Как инфракрасное излучение действует на вирусы

Обновлено: 18.04.2024

Физические методы инактивации вирусов. Гамма-лучи в инактивации вирусов.

Наиболее распространенными физическими методами инактивации вирусов являются гамма- и ультрафиолетовые (УФ) лучи.
Гамма-лучи — вид ионизирующего излучения, обладающий большой проникающей способностью. В основе действия их лежат два эффекта: прямое и непрямое воздействие. Первое заключается в непосредственном поглощении энергии излучения биологическими молекулами. Наиболее уязвимыми мишенями являются пуриновые и пиримидиновые основания. Непрямое действие — влияние на объект активных свободных радикалов Н, ОН, Н02 и молекулярных продуктов, например, перекиси водорода, образующихся в среде вследствие радиолиза воды. Перенос энергии радикалов в растворе осуществляется путем диффузии. Действие радикалов может вызвать такие изменения в ДНК, как дезаминирование оснований, дегидроксилирование, разрыв связей между дезоксирибозой и основанием, разрывы нуклеотидных цепей, окисление дезоксирибозы.

В результате реакций, происходящих под влиянием прямого и непрямого действия излучения, возможны различные повреждения структуры нуклеиновых кислот вирусов: разрыв водородных связей, появление сшивок, двухцепочечных разрывов. Белковая оболочка под воздействием радиации повреждается незначительно.

Инактивирующее действие гамма-лучей изучали на различных вирусах: осповакцины, болезни Ауески, простого герпеса, ящура, гриппа, венесуэльского энцефаломиелита лошадей, бешенства, классической чумы свиней и др.

Установлено, что при воздействии гамма-лучей инфекционность вирусов теряется быстрее, чем антигенность. Так, при облучении вируса гриппа в дозе 30 кГр наблюдали полное разрушение инфекционности при сохранении гемагглютинирующей и нейраминидазной активности. Инфекционность вируса кори утрачивалась при дозе облучения 5 кГр, в то время как гемагглютинирующая активность — при 20 кГр. Гемагглютинирующая активность вирусов японского энцефалита, венесуэльского энцефаломиелита лошадей сохранялась в препаратах, в которых не обнаруживали инфекционный вирус при облучении в дозе 50—60 кГр. Аналогичную устойчивость к облучению обнаружил основной группоспецифический белок VP7 вируса катаральной лихорадки овец.
Инактивирующий эффект гамма-лучей зависит от влажности препарата, температуры, наличия защитных средств.

схема ПЦР

Установлено, что в водных растворах вирус инактивируется значительно быстрее, чем в сухих препаратах. Более высокая скорость инактивации вирусов в водных растворах по сравнению с сухими препаратами объясняется суммарным действием прямого и непрямого эффекта. При облучении вируса в сухих препаратах, ввиду отсутствия несвязанной воды, непрямое действие практически исключается. С повышением температуры при облучении возрастает радиочувствительность вируса, которую можно ослабить введением в среду различных веществ (гистидина, цистеина, альбумина, сыворотки, желатина и др.) Для инактивации вирусов Коксаки, гриппа и полиомиелита в среде Игла с 2% сыворотки требовалось увеличить дозу более чем в три раза по сравнению с облучением в воде.

Экспериментально доказана возможность применения гамма-лучей для приготовления антигенов и инактивированных вакцин против бешенства, гриппа, оспы, венесуэльского энцефаломиелита лошадей, гепатита В и других инфекций. Применение гамма-излучения позволяет одновременно инактивировать и стерелизовать готовый препарат.

Эффективность УФ-лучей определяется их проницаемостью и адсорбцией биологическими молекулами. Белки поглощают УФ-лучи в меньшей степени, чем нуклеиновые кислоты, и поэтому более устойчивы к их действию.

Ультрафиолетовое облучение вызывает изменения структуры нуклеиновых кислот, заключающиеся в образовании димеров между соседними пиримидиновыми основаниями, а также ковалентных связей между нуклеиновой кислотой и белковой оболочкой. Повреждения ДНК приводят к инактивации вируса герпеса.

Вызывая глубокие изменения в структуре нуклеиновых кислот вирусов, УФ-лучи не оказывают существенного влияния на белковую оболочку, вследствие этого инактивированные вирусы способны сохранять свою антигенную и иммуногенную активность.

Однако такие особенности УФ-излучения как трудность выбора и контроля оптимальной дозы, обеспечивающей инактивацию вируса с сохранением антигенных свойств, а также эффекты экранирования и фотореактивации затрудняют практическое получение безопасных инактивированных препаратов.

Основной причиной, вызывающей инактивацию вируса при нагревании, является нарушение структурной целостности его генома, вызванное разрывом и образованием внутримолекулярных связей в нуклеиновой кислоте.

Инактивированная нагреванием вакцина против вирусной геморрагической болезни кроликов оказалась достаточно иммуногенной. Она вызывала устойчивость к экспериментальному заражению на 5-90-й день после однократного введения.

В процессе получения вакцины против гепатита В из плазмы крови вирусоносителей инактивацию вируса проводили в два этапа: полуфабрикат прогревали при 103°С в течение 90 секунд, а затем инактивированный сорбированный нафосфате алюминия антиген прогревали при 65°С в течение 10 ч. При таком способе происходила инактивация вируса гепатита и сопутствующих вирусов, которые могли присутствовать в донорской крови.

К простым и доступным методам инактивации вирусов относится фотодинамическое воздействие некоторых красителей, таких как метиленовая синька, акридиновый оранжевый, толуидин синий, нейтральный красный и другие, к которым чувствительны многие вирусы. Наиболее вероятный механизм такой инактивации — изменение или отщепление гуанина без разрыва полинуклеотидной цепи геномов. Фотодинамическую инактивацию применяли при изготовлении экспериментальных образцов инактивированных препаратов против клещевого энцефалита, краснухи, болезни Ауески, классической чумы свиней и других вирусов. Обработка вируса Сендай родамином-В, бриллиантовым зеленым и фиолетовым Гофмана сопровождалась частичной модификацией РНК без изменения капсидных белков. Инактивированный препарат обладал высокой иммуногенностью.

Основные показатели качества инактивированных препаратов, предназначенных для профилактической вакцинации, — безопасность и высокая иммуногенность.
При оценке качества ряда инактивированных препаратов первостепенное значение приобретает контроль авирулентности, направленный на выявление оставшихся жизнеспособных вирионов. Считается, что чем опаснее возбудитель, тем надежнее должны быть условия инактивации и методы контроля ее эффективности. Степень безопасности инактивированных вакцин находится в неразрывной связи с чувствительностью тест-системы, по которой оценивают полноту инактивации вируса. В связи с этим разработка наиболее чувствительных и совершенных методов обнаружения минимальных количеств живого вируса в инактивированных препаратах имеет большое значение. Следует иметь в виду, что, несмотря на стремление достичь полной инактивации вирусных частиц, всегда остается статистическая вероятность того, что какая-то часть из них может выдержать соответствующую обработку. Риск существования очень небольших количеств остаточного инфекционного вируса повышается по мере увеличения масштабов применения вакцины.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Инфракрасная терапия представляет собой особое электромагнитное излучение, которое позитивно воздействуют на общее состояние организма. Терапевтический эффект ИКО (инфракрасного облучения) широко применяется во многих отраслях медицины, в том числе и в отоларингологии.

Также вы можете позвонить по телефону
+38 (048) 772 72 12
+38 (073) 772 72 12
+38 (067) 772 72 25
для предварительной записи

ИКО – безопасное облучение

Благоприятное воздействие происходит за счет способности лучей определенного спектра подавлять развитие патогенной микрофлоры, улучшать кровоток и обмен веществ в тканях, активизировать иммунную систему.

Растущий объем клинических исследований подтвердил полезность использования данного метода в качестве неинвазивной медицинской оздоровительной терапии. Инфракрасное излучение оказывает сильное противовоспалительное действие и обеспечивает клеточную защиту от окислительного стресса, уничтожает бактерии, грибки и вирусы, что делает его незаменимым помощником при комплексном решении проблем с ЛОР-органами.


Что из себя представляет инфракрасная терапия небных миндалин и глотки

В современной медицине для лечения острых и хронических воспалительных процессов часто используются антибактериальные препараты. Однако они оказывают влияние не только на очаг воспаления, но и на весь человеческий организм. Снижается иммунитет, гибнет полезная микрофлора. При устойчивости патогенных микробов к данным лекарственным препаратам нередко возникают осложнения – ототоксичность, аллергические реакции, кардио-, гепато-, нефротоксичность и другие неприятные последствия.

Осложнения возникают на фоне того, что продукты жизнедеятельности болезнетворных микробов попадают в кровь и разносятся по всем органам, отравляя организм. Именно это приводит к боли в мышцах, излишней утомляемости, повышению температуры тела, воспалительным процессам.

Наиболее распространенные возбудители болезней дыхательных путей – стафилококки. Было проведено немало исследований, подтверждающих хороший результат использования лучей дальнего спектра для гибели микроорганизмов и патологически измененных тканей без вредных последствий для человека.

Амбулаторное лечение хронического тонзиллита в ЛОРИКЕ в обязательном порядке начинается с промывания лакун небных миндалин антисептическим раствором. После чего пациенту проводится инфракрасное облучение небных миндалин и задней стенки глотки. Оно позволяет охватить все слои ткани и усиливает лечебный антибактериальный эффект.

Важно отметить: предварительное промывание не используется при фарингите.

Когда необходимо ИКО при проблемах с небными миндалинами и глоткой

При хронических заболеваниях используются консервативные методы. Врачи клиники ЛОРИКА назначают комплексные процедуры для достижения максимальной эффективности. Определение типа болезнетворных микроорганизмов и их чувствительности к антибиотикам – обязательное условие качественной диагностики.

Помимо медикаментозного воздействия используются вспомогательные методы, такие как промывание лакун миндалин, полоскание горла и другие, подбираемые специалистом в каждом случае индивидуально.

ИКО оказывает не только противовоспалительное, гипосенсибилизирующее, анальгезирующее действие, но и иммуностимулирующее, за счет чего в короткие сроки достигается хороший результат, восстанавливается здоровье лакун.

Использование методики приветствуется на любом этапе заболевания, но в обязательном порядке назначается при хронических заболеваниях верхних дыхательных путей. Причем оно может выполняться как независимое лечение, так и в комплексной терапии с медикаментами.

Инфракрасное излучение (ИК-излучение) часть электромагнитного спектра с длиной волны &lambda = 0,76 1000 мкм, энергия которого при поглощении в веществе вызывает тепловой эффект. С учетом особенности биологического действия по длинам волн ИК-излучение делится на области: коротковолновую, с &lambda = 0,7615 мкм, средневолновую, с &lambda = 16-100 мкм, длинноволновую, с &lambda100 мкм.

Инфракрасное излучение также называют тепловым излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.

Действие теплового излучения на организм имеет ряд особенностей, одной из которых является способность ИК лучей различной длины волны проникать на различную глубину и поглощаться соответствующими тканями, оказывая тепловое действие. Короткие инфракрасные лучи длиной до 1,4 мкм проникают в ткани на глубину нескольких сантиметров, поглощаются кровью и водой в слоях кожи и подкожной клетчатки, а также способны проникать через кости черепа и воздействовать на мозговые оболочки, мозговую ткань. ИК лучи длиной 1,4 - 10 мкм поглощаются верхним 2-х миллиметровым слоем кожи. Особенно сильно поглощаются лучи с длиной волны 6 - 10 мкм, вызывая калящий эффект.

Воздействие инфракрасного излучения на организм проявляется как общими, так и местными реакциями.

Местная реакция сильнее выражена при облучении длинноволновыми инфракрасными лучами, поэтому при одной и той же интенсивности облучения время переносимости коротковолнового инфракрасного излучения больше, чем длинноволнового. Коротковолновое инфракрасное излучение обладает более выраженным общим действием за счет большей глубины проникновения в ткани тела.

Степень повышения температуры кожи в ответ на инфракрасное облучение находится в зависимости от его интенсивности. Инфракрасное облучение интенсивностью 949 Вт/м2 вызывает ощущение жары, жжения и повышение температуры кожи до 40 - 41 °C. При интенсивности инфракрасного облучения 1717 Вт/м2 и более температура кожи повышается на 10 - 11°С и появляется нетерпимое жжение кожи.

Наряду с ростом температуры облучаемой поверхности тела (в зависимости от времени облучения и одежды) наблюдается рефлекторное повышение температуры на удаленных от области облучения участках. Наблюдается также рефлекторное изменение частоты пульса на фоне неизменной температуры тела. При облучении различных участков тела инфракрасным излучением интенсивностью 698 - 1396 Вт/м2 частота пульса увеличивалась на 5 - 7 ударов в 1 мин. Время пребывания в зоне теплового облучения лимитируется, в первую очередь, высокой температурой кожи. Болевое ощущение появляется при температуре кожи 40 - 45 °С (в зависимости от участка).

В основе биологического действия инфракрасного излучения лежат также сдвиги в молекулярной структуре клетки, вызванные поглощением квантов инфракрасного излучения. Поглощаясь, лучи инфракрасного излучения вызывают внутримолекулярные колебания, значительно увеличивающие скорость протекания биохимических реакций. Под влиянием инфракрасного излучения в коже, крови, цереброспинальной жидкости образуются высокоактивные вещества белкового происхождения (типа гистамина, холина, аденозина). Происходит также изменение обмена веществ в виде нерезкого снижения потребления кислорода, повышается содержание азота, уровня натрия и фосфора в крови, снижается поверхностное натяжение крови. Под влиянием инфракрасного излучения снижаются титр антител и фагоцитарная активность лейкоцитов. Сосудистая реакция протекает в зависимости от интенсивности и спектрального состава инфракрасного излучения - коротковолновая вызывает расширение сосудов, длинноволновая - сужение. Артериальное давление изменяется при интенсивности излучения, начиная с 1138 Вт/м2 при температуре воздуха 24 °С и с 775 Вт/м2 при температуре 50 °С.

Изменения в организме под воздействием инфракрасного излучения зависят от его интенсивности, спектрального состава, площади и зоны облучения. Так, наибольший эффект, наблюдается при облучении области шеи, верхней половины туловища.

Инфракрасные лучи, оказывая тепловой эффект на глаза, могут вызвать ряд патологических изменений: конъюнктивиты, помутнение и васкуляризацию роговицы и др. Длительное воздействие (10 - 20 лет) коротковолновой инфракрасной радиации большой интенсивности на глаза может вызвать поражение хрусталика - инфракрасная катаракта у сталеваров, прокатчиков, кузнецов, кочегаров, стеклодувов - катаракта стеклодувов.

Изменения на коже характеризуются эритемой, при интенсивном облучении может быть ожёг, при длительном воздействии на коже может развиться коричнево-красная пигментация.

В производственных условиях работающий человек часто окружен предметами, имеющих температуру выше температуры тела человека. Источником инфракрасного излучения в производственных условиях являются нагретые поверхности слитков, чушек, листов, поковок, разливаемый жидкий металл, открытое пламя печей, сварочное пламя (при электро- и газосварке), нагретые поверхности оборудования и т.п. По характеру излучения производственные источники тепла и лучистой энергии подразделяются на четыре основные группы: источники с температурой до 500°С - спектр содержит исключительно длинноволновое ИК-излучение источники с температурой от 500°С до 1200°С - в спектре содержится ИК-излучение коротких, средних и длинных волн, но появляется также видимое излучение слабой интенсивности, сначала красное, а затем белое источники с температурой от 1200°С до 2000°С - спектр содержит как все виды ИК-излучения, так и видимое излучение высокой яркости источники с температурой от 2000°С до 4000°С - спектр наряду с инфракрасным и видимым излучением содержит ультрафиолетовое излучение. В таких случаях тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы. Наибольшее воздействие на организм человека оказывает коротковолновое излучение, так как оно обладает наибольшей энергией фотонов, способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. Наибольший нагрев кожи вызывают лучи с длиной волны около 3 мкм.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечно-сосудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения. Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь, вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме основным признаком является резкое повышение температуры тела

- тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга

К острым нарушениям органов зрения относятся также ожог, конъюктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.) не должны превышать 140 Вт/кв. м. При этом облучению не должно подвергаться более 25% поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Экраны бывают трех типов: непрозрачные, прозрачные и полупрозрачные.

В непрозрачных экранах поглощаемая энергия электромагнитных колебаний, взаимодействуя с веществом экрана, превращается в тепловую энергию. При этом экран нагревается и становится источником теплового излучения. К непрозрачным экранам относятся: металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что обеспечивает видимость через экран. Прозрачные экраны выполняются из различных стекол: силикатного, кварцевого, органического, металлизированного, а также к прозрачным экранам относятся пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из армированного металлической сеткой стекла.

По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие и теплоотводящие. Так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло, то отнесение экрана к той или иной группе производится в зависимости от того, какие свойства экрана выражены сильнее:

- теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают. В качестве теплоотражающих материалов в конструкции экранов используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску

- теплопоглощающие экраны выполняют из материалов с высоким термическим сопротивлением, т.е. с малым коэффициентом теплопроводимости. В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату

- в качестве теплоотводящих экранов наиболее широко используют водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла, металла (змеевики) и др.

В качестве средств индивидуальной защиты применяются фибровые и дюралевые каски, защитные очки, наголовные маски с откидными экранами, спецодежда и спецобувь.

Лечебно-профилактические мероприятия включают предварительные и периодические медицинские осмотры в целях предупреждения и ранней диагностики заболеваний у работающих.

Экспертиза ИК-излучения проводится Аккредитованным испытательным лабораторным центром ФБУЗ Центр гигиены и эпидемиологии в Республике Мордовия, аттестат аккредитации № РОСС. RU.0001.510112 от 03.06.2013г. Для этого в ИЛЦ имеется всё: опытные, высококвалифицированные специалисты, современная аналитическая и измерительная аппаратура, высокое качество исследований и измерений.

В последнее время все чаще появляются статьи, указывающие на повышение числа больных, имеющих аллергические и атипичные реакции на прием препаратов. Этот факт заставляет врачей всего мира искать методы лечения не оказывающие разрушающее действие на организм. Одним из таких видов терапии являет использование некогерентного инфракрасного излучения дальнего диапазона. Инфракрасные лучи для лечения болезней начали использоваться очень давно. Античные и средневековые врачи применяли горящие угли, нагретое железо, песок, глину и т.д. для излечения туберкулезных ганглий, ушибов, кровоподтеков и т.д. Гиппократ описывал способ их применения для обработки ран, язв, повреждений холодами и т.д. В 1894 г. Келлог ввел в терапию электрические лампы накаливания, после чего инфракрасные лучи были с успехом применены при заболеваниях грудной клетки, органов брюшной полости. Этими же лампами стали лечить воспалительные процессы нервной и мышечной тканей, пиодермии, келлоидные рубцы. Позже до применения инфракрасных лучей было разработано различное медицинское оборудование: для создания испарины, солнечных ванн, загара, а также просто излучатели, в которых использованы нагревательные элементы при высокой температуре: солнечные концентраторы, инфракрасные лампы. Считалось, что инфракрасные лучи не оказывают никакого химического, биологического или прямого физиологического действия на ткани, а эффект, производимый ими, основан на проникновении и поглощение тканями, вследствие чего инфракрасные лучи играют в основном тепловую роль. Действие инфракрасных лучей сводилось к их косвенному проявлению — изменению теплового градиента в коже, либо на ее поверхность Впервые биологическое действие ИК-излучения было обнаружено по отношению к культурам клеток, растениям, животным. В большинстве случаев, подавлялось развитие микрофлоры. У людей и животных активизировался кровоток и, как следствие этого, ускорялись процессы обмена. Было доказано, что инфракрасные лучи оказывали одновременно болеутоляющее, антиспазматическое, противовоспалительное циркуляторное, стимулирующее и отвлекающее действие. Исследователи отметили, что инфракрасные лучи улучшают циркуляцию крови, а вызванная инфракрасными лучами гиперемия оказывает болеутоляющее действие. Также замечено, что хирургическое вмешательство, проведенное при инфракрасном излучении, обладает некоторыми преимуществами – переносятся легче послеоперационные боли, быстро происходит и регенерация клеток. К тому же инфракрасные лучи, по-видимом позволяют избежать внутреннего охлаждения в случае открытой брюшной полости. Практика подтверждает, что при этом понижается вероятность операционного шока его последствий. Применение ИК-лучей у обожженных больных, создает условия для удаления некроза и проведения ранней аутопластики, снижает сроки лихорадки выраженность анемии и гипопротеинемии, частоту осложнений, предупреждает развитие внутрибольничной инфекции.

ИК-излучение также позволяет ослабить действие ядохи­микатов, р-излучение способствует повышению неспецифи­ческого иммунитета. Установлено, что процедуры воздействия ИК-излучениия ускоряют процесс выздоровления больных гриппо катаром верхних дыхательных путей и могут служить мерой профилактики простудных заболеваний [11].

Однако использование ИК лучей не получило широкого распространения медицинской практике из-за установленного отрицательного действия его коротких лучей, которые вызывают выраженные повреждения глаза и особенно хрусталика [8,9].

С конца 70-х годов внимание ученых было переключено на использование когерентного лазерного излучения. В медицине началась эра лазеров. Однако после многочисленных исследо­ваний посвященных результатам применения лазеров влечении самых различных заболеваний стали появляться статьи, указы­вающие на наличие отрицательного действия лазера на организм.

И опять взоры врачей устремились на использование некогерент­ного инфракрасного излучения и особенно его дальнего диапазона. Рассмотрим механизм действия излучений на организм. Известны несколько видов излучений: гамма, рентген, ультра­фиолет, видимый свет, инфракрасный свет, СВЧ. Излучение характеризуется длиной волны и квантовой энергией. По закону Планка квантовая энергия излучения обратноиропорциональна длине волны. Это значит, что чем короче длина волны излучения, тем больше квантовая энергия. Т.е. гамма лучи самые короткие, но квантовая энергия наибольшая. Как этот закон применяется в отношении действия на биологические объекты? Начнем с того, что организм человека поглощает все виды излучений и в то же время он как и любой живой, так и не живой объект является также источнике ИК-излучения.

В соответствии с вышеприведенным законом, излучение, имеет энергию выше, чем сам объект может оказать на него повреждающее действие Максимум излучения организма человека находится в диапазоне 9.36 мкм. Если в лечении использовать лучи с более короткими волнами, то действие их способствует образованию свободнорадикальных частиц и может провоцировать развитие самых различных патологических процессов. Например, хорошо известен результат действия на организм гамма, рентген лучей. Отрицательное действие на организм оказывают и ультра­фиолетовые лучи, короткие инфракрасные.

Лучи дальнего инфракрасного диапазона имеют квантовую энергию ниже квантовой энергии излучения организма человека и поэтому они не могут оказывать повреждающего действия на ткани и молекулы организма человека. Установлено, что приме­нение этого излучения способствует повышению регенерационных возможностей тканей организма, снижению уровня свободных радикалов.

Следующим шагом в развитии ИК-технологии для при­менения в медицине можно назвать разработанные в институте Материаловедения АН РУз керамические материалы, способные преобразовывать излучение, получаемое от источника света (галогенные или другие виды ламп) в узкие спектры дальнего инфракрасного диапазона. В зависимости от вида используемой керамики можно получить излучение оказывающее действие на процессы, находящиеся в резонансе с получаемым излучением, т.е. излучение, имеющее узконаправленное действие. А так как получаемое излучение имеет квантовую энергию равную или ниже квантовой энергии излучения человека, то оно не может оказывать повреждающие действия на физиологические процессы [11]. В настоящее время имеется 4 типа керамических материалов.

Керамика серии К (CK). Экспериментальные исследования, про­веденные на здоровых мышах, показали, что все излучатели обладают иммуностимулирующим эффектом. Наиболее он выражен у излучателя КН, который повышает иммунный ответ к эритроцитам барана в 3 раза, а излучатель KB — в 2 раза, а излучатель KL — в 1.4 раз. Изучение иммунного ответа у мышей, которым вызывали различные виды вторичных иммунодефицитных состояний (голодание, токсический гепатит, после введения иммунодепресанта иммурана) показало, что излучатели серии К (KL – в 2 раза; КВ-2.3 раза; КН – в 2,9 раз) повышают угнетенный к эритроцитам барана иммунный агвет и способствует восстановлению антитело-генеза в селезенке, что существенно повышает иммунологическую реактивность [11].

Керамика серии G(BM). Экспериментальные исследования, проведенные на крысах с хроническим отравление алкоголем и актелликом, выявили, что данное излучение оказывает антио-ксидантное и антитоксическое действие, активизирующее действие на моно-оксигеназную систему печени, способствует повышению подвижности сперматозоидов [10].

Клинические наблюдения за больными отметили, что применение излучения на область раны способствует более быстрому очищению раны от гнойного отделяемого и ускорению процесса регенерации, снижению лимфоцитарного индекса интоксикации (ЛИИ), что приводит к заживлению раны первичным натяжением значительному сокращению сроков лечения. Использование этого излучателя в послеоперационный период приводит к снижению числа послеоперационных воспалительных осложнений. [5,11]

Керамика серии R(AV). Исследования, проведенные при наблюдении больны созлокачественными опухолями различной локализации, свидетельствует нормализации уровня СОД после лечения излучателем. RC у 80% больных. [13]

Керамика серии Z(DS). Экспериментальные и клинические исследования показали возможность использования этого вида излучения для профилактики спайкообразования в послеопреационном периоде. [5]

Более эффективным является комплексное использование излучателей.

Использование излучателей GI и KL в комплексном лечении пневмонии, бронхита у детей способствовало не только нормализации числа Т-лимфоцитов, но и субпопуляций. Также у больных отмечалось достоверное повышение уровня В лимфоцитов (с 9,4+0,3% до 12,8+0,7%; в группе контроля – до 11.9+0.6%). Содержание иммуноглобулинов А и П достоверно повышалось, a IgM приближалось к уровню нормы, что указывало на редукцию воспалительного процесса. У детей больных пневмонией также отмечалось повышение числа фагоцитов, которое приближалось к уровню нормы; повышение фагоцитарной активности лейкоцитов и циркулирующих антител. Применение узкоспектрального ИК (GI и KL) способствовало положительному влиянию и на процессы перекисного окисления липидов. У больных отмечалось достоверное повышение каталазы и пероксидазы, а содержание Д снижается у больных осложненной пневмонией до 12,3+0,37 нмоль/мл.эр. (Р<0.001). [6]

Нормализация уровня Т и В лимфоцитов и сокращение сроков лечения отмечалось и при применении этих видов излучателей в комплексном лечения псориаза. Использование излучателя GI у больных с очагами хронической инфекции способствовало значительному повышению эффективности терапии и сокращению периода обострения заболевания [1,2].

При лечении перитонитов были использованы излучатели G1 и RC. результате в этой группе больных отмечены: достоверное снижен среднемолекулярных пептидов и сорбционной способности эритроцитов нормализация показателей супердисмутазы и каталазы, что привело к улучшению окислительно-восстановительных процессов и способствовало значительному уменьшению осложнений и сокращению сроков лечения. [5]

На уменьшение числа послеоперационных осложнений указывают результаты полученные при проведении операций по поводу ликвидации остаточных полостей после эхинококк-эктомии.[12]

При лечении диабетической гангрены применялись излу­чатели GI и RC а до восстановления гемодинамики — ZB. В результате проведенной терапии отличные результаты были получены у 32.4%, хорошие — 59.5%. В контрольной группе эти показатели составили 26.4% и 40.5% соответственно. [4]

Комплексное использование излучателей при лечении витилиги способствовало появлению репигментации у 52.6% после первого курса терапии и 80.8% после третьего курса терапии.[7]

Таким образом, узкоспектральное инфракрасное излучение, получаемое результате преобразования света функциональной керамикой, оказывают разнонаправленное действие на патологические процессы в организме, способствует уменьше­нию воспалительного процесса, активизирует окислитено-восстановительные реакции, поэтому может быть использована при лечении различных заболеваний существенно повышая эффективность проводимой терапии и сокращая сроки лечения.


© Если вы обнаружили нарушение авторских или смежных прав, пожалуйста, незамедлительно сообщите нам об этом по электронной почте или через форму обратной связи.

Читайте также: