Как уничтожить смертельный вирус

Обновлено: 28.03.2024

Вирусы намного старше человечества и намного лучше приспособлены к жизни на нашей планете. Постоянно подстраиваясь и изменяясь вместе с внешней средой, они по-прежнему остаются самыми опасными нашими врагами, несмотря на развитие медицинских технологий и накопленные человечеством знания. И каждые десять лет мы узнаем о новом опасном враге. Но все же некоторые из них удается победить или хотя бы обуздать. Сегодня поговорим о трех, с которыми наука худо бедно научилась справляться.

Грипп: вездесущий и непобедимый

КСТАТИ

Почему так сложно создать противовирусный препарат

В мире не так много действительно работающих противовирусных препаратов. Дело именно во взаимодействии вируса и клеток. Получается, что вместе с вирусом мы должны убить клетку, а это, по сути, самоубийство. И когда речь идет о смертельно опасной болезни, то ученым проще найти пути точечного воздействия на вирус. Если же мы имеем дело с менее опасным врагом, с которым организм справится и сам, то гораздо проще придумать, как помочь организму сделать это надежнее и быстрее.

Поэтому сейчас усилия экспертов скорее сосредоточены на том, чтобы повысить точность прогнозов при составлении вакцин на сезон.

ВИЧ: знаем все, но победить не можем

Вирус иммунодефицита человека – один из самых молодых, при этом один из самых изученных вирусов на планете. Ученые досконально выяснили, как он устроен и как работает. Но при всем при этом победить противника пока не удалось – вакцины, которая помогла бы надежно защититься от болезни, или препарата, который бы убивал возбудителя раз и навсегда, до сих пор не изобрели.

Коварство вируса заключается в том, что он живет в организме долгие годы, не проявляя себя, но постепенно ослабляя иммунную систему человека. ВИЧ разрушает организм, делая все самые простые инфекции смертельно опасными. И в итоге возникает СПИД - состояние, при котором начинаю стремительно развиваться инфекционные или онкологические заболевания.

Эбола: враг повержен, но все еще опасен

Несколько лет назад вирус Эбола стал новой страшилкой мирового масштаба. Про него были сняты несколько фильмов, его постоянно упоминают в различных сериалах – малоизвестный и смертельно опасный. Лихорадка Эбола оказалась очень заразной: ею заболевали до 95% человек, вступивших в контакт с вирусом. А коэффициент смертности от нее мог доходить в отдельных случаях до 90%, в среднем составил около 50%. И некоторое время противопоставить ей было нечего.

Увеличенное изображение вируса Эбола.

В августе 2014 года ВОЗ признала болезнь угрозой всемирного масштаба. Но впервые вирус дал о себе знать еще раньше, в 1976 году, когда от него в Демократической Республике Конго (бывший Заир) и Судане погибло более 400 человек. Эпидемиологи считают, что природным резервуаром являются летучие мыши, которых в Африке нередко употребляют в пищу.

В 2014 году от Эболы погибло уже 12 тысяч человек. Распространению болезни способствовали и обычаи, противоречащие нормам гигиены – например, в ряде стран Африки водой, которой омывали тело умершего, обрызгивают всех присутствующих на похоронах в знак благословения. Учитывая, что вирус попадает в организм через микротрещины кожи и слизистых оболочек, в том числе органов дыхания, эта традиция ускорила распространение эпидемии. Хотя основные очаги располагались на африканской территории, вирус успел перебраться и в Европу, в том числе в Россию.

ВОЗ заявила об успешных испытаниях вакцины от Эболы, подтвердивших ее стопроцентную эффективность. Но и этот враг еще не побежден – буквально на днях в Конго зафиксирована очередная вспышка Эболы.

Возрастная категория сайта 18 +


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.


Не совсем живые, но опасные: почему нам так сложно бороться с вирусами / ©

Жив или нет?

Ученые до сих пор не могут окончательно решить: являются ли вирусы живыми организмами или нет. За последнее столетие мнение научного сообщества менялось несколько раз. Сначала вирусы рассматривали как яды – собственно, от этого слова и произошло их название (virus в переводе с латинского — яд). Затем их описывали как особую форму жизни, потом снова перенесли в категорию биохимических веществ.

Вирусные инфекции сопутствуют человечеству, пожалуй, с момента его возникновения. Живым подтверждением тому является геном современных людей, который на восемь процентов состоит из ДНК ретровирусов. Это отголоски инфекций, которыми наши далекие предки страдали еще сотни тысяч лет назад. Некоторые из них даже сыграли позитивную роль в нашей эволюции. Например, один из ретровирусных генов был использован организмом женщин для создания во время беременности синцитиотрофобласта – многоядерной структуры, которая извлекает из материнской ткани вещества, необходимые для эмбриона, защищает его от патогенов, синтезирует некоторые гормоны.


Но далеко не все вирусы приносят пользу, и далеко не все безобидны для человека. Возможно, некоторые из тех вирусов, ДНК которых сохранилась в нашем геноме, вызывали в прошлом инфекции, наводившие на наших предков не меньший ужас чем, натуральная оспа (побежденная благодаря вакцинации в прошлом веке), ВИЧ-инфекция или современная пандемия COVID-19. Современному человечеству приходится сталкиваться с новыми вызовами: существует еще много непобежденных вирусных инфекций, появляются новые, и они представляют собой актуальную проблему для современного здравоохранения.

Эволюция наоборот: количество против качества

Благодаря прививкам человечество смогло забыть о целом ряде страшных эпидемий: бубонная чума, натуральная оспа, холера. В числе инфекций, которые удалось взять под контроль, также значится краснуха.

Так или иначе, это оказалось не менее эффективно, чем эволюция по пути усложнения. Организм каждого отдельно взятого человека – целая миниатюрная вселенная, которая научилась максимально эффективно взаимодействовать с внешним миром. Сила вирусов – в максимальной простоте, устойчивости и быстрой изменчивости. Они настолько отличаются от нас, что появилась еще одна гипотеза на грани фантастики, согласно которой первые вирусные частицы попали на нашу планету из космоса. Пока этому нет ни достоверных доказательств, ни опровержений.

Число новых болезнетворных вирусов постоянно растет, и ученые считают, что эта тенденция сохранится. Новый коронавирус SARS-CoV-2 – лишь один из возбудителей, давших о себе знать за последние годы. Одни эпидемии удается быстро локализовать, другие, такие как COVID-19, распространяются по всему миру и приводят к ужасающим последствиям, вплоть до миллионов смертей и экономического коллапса, третьи еще только предстоит открыть.

Постоянно преподносят сюрпризы и уже известные вирусы. Врачам-инфекционистам и эпидемиологам приходится не просто реагировать на вспышки новых инфекционных заболеваний, но зачастую делать это крайне быстро, чтобы ситуация не стала критической. Вирусы – проблема, с которой человечество пока не справилось, хотя в этом направлении уже достигнуты немалые успехи.

Так, например, в 2020 году в России на фоне высокого риска циркуляции двух вирусов одновременно – гриппа и COVID-2019, и, соответственно, повышенного спроса на вакцины от гриппа, Минздравом РФ был разработан специальный план вакцинации населения. Программа должна охватить более половины населения страны.


Враг, с которым сложно бороться

Вирусная частица – вирион – состоит из вирусного генома, представленного нуклеиновой кислотой (ДНК или РНК), покрытого белковой оболочкой (капсидом). У некоторых вирусов есть дополнительная внешняя оболочка, позаимствованная у клеток – суперкапсид. У простых вирусов генетический материал может кодировать всего четыре белка, а самые сложные кодируют до 100–200 белков.

В Новосибирском государственном университете состоялась презентация лаборатории по созданию онколитических вирусов, разрушающих раковые клетки. 

У организма человека есть довольно большой арсенал средств для борьбы с вирусными инфекциями. К ним относятся лихорадка, свидетельствующая о реакции иммунной системы, кашель, чихание и другие выделительные механизмы, которые мешают вирусам прикрепляться к клеткам. Не остается в стороне и иммунная система: она активирует вещества, которые инактивируют вирусные частицы и разрушает зараженные клетки.

А иногда иммунный ответ может быть избыточным и нанести немало вреда, вплоть до того, что будет нарушена работа всех органов. При некоторых вирусных инфекциях развивается так называемый цитокиновый шторм. Иммунные клетки вырабатывают множество воспалительных веществ (медиаторов воспаления), которые снова активируют иммунные клетки, и процесс нарастает лавинообразно, воспаление охватывает весь организм. В частности, из-за этого у некоторых людей инфекция COVID-19 протекает тяжело и приводит к гибели.


У вирусов всего этого нет, а когда они находятся внутри клетки, до них и вовсе очень сложно добраться. Кроме того, вирусы очень разнообразны по своей морфологии и постоянно и достаточно быстро мутируют, поэтому против них сложно разработать универсальное лекарство.

Аналогично на всю жизнь остаются в организме после инфицирования вирусы папилломы человека (ВПЧ). Можно предотвратить заражение, но, врачи пока не обладают препаратами, которые смогут избавить пациента от вируса, когда заражение уже произошло. В большинстве случаев инфекция, вызванная на данном этапе ВПЧ, протекает бессимптомно, но существуют ВПЧ 16 и 18 типов, которые могут вызывать онкологические заболевания. Например, с папилломавирусной инфекцией связано 70 процентов всех случаев рака шейки матки.

Легче предотвратить, чем излечить


Примечательно, что первая в мире вакцина была создана именно против вирусов – родственников современной ветрянки. Когда-то натуральная оспа наводила на людей не меньше страха, чем чума. Она быстро распространялась воздушно-капельным путем, 30 процентов заболевших погибали, а у выживших обычно оставались безобразные рубцы на коже.

В 1796 году английский врач Эдвард Дженнер сделал первую прививку против этого заболевания, а через 200 лет, в конце 1970-х годов, натуральная оспа была полностью искоренена. Это событие часто называют самым выдающимся достижением мировой науки и медицины. Есть надежда, что в обозримом будущем та же судьба постигнет и другие вирусные инфекции. Эксперты считают, что на очереди корь и краснуха. Кстати, в 2019 году России был официально присвоен статус страны, свободной от краснухи.

Эдвард Дженнер использовал дивергентную живую вакцину – он прививал своих пациентов вирусом коровьей оспы, и это давало перекрестный иммунитет против вируса натуральной оспы человека. Современные вакцины содержат ослабленный вирус, который не может вызвать заболевание (живые аттенуированные вакцины) или отдельные фрагменты возбудителя (компонентные вакцины), в ответ на которые развивается специфический иммунный ответ. Такие вакцины безопасны, очень редко вызывают серьезные побочные эффекты и обеспечивают надежную, продолжительную защиту.

Список существующих вакцин не ограничивается прививочным календарем. Некоторые из них вводят только людям из групп повышенного риска, проживающих в районах с неблагоприятной эпидемической обстановкой или выезжающих в эти районы. К этой группе относят прививки против клещевого энцефалита, бешенства, желтой лихорадки.


Однако противовирусные вакцины не являются абсолютной панацеей. Против многих вирусных инфекций пока не разработаны вакцины. Это может быть связано с недостаточным пониманием патогенеза инфекционного заболевания, всех тонкостей иммунного ответа. От некоторых разработанных вакцин приходится отказываться из-за низкой эффективности, отсутствия продолжительного иммунитета или высокого риска серьезных побочных эффектов. Например, вакцина против ВИЧ-инфекции существует, но она снижает риск заражения лишь на 30 процентов. Тем не менее, эксперты ВОЗ не рекомендуют делать всем такую прививку, потому что человек может испытывать ложное чувство защищенности и перестать соблюдать элементарные правила безопасности.

Многие вирусы очень изменчивы: вакцина уже через несколько месяцев может стать неэффективной против нового штамма. Так, например, происходит с вирусом гриппа. Каждый год приходится готовить новую вакцину. Ситуация с COVID-19 показала, что новые эпидемии могут стремительно распространиться по всему миру. У ученых не было времени, чтобы вовремя разработать новую вакцину и провести все необходимые клинические испытания. Никто не может со стопроцентной точностью предсказать, как вирусы изменятся в будущем, и с какими еще инфекциями придется столкнуться человечеству.

В Новосибирском государственном университете состоялась презентация лаборатории по созданию онколитических вирусов, разрушающих раковые клетки. 

Вирус Covid

Вирус Covid / ©Wikipedia

Об инфекционных болезнях бродит множество мифов. Например, считается, что в прошлом людей неизбежно губили именно они, что только в наше время стала возможна смерть от рака или сердечных болезней на восьмом десятке. А до того, якобы, микробы косили всех без исключения. Другое заблуждение гласит: раньше инфекционные болезни не могли распространяться так быстро, как сейчас. Ведь люди жили на большом расстоянии друг от друга, не было транспорта, способного распространять микробы со стремительностью современного коронавируса. Зато сегодня по-настоящему опасная болезнь может достать чуть ли не все население Земли в кратчайшие сроки.


Как люди стали болеть инфекционными болезнями

Чтобы понять, как люди в древности взаимодействовали с болезнями, достаточно взглянуть на их африканских родственников сегодня. Многие из наших традиционных проблем взяты именно от них, обезьян Черного континента. Лобковые вши с высокой вероятностью попали к человеку от горилл миллионы лет назад, хотя конкретный путь передачи пока обсуждается учеными. Совершенно определенно ВИЧ подхвачен африканцами от зеленых мартышек в XX веке (метод передачи столь же дискуссионный), да и в распространении лихорадки Эбола обезьяны могли сыграть заметную роль.


Однако именно эпидемии среди обезьян весьма редки. Зеленые мартышки носят обезьяний вариант ВИЧ (SIV) в себе, но инфицированные им живут столько же, сколько и не инфицированные. Симптомов у них нет (как, кстати, и у некоторых людей). Пневмония, туберкулез и так далее у шимпанзе есть, но гибнут от них, как правило, только возрастные особи с пониженным иммунитетом.

Аналоги человеческих эпидемий у шимпанзе бывают только в случае, если их вид недавно получил какое-то заболевание от другого вида. Скажем, в Танзании местные шимпанзе часто болеют аналогом нашего ВИЧ, но, в отличие от зеленых мартышек, не бессимптомно, а с реальными и негативными последствиями. Как показали вскрытия, в телах зараженных приматов крайне малое количество иммунных клеток (как и у погибших людей-носителей), а смертность среди них в 10-15 раз выше, чем среди тех шимпанзе, которые не заражены этой болезнью.

На протяжении многих лет ученые пытались найти загадочные частицы темной материи – вимпы. Последние исследования показывают, что они вряд ли существуют. Однако неожиданные открытия 2016-2020 годов .

Аналогичная картина наблюдается среди тех животных, что дальше приматов от человека. Так, в европейской части России несколько лет назад многие домашние свиньи погибли от африканской чумы свиней, принесенной кабанами-мигрантами из-за Кавказских гор, с юга. Болезнь эту, как и Covid-19, вызывает вирус, а не бактерия, как в случае чумы людей. У диких животных, особенно в Африке, вирус распространен широко, но почти все его носители там бессимптомные: возбудитель живет в них на положении комменсала, не причиняя хозяину вреда, но и не принося пользы. А вот когда европейцы попробовали завезти в Африку свиней домашних, оказалось, что среди них вирус дает летальный исход в 100 процентах случаев.

Что одним хорошо, другим – смерть


Такая ситуация выгодна возбудителям болезней. Если бы они инфицировали и убивали каждого носителя, то количество человеко-часов, которые их разносчики могли бы распространять патоген, было бы намного меньше. Причем сами микробы для этого ничего не делают: за них старается иммунная система хозяев. Те, у кого она сильнее, обуздывают возбудителя и остаются только носителями, а не больными в прямом смысле слова. Те, у кого иммунитет слабее, становятся жертвами болезни. В итоге число потомков лиц, чей иммунитет плохо справляется с болезнью, падает, а число тех, у кого он крепче, – делает свое дело, то есть растет.

Значит, от давно сожительствующей с той или иной человеческой популяцией болезни не может быть массового мора людей. Но стоит болезни попасть туда, где с ней еще не знакомы, – и все меняется. Идеальный случай для инфекции – завоз путешественниками на новые земли, где до того подобных вспышек не было.

Скажем, в 1346 году ордынское войско смогло преднамеренно заразить генуэзский гарнизон Кафы (в Крыму, ныне – Феодосия) чумой, забросив труп одного умершего от нее татарина катапультой в крепость. Среди самих татар погибших от чумы было не так много: в силу давних контактов с Востоком они приобрели определенную устойчивость к болезни.

А вот в Европе и Северной Африке до этого чумы не было многие сотни лет, поэтому генуэзцы легко разнесли ее по этим регионам. Общее число погибших историки оценивают в 70 миллионов (больше, чем в обеих мировых войнах). В Англии скончалась примерно половина населения. Почему так, а не все сто процентов, ведь иммунитета к этой заразе у западноевропейцев не было?

Дело в том, что в нормальной по генетическому разнообразию популяции люди – за счет естественных мутаций – не похожи друг на друга. Например, в организмах большинства монголоидов больше, чем у большинства европеоидов, представлен белок ACE2. Он образует белковые выросты на поверхности человеческих клеток, за которые цепляется вирус SARS-CoV-2, возбудитель нынешней эпидемии Covid-19. Поэтому, как считали ещё недавно, в Китае ему распространяться проще, а вот за пределами стран с монголоидным населением – сложнее. Реальность, правда, показала, что белки значат не так много, как нормальный государственный аппарат. В результате по факту монголоиды пострадали от эпидемии. Но в другую эпоху ситуация могла бы повернуться совсем иначе.


Следует понимать, что подобных малозаметных биохимических различий между людьми много, поэтому патоген, который с легкостью мог бы заразить абсолютно все население планеты, сложно представить. Даже по отношению к тем болезням, с которыми они никогда не сталкивались, часть людей может быть весьма устойчивой.

Например, 0,1-0,3% населения России устойчиво к ВИЧ за счет мутации белка CCR5. Та же мутация в свое время была выгодна в противостоянии бубонной чуме. То есть даже если бы каким-то чудом ВИЧ мог распространяться воздушно-капельным путем, он не смог бы убить все инфицированное им человечество: биохимические особенности не позволили бы. Выжившие рано или поздно вернули бы популяцию к доэпидемическому уровню.

Идеальная болезнь X

Ровно 208 лет назад русские войска разгромили армию Наполеона при Березине. Часто говорят, что отступление французской Великой армии из Москвы было чередой ее неудач и русских успехов. Однако реаль.

Читайте также: