процессе перемещения от одного интегрона к другому или от одного сайта в интегроне к другому сайту, генная кассета существует как автономная и неспособная к репликации двунитевая кольцевая молекула ДНК. Кассеты, захватываемые интегронами и суперинтегронами, могут содержать гены факторов патогенности, метаболических путей, детерминанты антибиотико- и дезинфектантоустойчивости или гены рестрикционных ферментов. Интеграза IntI катализирует сайт-специфическую рекомбинацию между сайтами attI и attC, в результате чего происходит интеграция или вырезание кассеты. Множество событий интеграции ведет к образованию мультикассетных рядов, в которых все кассеты фланкированы attC-сайтами. Известны хромосомные суперинтегроны, включающие до 179 генных кассет (у Vibrio cholerae), однако среди клинически значимых бактерий большинство интегронов содержит до 5–8 генных кассет. Наиболее эффективно экспрессируются кассеты, расположенные ближе к промотору, но изменение селективного давления может способствовать перестройкам в составе интегрона.


Рисунок 3. Интегрон — ДНК, улавливающая генные кассеты и распространяемая в составе более высокоорганизованных МГЭ. а — Структура интегрона класса 1. Pint — промотор интегразы, Pant — промотор кассет антибиотикорезистентности. Остальные элементы объяснены в тексте; б — Иерархическая организация МГЭ.

Все интегроны, несущие кассеты антибиотикорезистентности, разделяют на 5 классов на основании гомологии последовательностей кодируемых ими интеграз. Большинство интегронов антибиотикорезистентности относится к классу 1 (часто ассоциированы с Tn21-семейством). Они включают два концевых невариабельных региона, называемых константными последовательностями (constant sequences, CS), и высоковариабельный центральный участок. В одном конце интегрона (5’-CS), обычно находятся intI, attI и промотор, от которого экспрессируются гены кассеты. В другом конце (3’-CS), находится часть гена qacEΔ1, который, будучи интактным, несёт устойчивость к четвертичным аммониевым соединениям. За ним расположен ген sul, определяющий резистентность микроорганизма к сульфаниламидам, и 1–2 гена с неустановленной функцией — orf5 и иногда orf6 (рис. 3, а). Интегроны класса 2 ассоциированы с Tn7-семейством, классов 3 и 5 — с плазмидами, класса 4 — с конъюгативным геномным островом SXT Vibrio cholerae.


Рисунок 4. Схематическое изображение структуры геномного острова в составе бактериальной хромосомы. DR — прямые повторы ДНК хромосомы, фланкирующие ГО; IS — инсерционные элементы.

Геномные острова гонококков (GGI) кодируют систему секреции типа IV (T4SS), родственную плазмидным системам конъюгационного переноса. Посредством T4SS распространяется не только сам элемент и его продукты, но секретируется в окружающую среду и хромосома Neisseria gonorrhoeae, которая затем может трансформировать другие бактерии и участвовать в рекомбинационных событиях.

Главные нарушители границ и их мекка

Из обитателей отстойников, а что самое опасное — из бактерий вод, уже прошедших очистку, — в большом количестве выделяют плазмиды IncP-1-группы несовместимости (в системе классификации плазмид псевдомонад) [12]. Эти относительно небольшие молекулы дарят хозяевам массу селективных преимуществ (от множественной резистентности до биодеградации хлорорганики) и способны распространяться не только среди псевдомонад, но и практически всех грамотрицательных и некоторых грамположительных бактерий. Кроме того, они способны мобилизовать неконъюгативные R-плазмиды (например, IncP-4) к переносу в ещё более широкий спектр бактерий, а также в дрожжи и клеточные линии млекопитающих [17].

Биология плазмид в России и за рубежом. Что же можно возвести на крепком фундаменте?

Формы жизни Выделяют две основные формы жизни: клеточные и неклеточные. Подавляющее большинство организмов относится к клеточным формам жизни, к неклеточным – только вирусы. Клеточные формы делятся на прокариот (доядерные) и эукариот (собственно ядерные). Прокариоты не имеют оформленного ядра, у эукариот ядро четко выражено. К прокариотам относятся бактерии и сине-зеленые водоросли, к эукариотам — растения, животные и грибы.

Вирусы Вирусы (от лат. virus — яд) не проявляют признаков жизни вне других организмов и являются внутриклеточными облигатными паразитами. Они поражают любые организмы. Вирусы — это самые мелкие организмы Земли: их молекулы видны только под электронным микроскопом. Вирусы бактерий имеют специальное название: бактериофаги или просто фаги. Изучением вирусов занимается вирусология. Вирусы были открыты в XIX в. Д. И. Ивановским: он обнаружил и описал вирус табачной мозаики. Этот вирус поражает табак, вызывая разрушение хлорофилла, из-за чего некоторые участки органов становятся более светлыми по сравнению со здоровыми. Внешне такой орган (чаще всего лист) действительно напоминает мозаику: темные участки чередуются со светлыми. Вирус — это генетический элемент, покрытый защитной белковой оболочкой. Отдельные вирусные частицы (вирионы) представляют собой симметричные тела, состоящие из повторяющихся элементов . В центре вируса находится генетический материал — ДНК (ДНК-содержащие вирусы) или РНК (РНК-содержащие вирусы). ДНК может быть двухцепочечной или одноцепочечной, кольцевой или линейной; РНК — одно- или двухцепочечной. Генетический материал вируса окружен капсидом — белковой оболочкой, выполняющей защитную функцию. Эта оболочка состоит из многократно повторяющихся полипептидных цепочек одного или нескольких белков. Снаружи от белковой оболочки может образовываться еще одна оболочка — внешняя.

Цикл вирусов. Сначала вирус прикрепляется к клетке хозяина, затем его генетический материал проникает внутрь клетки хозяина. Если вирус содержит ДНК, то она встраивается в ДНК клетки хозяина. Далее происходит образование и-РНК вируса, синтез его белков и образование новых вирусных частиц, т. е. клетка хозяина начинает работать на вирус. РНК-содержащие вирусы ведут себя немного по-другому. Если РНК вируса состоит из двух цепей, то на одной из них синтезируется и-РНК, затем происходит синтез белков вируса и т.д. У ретровирусов, также относящихся к РНК-содержащим (например, вирус иммунодефицита человека – ВИЧ), с помощью фермента обратной транскриптазы на РНК синтезируется сначала одна цепь ДНК, а затем и вторая. После этого ДНК вируса встраивается в ДНК клетки хозяина. Весь цикл может занимать несколько минут.

Вирусы вызывают различные заболевания человека: грипп, СПИД, гепатит, полиомиелит, оспу, корь, бешенство (водобоязнь), герпес, геморрагическую лихорадку.

Прокариоты К прокариотам относятся бактерии и цианобактерии, которые объединяются в царство Дробянки. У них отсутствует оформленное ядро и мембранные органоиды, генетический материал представлен нуклеоидом (молекулой хромосомной ДНК, замкнутой в кольцо) и плазмидами (небольшими внехромосомными ДНК). Характерны мелкие рибосомы (70S), расположенные в цитоплазме, и мезосомы (впячивание мембраны внутрь клетки), выполняющие функции митохондрий.

У бактерий – из муреина, у цианобактерий — из целлюлозы

У животных нет, у грибов из хитина, у растений из целлюлозы

Ядро и генетический материал

Ядра нет; кольцевая ДНК в цитоплазме, хромосом нет. Гистонов нет

Ядро есть; двуцепочечная ДНК находится в ядре, соединена с белками-гистонами и образует хромосомы

Читайте также: