Как создать вирус гриппа

Обновлено: 24.04.2024

Георгий Александрович Базыкин — кандидат биологических наук, заведующий сектором молекулярной эволюции в Институте проблем передачи информации им. А. А. Харкевича РАН, ведущий научный сотрудник лаборатории эволюционной геномики факультета биоинженерии и биоинформатики МГУ им. М. В. Ломоносова. Занимается изучением различных вопросов биологической эволюции с использованием методов геномики и биоинформатики.

Юрий Эдуардович Стефанов — кандидат биологических наук, научный сотрудник Института молекулярной биологии РАН им. В. А. Энгельгарта и научный консультант студии научного дизайна Visual Science. Область научных интересов — эволюция мобильных генетических элементов, трехмерное компьютерное моделирование вирусных частиц.

В общественном сознании закрепилось довольно легкомысленное отношение к гриппу. Действительно, зачастую его симптомы не тяжелее простудных, да и беспокоит он нас не дольше недели, причем проходит обычно без всякого лечения. Однако история взаимодействий человека и вируса гриппа требует более серьезного подхода к этому патогену. Достаточно вспомнить, что одни из самых страшных пандемий прошлого века были вызваны этим вирусом * . Да и обычный сезонный грипп далеко не безвреден: по оценкам Всемирной организации здравоохранения, ежегодно от него и связанных с ним осложнений умирают сотни тысяч человек (в первую очередь, пожилые люди, младенцы и страдающие хроническими заболеваниями), а в годы тяжелых пандемий — миллионы. По числу унесенных жизней среди инфекционных заболеваний грипп уступает, пожалуй, только ВИЧ. Основная проблема профилактики и лечения гриппа связана с тем, что вирус очень быстро меняется, и каждый год мы имеем дело с его новыми формами, поведение которых далеко не всегда можно предсказать. Очередным шагом на пути к пониманию изменчивости вируса гриппа стал компьютерный анализ последовательностей аминокислот в белках вируса и нуклеотидов в его геноме.

Первая в мире полная достоверная модель вируса гриппа A/H1N1 с атомным разрешением, созданная в рамках проекта Viral Park компании Visual Science при участии Национального центра биотехнологии в Мадриде. Цель проекта — построение научно достоверных 3D-моделей распространенных вирусов человека с максимальной детализацией. Специалисты Visual Science собирают воедино данные огромного количества работ по молекулярной биологии, вирусологии и кристаллографии вирусов, мнения экспертов ведущих научных центров мира и результаты молекулярного моделирования, полученные научным отделом компании. Модель в значительной степени построена на основе данных, опубликованных исследовательскими коллективами под руководством: Хуана Ортина (Испанский национальный центр биотехнологий, Мадрид, Испания), Такеши Нода (Университет Токио, Япония), Роба Ригро (Отдел взаимодействий вируса и клетки, Гренобль, Франция) и Питера Розенталя (Национальный институт медицинских исследований, Лондон, Великобритания). Точное строение генома вируса гриппа удалось смоделировать благодаря сотрудничеству с Хайме Мартин-Бенито (Испанский национальный центр биотехнологий, Мадрид, Испания), группа которого добилась уникальных результатов в описании упаковки вирусного генетического материала. Создатели модели: Иван Константинов (руководитель проекта), Юрий Стефанов (научный консультант), Анастасия Бакулина (ведущий молекулярный моделлер), Дмитрий Щербинин (молекулярный моделлер), Александр Ковалевский (3D-моделлер)

Сегментированный геном

Общая длина генома вируса гриппа составляет приблизительно 13 500 нуклеотидов [2]. Три самых крупных (примерно по 2300 нуклеотидов) его сегмента (PA, PB1 и PB2) кодируют вирусную полимеразу — белок, копирующий РНК и состоящий из трех крупных субъединиц. Четвертый по длине (около 1750 нуклеотидов) сегмент (HA) отвечает за синтез гемагглютинина. Этот белок заякорен в липидной оболочке вируса и отвечает за его проникновение в клетку, связываясь с рецептором на поверхности клеточной мембраны [3]. В зависимости от того, какой именно вариант гемагглютинина несет вирус, связывание может быть более или менее крепким. После этого клетка поглощает вирус, помещая его в мембранный пузырек внутри цитоплазмы. Большинство макромолекулярных комплексов, поглощаемых таким образом, перевариваются клеткой. Однако вирус избегает этой участи: его мембрана сливается с мембраной пузырька, в результате чего ее содержимое оказывается в цитоплазме. В этом процессе гемагглютинин также играет важную роль. Затем геном вируса проникает в ядро, где с него может начать считываться информация.

Сегмент размером около 1550 нуклеотидов (NP) кодирует нуклеопротеин — белок, необходимый вирусу для упаковки РНК. Множество копий такого белка распределяется по каждому из геномных сегментов, связываясь с молекулой нуклеиновой кислоты. В результате фрагменты генома образуют нуклеопротеидные тяжи, сложенные пополам и закрученные в спираль, к каждому из которых прикрепляется своя копия полимеразного комплекса [4].

Сегмент M1/M2 длиной 1000 нуклеотидов, в соответствии со своим названием, кодирует сразу два белка — М1 и М2. Из молекул первого из них образован слой (матрикс), подстилающий вирусную липидную оболочку. Обычно М1 играет ключевую роль в формировании вирусных частиц, поскольку он взаимодействует одновременно с поверхностными белками вируса и внутренними компонентами вирусной частицы. Задача матриксного белка — собрать все составляющие воедино [6]. Белок М2 выполняет роль ионного канала. Он расположен в липидной оболочке вируса и способствует его распаковке в цитоплазме клетки [7].

Последний, самый короткий (из 865 нуклеотидов) сегмент РНК вируса гриппа отвечает за синтез двух белков, которые не попадают в зрелую вирусную частицу. Эти белки называются NS1 и NEP. Первый необходим вирусу, в частности, для того, чтобы блокировать считывание информации с клеточных молекул РНК [8]. Благодаря ему клетке приходится синтезировать преимущественно вирусные белки, оставляя свои собственные нужды. Второй белок, NEP, обеспечивает транспорт новообразованных геномных комплексов вируса из ядра к клеточной мембране, где происходит сборка вирионов [9].

Новые штаммы и поиск реассортаций

Классификация штаммов вируса гриппа основана прежде всего на том, какие именно варианты гемагглютинина и нейраминидазы входят в его состав. Широко известные комбинации букв H и N в сочетании с порядковыми номерами (например, H3N2) как раз и обозначают подтип вируса: гемагглютинин 3, нейраминидаза 2. Таких подтипов десятки, однако человека заражают лишь немногие — обычно те, у которых не слишком большие номера N и H. Наиболее давние хозяева вируса гриппа — птицы, от которых новые штаммы время от времени передаются домашнему скоту и, прямо или опосредованно, людям [10]. Чем более долгий период коэволюции провели вместе патоген и хозяин, тем менее болезненным становится их совместное существование. Птичьи штаммы вируса зачастую оказываются очень опасными после передачи новым хозяевам [11].

Известно, что именно реассортации сегментов РНК привели к возникновению штаммов, которые вызвали пандемии азиатского и гонконгского гриппа в 1957 и 1968 гг., унесшие около 2,5 млн жизней [12]. Возможно, что и испанский грипп начала прошлого века, число жертв которого шло на десятки миллионов, тоже появился в результате такой эволюционной схемы [13].

Подобное исследование можно провести с использованием геномов вируса гриппа, опубликованных в свободном доступе. Избрав в качестве объекта штаммы H3N2, можно составить выборку из 1376 сегментированных геномов, а затем сравнить между собой филогенетические деревья для этих вирусов, построенные в отдельности по каждому из геномных сегментов [15].

В результате такого сравнения оказалось, что число реассортаций примерно сопоставимо для разных сегментов: в ходе эволюции гриппа в популяции человека каждая пара сегментов в недавнем прошлом реассортировала около 50 раз.

Последствия реассортаций

После того как ветви, в которых произошли реассортации, были обнаружены, стало возможным оценить их влияние на накопление в сегментах вирусного генома точечных замен. Для этого можно сравнить время, прошедшее между каждой такой заменой и ближайшей предшествующей ей реассортацией, с тем, которое бы ожидалось из компьютерной модели, если бы реассортации не влияли на замены. Проведенный анализ показал, что по крайней мере в пяти из восьми сегментов генома мутации ускоренно накапливаются после реассортации. Наиболее ярко эффект проявился для нейраминидазы и белка PB1. Ускорение аминокислотных замен после реассортаций вирусных геномов указывает на то, что в такие периоды эволюции вируса гриппа прежде всего происходит адаптация белков к новому генетическому окружению. Из-за того, что вирусные белки взаимодействуют между собой, молекулы из разошедшихся штаммов вынуждены какое-то время изменяться, приспосабливаясь друг к другу.

Интересно, что у нейраминидаз наблюдалось 30 замен, расстояние от которых до ветви, несущей реассортацию, меньше того эволюционного расстояния, на котором мы бы ожидали встретить одну случайную синонимичную замену в гене данного белка. Такой результат свидетельствует о том, что все эти 30 мутаций произошли и закрепились необычайно быстро, и что необходимость быстрой адаптации возникла именно благодаря тому, что соответствующий сегмент генома попал в новое генетическое окружение.

Реассортация — это резкое эволюционное изменение, которое поначалу может снижать общую приспособленность вируса к условиям окружающей среды и к организму-хозяину. Однако иногда оказывается, что из-за такой перетасовки белков из разных штаммов новая форма патогена оказывается более приспособленной, чем штаммы-предшественники, получая возможность эффективнее распространиться [18]. Похоже, что за коррекцию первичного вредного эффекта от реассортации как раз и отвечают быстро закрепляющиеся адаптивные мутации.

Предсказания, полученные только статистическими методами, — путем анализа последовательностей белков и кодирующих их генов, — конечно, не могут иметь стопроцентную точность. Действительно ли взаимодействуют две определенные аминокислоты, можно проверить экспериментально. Однако каждый белок вируса состоит из сотен аминокислот, так что возможны десятки тысяч разных взаимодействий. Постановка такого числа экспериментов практически неосуществимы. Биоинформатический анализ позволяет расставлять приоритеты: выбирать и анализировать только те аминокислоты, которые участвуют во взаимодействиях, экономя время и силы экспериментаторов. Кроме того, такой подход позволяет понять, насколько взаимодействия, приводящие к вредности реассортаций, распространены на уровне всего генома.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 13-04-02098) и Министерства образования и науки Российской Федерации (проект 11.G34.31.0008).

Литература
1. Steinhauer D. A., Domingo E., Holland J. J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase // Gene. 1992. V. 22. № 2. P. 281–288.
2. Teng Q., Hu T., Li X. et al. Complete genome sequence of an H3N2 avian influenza virus isolated from a live poultry market in Eastern China // J. Virol. 2012. V. 86. № 21. P. 11944. DOI: 10.1128/JVI.02082-12.
3. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin // Cell. 1993. V. 73. № 4. P. 823–832.
4. Arranz R., Coloma R., Chichуn F. J. et al. The structure of native influenza virion ribonucleoproteins // Science. 2012. V. 338. № 6114. P. 1634–1637. DOI: 10.1126/science.1228172.
5. Kamali A., Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review // Infection and Drug Resistance. 2013. № 6. P. 187–198. DOI: 10.2147/IDR.S36601.
6. Nayak D. P., Hui E. K., Barman S. Assembly and budding of influenza virus // Virus Res. 2004. V. 106. № 2. P. 147–165.
7. Lear J. D. Proton conduction through the M2 protein of the influenza A virus; a quantitative, mechanistic analysis of experimental data // FEBS Lett. 2003. V. 552. № 1. P. 17–22.
8. Hale B. G., Randall R. E., Ortнn J. et al. The multifunctional NS1 protein of influenza A viruses // J. Gen. Virol. 2008. V. 89. № 10. P. 2359–2376. DOI: 10.1099/vir.0.2008/004606-0.
9. Robb N. C, Smith M., Vreede F. T. et al. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome // J. Gen. Virol. 2009. V. 90. № 6. P. 1398–1407. DOI: 10.1099/vir.0.009639-0.
10. El Zowalaty M. E., Bustin S. A., Husseiny M. I. et al. Avian influenza: virology, diagnosis and surveillance // Future Microbiol. 2013. V. 8. № 9. P. 1209–1227. DOI: 10.2217/fmb.13.81.
11. Kaplan B. S., Webby R. J. The avian and mammalian host range of highly pathogenic avian H5N1 influenza // Virus Res. 2013. V. 178. № 1. P. 3–11. DOI: 10.1016/j.virusres.2013.09.004.
12. Kilbourne E. D. Influenza pandemics of the 20th century // Emerg. Infect. Dis. 2006. V. 12. № 1. P. 9–14.
13. Suzuki Y. A phylogenetic approach to detecting reassortments in viruses with segmented genomes // Gene. 2010. V. 464. № 1–2. P. 11–16. DOI: 10.1016/j.gene.2010.05.002.
14. Nagarajan N., Kingsford C. GiRaF: robust, computational identification of influenza reassortments via graph mining // Nucleic Acids Research. 2011. V. 39. № 6. e34. DOI: 10.1093/nar/gkq1232.
15. Neverov A. D., Lezhnina K. V., Kondrashov A. S., Bazykin G. A. Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes // PLoS Genet. 2014. V. 10. № 1. e1004037. DOI: 10.1371/journal.pgen.1004037
16. Wolf Y. I., Viboud C., Holmes E. C. et al. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus // Biol. Direct. 2006. V. 1. P. 34.
17. Kryazhimskiy S., Dushoff J., Bazykin G. A. et al. Prevalence of epistasis in the evolution of influenza A surface proteins // PLoS Genet. 2011. V. 7. № 2. e1001301. DOI: 10.1371/journal.pgen.1001301.
18. Li K. S., Guan Y., Wang J. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia // Nature. 2004. V. 430. № 6996. P. 209–213.
19. Ferguson N. M., Fraser C., Donnelly C. A. et al. Public health. Public health risk from the avian H5N1 influenza epidemic // Science. 2004. V. 304. № 5673. P. 968–969.
20. Yong E. Influenza: Five questions on H5N1 // Nature. 2012. V. 486. № 7404. P. 456–458. DOI: 10.1038/486456a.
21. Herfst S., Schrauwen E. J., Linster M. et al. Airborne transmission of influenza A/H5N1 virus between ferrets // Science. 2012. V. 336. № 6088. P. 1534–1541. DOI: 10.1126/science.1213362.
22. Imai M., Watanabe T., Hatta M. et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets // Nature. 2012. V. 486. № 7403. P. 420–428. DOI: 10.1038/nature10831.
23. Russell C. A., Fonville J. M., Brown A. E. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host // Science. 2012. V. 336. № 6088. P. 1541–1547. DOI: 10.1126/science.1222526.


В Китае и странах Азии бушует эпидемия коронавируса 2019-nCoV. Число заразившихся коронавирусом в Китае превысило 20,4 тысяч человек, скончались 425 человек.

Еще почти 150 человек заболели вне Китая, один из них погиб. ВОЗ признала вспышку чрезвычайной ситуацией международного значения.

Власти пытаются принять все возможные меры, чтобы остановить распространения вируса.

Однако зачастую новые вирусы создаются в лабораторных условиях на основе уже существующих вирусов, чтобы создать вакцины и лекарства для их лечения.

Ниже мы расскажем о вирусах и бактериях, созданных в лабораторных условиях.

Ученые из Университета Альберты создали оспу лошадей – смертельно опасный вирус, который, в отличие от оспы, не поражает людей и опасен только для лошадей.

Ученые создали этот вирус за полгода, исследования финансировались фармацевтической компанией Tonix. Образцы ДНК, необходимые для создания вируса, стоили всего около $100 000.

Как и ученые из Университета Альберты, их коллеги из Университета штата Нью-Йорк приобрели образцы ДНК для создания вируса полиомиелита.

Созданный ими вирус настолько же опасен, как и его естественный аналог.

Несмотря на то, что в современном мире практически смогли искоренить полиомиелит, ученые опасаются, что вакцина все же может потребоваться, если вирус возродится.

Несколько лет назад ученые Австралийского национального университета и Государственного объединения научных и прикладных исследований (CSIRO) создали по ошибки мутацию вируса оспы. Это мышиная оспа, которая смертельно опасна для мышей.

Ученые пытались разработать препарат для контроля рождаемости мышей, однако у них получилось создать вирус, который оказался смертельно опасным и разрушил иммунную систему мышей.

Тяжелый острый респираторный синдром (SARS) – смертельно опасный вирус, из-за которого умерло 700 человек во время эпидемии в 2002-2003 годах. Всего же от вируса пострадали 8 000 человек в 29 странах мира.

Группа ученых Университета Северной Каролины под руководством доктора Ральфа Бэрика создала новую мутацию вируса, которая получила название SARS 2.0. Новый вирус был создан путем добавления протеина к SARS. SARS 2.0 устойчив к существующим вакцинам и лекарствам, которые применились против естественного вируса SARS.

Phi-X174 – еще один искусственно созданный вирус. Он был создан учеными Institute of Biological Energy Alternatives в Роквиле, штат Мэриленд, США. Ученые создали этот искусственный вирус на основе естественного вируса phiX. PhiX – это бактериофаг, то есть вирус, которые убивает бактерии. Однако он не действует на человека.

Нидерландские ученые создали мутацию смертельно опасного вируса птичьего гриппа.

Естественный птичий грипп непросто распространяется среди людей. Однако ученые сделали так, что новый мутировавший вирус легко передается от человека к человеку.

Для проведения исследований ученые использовали домашних хорьков, так как у них наблюдались те же симптомы птичьего гриппа, что и у людей.

В 1918 году в мире бушевал смертельный вирус гриппа — H1N1. В то время более 100 млн человек заразились этим вирусом, в результате которого кровь проникала в легкие.

Вирус вернулся в 2009 году. Он был не такой опасный, как его предок, несмотря на то, что с тех пор он мутировал.

Ученый Йошихиро Каваока взял образцы мутировавшего вируса, который привел к эпидемии в 2009 году, и использовал их для создания более сильного штамма, устойчивого к существующим вакцинам. Этот штамм был аналогичен тому, который привел к эпидемии 1918 года.

Каваока не планировал создать более смертоносный вирус, он лишь хотел создать первоначальный вирус, чтобы изучить его получше и узнать, как он мутировал. Этот смертельный вирус хранится в лаборатории и может привести к трагедии, если выпустить его наружу.


Труды профессора Каваоки наделали много шума во всем мире. Он воссоздал вирус, который столетие назад свел в могилу 40 миллионов человек. Однако, пусть это звучит странно, если к нам придет новая пандемия гриппа, мы будем ждать спасения именно от этого человека.

Холодильник заперт и запечатан внутри специального помещения с бетонными стенами. Помещение находится в лаборатории, которая также имеет бетонные стены толщиной 46 см, вдобавок усиленные металлической арматурой. Войти сюда можно лишь через целую анфиладу комнат, которую открывают герметичные люки, вроде тех, что можно увидеть на подводных лодках. Еще здесь всё уставлено датчиками сигнализации — их более пяти сотен, они распределены по всему зданию и установлены на всевозможных приборах, чтобы в случае нежелательного вторжения оповестить охрану и полицию кампуса. Наблюдение за лабораторией ведется круглые сутки.

Биокрепость для Йосихиро

Все эти камеры, герметичные двери и датчики должны работать безукоризненно — таково базовое требование ко всему, что находится в Институте по исследованию гриппа стоимостью $12,5 млн. Он расположился на окраине кампуса Университета Висконсин-Мэдисон.


Каваока (слева) работает вместе со своим ассистентом-постдоком. Фото было сделано в 2001 году, еще до того, как была построена нынешняя лаборатория. Новая лаборатория ежегодно закрывается на четыре-шесть недель для проведения обеззараживания

Пройдя начальную проверку на посту ФБР (это обязательное требование ко всем сотрудникам), работники лаборатории перед входом должны снять с себя всё, включая нижнее белье. Затем надеть специальную рабочую одежду и пару резиновых сапог, имеющих внутренний и внешний чехлы. В таком виде уже можно пройти в тамбур перед входом в лабораторию. Чтобы пройти за следующую дверь, нужно облачиться в комбинезон и перчатки из паропропускающей мембраны Tyvek, сменить сапоги и надеть респиратор с фильтром. После работы в лаборатории всю спецодежду надо снять в строго определенном порядке и принять пятиминутный душ. Под душем тщательно вымыть себя с мылом, включая все открытые полости тела, и хорошенько высморкаться.

Здание, в котором хранятся вирусы, относится к классу BSL-3-ag, то есть к сооружениям с почти наивысшей биологической защитой. Здесь же, кстати, содержится вирус Эбола. Ни одна частичка биоматериала не должна покинуть эти стены.

Угроза гибели человечества? Зачем же профессор занимается всем этим, пусть даже за стенами неприступной крепости? Поначалу Каваока отказался отвечать нам на этот вопрос, но затем согласился на часовую беседу в переговорной напротив двери его лаборатории, причем в присутствии руководителя факультета. Ученый будто ждал вопроса, который задают все, кто знает, чем занимается профессор, даже коллеги из высших научных сфер.

Он сумасшедший?

За пределами колец безопасности, университета и города Мэдисон, где власти непоколебимы в своей поддержке профессора и даже построили ему институт за $12,5 млн (отвергнув других соискателей), этот вопрос обсуждался множеством людей, мнению которых можно доверять в разной степени. Отчет о работе над вирусом H5N1, содержавший очень подробное описание методов строительства возбудителей болезни, вызвал столь неоднозначную реакцию, что консультативный совет Национального института здравоохранения рекомендовал засекретить часть этих исследований от широкой публики, в то время как планировалось их обнародование в журнале Nature.

Негативно настроенные ученые считают, что работа Каваоки нарушает Нюрнбергский кодекс по биоэтике в части правил работы с биологическими агентами, а конструирование искусственных биологических патогенов создает опасность катастрофы, в том случае, если из-за какого-либо происшествия в лаборатории вирусы выйдут за ее пределы и попадут в природу. Оппоненты профессора полагают, что эти опасные работы следует прекратить.

Эта и подобные перепубликации в социальных сетях превратили информацию о работе Каваоки в настоящий сетевой вирус. Твиты и посты в блогах, посвященные этой теме, стали распространяться с огромной скоростью, в том числе в тех сетевых сообществах, участники которых понимали в вопросах биологии не больше цыпленка. Ученый постоянно получает по электронной почте угрозы. Каваока пересылает эти письма в ФБР и старается думать только о работе.

Грипп, утки и свиньи

Получается, никакой логически обоснованной цели у исследований Каваоки нет. Вирусов гриппа вокруг нас и так достаточно, причем во множестве форм. Вирусы несут в себе водоплавающие птицы, особенно утки, и чаще всего они не обнаруживают никаких симптомов болезни, хотя постоянно его распространяют через свой желудочно-кишечный тракт. Попросту говоря, если утка испражняется в пруду, в воду попадает вирус гриппа. Поскольку водоплавающие птицы есть везде, где есть вода, они не только распространяют вирусы повсеместно, но и создают условия для их мутирования в опасные для человека штаммы.

Ученые во всем мире разрабатывают разные стратегии для противодействия такому сценарию: от подавления возникшей пандемии на начальном этапе до предотвращения ее. Но грипп издревле присутствует на Земле, хоть с самим вирусом человечество познакомилось только в 1902 году. Чтобы процветать и размножаться, гриппу нужны лишь живые клетки. Специальный белок в составе вируса, гемагглютинин, образует особую структуру, которая позволяет присоединиться к клеточной мембране и проникнуть сквозь нее. Затем вирус заражает клетку своим генетическим материалом, использует ее репродуктивный аппарат для строительства своих копий и, наконец, убивает клетку-хозяина. Чаще всего грипп локализуется в верхних дыхательных путях (это то, что мы называем сезонным гриппом), но в более редких случаях вирус, за счет способности к мутациям, способен обойти противодействующие ему механизмы защиты. Новая мутация становится более вирулентной, и вирус прорывается от верхних дыхательных путей к другим органам. Тогда очень вероятна гибель зараженного организма и передача этой опасной формы другим потенциальным жертвам.

В дополнение к водоплавающим птицам вирусом гриппа заражаются и другие виды животных: куры, свиньи, лошади и собаки. В промышленном птицеводстве грипп может погубить сразу миллионы цыплят, и потому контроль за развитием вируса имеет здесь чисто экономический смысл. Поскольку многие штаммы вируса гриппа передаются от животных к человеку, именно в ветеринарии проходит передний край борьбы с заболеванием.

Титулованный ветеринар

Не победить, но упредить

— А что если убить всех уток?

Каваоку огорчает непонимание оппонентов. Ведь он не собирается стирать человечество с лица Земли, а, наоборот, хочет спасти жизни людей

Каваоку огорчает непонимание оппонентов. Ведь он не собирается стирать человечество с лица Земли, а, наоборот, хочет спасти жизни людей

— Меня это печалит, — говорит Каваока.

Он объясняет почему. Дело не в том, что критика ранит его чувства или он боится угроз. Ему просто жаль, что оппоненты не понимают — он не собирается стирать человечество с лица Земли, а, напротив, хочет спасти жизни людей. Ученый надеется, что одно из его открытий действительно сможет помочь выжить каким-то безвестным людям, и именно эта надежда заставляет Каваоку упорно продолжать свои труды. С целью понять, что происходит в природе, и сыграть с ней на опережение.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: