Какая болезнь человека результат генной мутации грипп

Обновлено: 23.04.2024

Генные – изменение строения одного гена. Это изменение последовательности нуклеотидов, например, замена А на Т. Причины – нарушения при удвоении ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

  • Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна.

Цитоплазматические – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (могут быть четырех вышеназванных видов). Передаются по наследству при бесполом размножении, например, при вегетативном у растений.

Тесты

1. Какие клетки называют полиплоидными
А) содержащие больше двух наборов гомологичных хромосом
Б) полученные в результате гибридизации
В) содержащие многоаллельные гены
Г) полученные от скрещивания нескольких чистых линий

2. Поворот участка хромосомы на 180 градусов относится к мутациям
А) геномным
Б) генным
В) хромосомным
Г) точковым

3. Соматические мутации передаются потомству у
А) растений при вегетативном размножении
Б) животных при половом размножении
В) животных, размножающихся партеногенетически
Г) растений с двойным оплодотворением

4. Причины генных мутаций - это нарушения, происходящие при
А) редупликации ДНК
Б) биосинтезе углеводов
В) образовании АТФ
Г) синтезе аминокислот

5. Полиплоидные организмы возникают в результате
А) геномных мутаций
Б) модификационной изменчивости
В) генных мутаций
Г) комбинативной изменчивости

6. К какому виду мутаций относят изменение структуры ДНК в митохондриях
А) геномной
Б) хромосомной
В) цитоплазматической
Г) комбинативной

7. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
А) цитоплазматической
Б) генной
В) хромосомной
Г) геномной

8. Выпадение участка хромосомы в отличие от перекреста хроматид в мейозе - это
А) конъюгация
Б) мутация
В) репликация
Г) кроссинговер

9. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
А) комбинативной
Б) хромосомной
В) цитоплазматической
Г) генетической

10. Полиплоидные сорта пшеницы - это результат изменчивости
А) хромосомной
Б) модификационной
В) генной
Г) геномной

11. Животное, в потомстве которого может появиться признак, обусловленный соматической мутацией
А) гидра
Б) волк
В) еж
Г) выдра

12. Изменение последовательности нуклеотидов в молекуле ДНК - это мутация
А) генная
Б) геномная
В) хромосомная
Г) аутосомная

13. Выпадение четырех нуклеотидов в ДНК - это
А) модификационное изменение
Б) генная мутация
В) хромосомная мутация
Г) геномная мутация

14. Полиплоидия - одна из форм изменчивости
А) модификационной
Б) мутационной
В) комбинативной
Г) соотносительной

15. Какая болезнь человека - результат генной мутации
А) синдром приобретенного иммунодефицита
Б) грипп
В) серповидноклеточная анемия
Г) гепатит

16. Болезнь Дауна связана с появлением лишней 21-й пары хромосом в генотипе человека, поэтому подобное изменение называют
А) соматической мутацией
Б) геномной мутацией
В) полиплоидией
Г) гетерозисом

17. Мутации, связанные с обменом участками негомологичных хромосом, относят к
А) хромосомным
Б) геномным
В) точковым
Г) генным

18. Изменчивость организмов, вызванная кратным увеличением наборов хромосом в клетках, - это
А) генная мутация
Б) полиплоидия
В) гетерозис
Г) точковая мутация

19. Рецессивные генные мутации изменяют
А) последовательность этапов индивидуального развития
Б) состав триплетов в участке ДНК
В) набор хромосом в соматических клетках
Г) строение аутосом

20. Соматические мутации
А) обусловлены изменением аутосом в половых клетках
Б) связаны с начледованием, сцепленным с полом
В) передаются потомству у растений при вегетативном размножении
Г) возникают в гаметах у животных

21. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

22. Рождение ребенка с синдромом Дауна – это пример проявления изменчивости
А) модификационной
Б) комбинативной
В) цитоплазматической
Г) геномной

23. Какие клетки называют полиплоидными?
А) имеющие кратно увеличенное число хромосом
Б) содержащие доминантные гены
В) полученные в результате гибридизации
Г) полученные от скрещивания чистых линий

24. Соматические мутации у человека
А) не наследуются потомством
Б) повышают интенсивность обмена веществ
В) служат основой адаптации
Г) возникают в гаметах

25. Соматические мутации у позвоночных животных
А) формируются в гаметах
Б) передаются следующему поколению
В) возникают в клетках органов тела
Г) обусловлены нарушением обмена веществ

26. Основу генных мутаций составляют изменения в строении молекул
А) ДНК
Б) АТФ
В) белка
Г) тРНК

1. С какими структурами связана цитоплазматическая наследственность листьев томата?

С хлоропластами и митохондриями, так как в них есть свои молекулы ДНК, свои гены.

3- Хромосомные мутации обусловлены изменением строения хромосомы. Изменением порядка триплетов в гене обусловлены генные мутации.
4- Полиплоидия - это пример геномной мутации. Пример хромосомной мутации - синдром кошачьего крика.
6- Геномные мутации связаны с изменением количества хромосом. С удвоением определенных триплетов в гене связаны генные мутации.



3. Рассмотрите предложенную схему классификации мутаций. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.



4. Рассмотрите предложенную схему классификации мутаций. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.

5. Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, исправьте их. (1) Геномными называют мутации, которые ведут к изменению структуры хромосом. (2) Наиболее распространенным типом этих мутаций является полиплоидия. (3) В клетках полиплоидных организмов содержится гаплоидный (n) набор хромосом. (4) Полиплоидия используется как в селекции растений, так и в селекции животных. (5) Многие сорта культурных растений – полиплоиды. (6) Избыток хромосом у полиплоидов повышает устойчивость растений к болезням. (7) Кроме того, полиплоиды часто продуктивнее своих диплоидных диких предков.

1 – геномные мутации приводят к изменению числа хромосом;
3 – в клетках полиплоидов содержится полиплоидный набор хромосом (3n, 4n);
4 – полиплоидия не используется в селекции животных.

6. Найдите три ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, исправьте их. (1) Все организмы обладают наследственностью и изменчивостью. (2) Мутации – это случайно возникшие стойкие изменения генотипа, затрагивающие целые хромосомы, их части или отдельные гены. (3) Изменения, связанные с удвоением какого-либо нуклеотида в гене, относят к геномным мутациям. (4) Внутрихромосомные перестройки могут быть связаны с удвоением гена. (5) Если в клетке происходит изменение числа хромосом, то такие мутации называют генными. (6) Мутации всегда полезны организму. (7) Мутации создают вариативность в популяции, что служит материалом для естественного отбора.

3 – удвоение нуклеотида относят к генным мутациям;
5 – изменение числа хромосом относят к геномным мутациям;
6 – мутации могут быть полезными, вредными или нейтральными.

3 - геномные мутации приводят к изменению числа хромосом;
5 - полиплоидные клетки содержат число хромосом, кратное гаплоидному (3n, 4n);
7 - полиплоидию не используют в селекции животных

8. У мальчиков с синдромом Кляйнфельтера набор половых хромосом - XXY. Объясните, как могла возникнуть такая мутация. Какой метод позволяет её установить?"

1) нарушение мейоза в материнском или отцовском организме при гаметогенезе приводит к образованию гамет, содержащих хромосомы XX или XY соответственно;
2) метод - цитогенетический (микроскопия)

9. Какие факторы могут увеличить риск наследственных заболеваний человека?

1) Близкородственные браки.
2) Большой возраст женщины, рожающей ребёнка (38—42 года).
3) Воздействие на родителей мутагенов (радиации, химикатов, алкоголя, наркотиков).

10. Чем отличаются геномные мутации от генных и хромосомных по своим последствиям?

1) Генные мутации затрагивают один из участков гена. Например, может выпасть или замениться один нуклеотид в триплете. Мутация может оказаться как бесполезной, так и вредной или полезной.
2) Хромосомные мутации могут привести к серьёзным осложнениям здоровья. Они связаны с перестройкой хромосом.
3) Геномная мутация затрагивает геном. В результате такой мутации меняется количество хромосом в кариотипе.
4) Если к хромосомному набору прибавляется один или несколько гаплоидных наборов, то явление называется полиплоидией. Явление полиплоидии позволяет преодолеть межвидовую стерильность.

11. Для установления причины наследственного заболевания исследовали клетки больного и обнаружили изменение длины одной из хромосом. Какой метод исследования позволил установить причину данного заболевания? С каким видом мутации оно связано?

1) причина болезни установлена с помощью цитогенетического метода;
2) заболевание вызвано хромосомной мутацией – утратой или присоединением фрагмента хромосомы


Новость

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Мутации: патология или норма?

Каждая клетка нашего тела была создана путем деления клеток-предшественниц, которые, в свою очередь, восходят в развитии к зиготе. Значит ли это, что общий путь развития всех клеток организма обеспечивает общность генетического материала? Нет, и виной тому — мутации (рис. 1).

Мутации — коварные преобразования ДНК, которые страшны тем, что могут возникать в клетках любых тканей многоклеточного организма и на любых стадиях его развития. Распространено мнение, что мутации опасны потому, что могут наследоваться потомством. Действительно, мутации, передающиеся по наследству, приводят к возникновению и развитию таких серьезных заболеваний нервной системы, как шизофрения, аутизм, болезнь Альцгеймера. Виной тому — приобретаемые детьми генетические нарушения половых клеток родителей. Однако существуют и другие, ненаследуемые мутации, которые возникают в соматических клетках человека на протяжении всей его жизни.

Большинство людей имеет определенное количество соматических мутаций. Известным примером следствий соматических мутаций является появление опухолевых клеток, для которых характерны генетические нарушения*. Однако далеко не всегда соматическая мутация приводит к развитию онкологических заболеваний. Часто изменения генома не выливаются в какие-либо серьезные заболевания и могут встречаться у полностью здоровых людей. До настоящего момента ученые точно не знали, накапливаются ли они в головном мозге в таком количестве, чтобы послужить причиной серьезных нарушений нервной системы.

По мере роста и взросления человека геномы нейронов его головного мозга накапливают существенные различия. К такому выводу пришли ученые Бостонской детской больницы (Boston Children’s Hospital) и Гарвардской медицинской школы (Harvard Medical School), опровергнув утверждение, что мозг взрослого человека не изменяется в течение жизни* [4, 5].

Результаты недавнего исследования показали, что значительное количество соматических мутаций можно обнаружить в мозге полностью здоровых людей. Так, со временем геномы нейронов головного мозга человека начинают различаться — появляется мозаицизм. Это научное открытие позволит изучать роль соматических мутаций отдельных нейронов в развитии человека и ряда нервно-психических заболеваний.

Сколько мутаций может содержать в себе геном нейрона?

Ранее не было точно известно, способны ли соматические мутации, возникающие в нейронах головного мозга, провоцировать возникновение и развитие нейродегенеративных заболеваний. Для того чтобы установить истину, ученые решили изучить особую разновидность мутаций — однонуклеотидные варианты (single-nucleotide variants, SNVs). Эти нарушения могут возникнуть в нескольких или даже всего в одной клетке головного мозга. Исследователи проанализировали 36 нейронов, взятых из головного мозга трех умерших людей: 15-летней девушки, 17-летнего юноши и 42-летней женщины, которые не страдали нейродегенеративными заболеваниями.

Используя методы капиллярной цифровой полимеразной цепной реакции (digital PCR) и секвенирования геномов единичных клеток [7], ученые обнаружили, что каждый отдельный нейрон из трех образцов ткани мозга содержит в среднем от 1468 до 1580 однонуклеотидных вариантов (рис. 2). И если появление SNVs в опухолевых клетках связано преимущественно с ошибками при репликации ДНК, то нейронные мутации возникают в основном вследствие активной транскрипции генов.

Карта мутаций генома корковых нейронов

Рисунок 2. Карта мутаций генома корковых нейронов одного человека. 136 нейронов головного мозга 17-летнего человека распределены по четырем группам (обозначены разными цветами), выделенным по одной или нескольким мутациям (буквами A-D обозначены 18 клональных соматических мутаций). Рисунок из [5].

Дополнительно ученые сравнили гены нервных клеток с генетическим материалом, взятым из других тканей — в частности, сердца и кожи. Этот анализ показал, что мутации в нейронах в целом совпадают с однонуклеотидными вариантами в других типах клеток, то есть такие мутации присутствуют и в нейронах, и в других частях организма человека. Более того, был установлен следующий интересный факт: в ряде случаев клетки коры мозга показывали более высокую степень родства не с соседними нейронами, а с другими клетками организма (например, кардиомиоцитами).

Также было проведено исследование нервных клеток, взятых из разных областей головного мозга, с целью обнаружения аналогичных мутаций. Полученные результаты позволили сделать предположение о происхождении нервных клеток.

Основоположником генеалогии можно считать Чарльза Дарвина, который впервые изобразил филогенетическое древо живых организмов еще в 1837 году. В его основу легла идея о том, что все виды живых существ связаны друг с другом общим происхождением, подобно ветвям дерева, которые объединяет общий корень (рис. 3). Подобные мысли использовали при создании клеточной теории ученые Т. Шванн и М. Шлейден, определившие клетку как единый структурный элемент всех живых организмов. Наконец, более чем через 150 лет, в 2005 году, Д. Фрумкин и соавторы в своем исследовании показали, что соматические мутации присутствуют в клетках в достаточном количестве и могут быть использованы для воссоздания взаимосвязей всех клеток человека [8]. Таким образом, далеко не свежие идеи лежат в основе нового заключения о том, что каждый человек несет в себе собственное (клеточное) генеалогическое древо*.

Кристофер Уолш и другие сотрудники Гарвардской медицинской школы в результате исследования однонуклеотидных вариантов предложили подход к установлению происхождения нервных клеток человека [5]. Так, если в двух отдельно взятых нейронах присутствуют одни и те же мутации, то они с высокой долей вероятности происходят от одной клетки-предшественницы. В том случае, если совпадает лишь часть мутаций, пути развития нейронов в какой-то момент времени разошлись.

Генетические заболевания – это большая группа болезней человека, вызванных патологическими изменениями в генетическом аппарате. В настоящее время известно более 6 тысяч синдромов с наследственным механизмом передачи.

Виды генетических заболеваний человека

цепочка ДНК

Основу наследственных заболеваний составляют генные, хромосомные и митохондриальные мутации.

Аутосомно-рецессивный. В этом случае происходит полная замена здоровых генов на мутантные. Ребёнок должен получить по одной копии рецессивного мутантного гена от каждого из родителей. У отца и матери может не наблюдаться данного заболевания, но это не исключает их как носителей гетерозиготной мутации. Вероятность, что у пары появится ребёнок с аутосомным рецессивным заболеванием равна 25%. Примеры: альбинизм, муковисцидоз.

Кодоминантный. Этот тип наследования подразумевает проявление и доминантного, и рецессивного гена, поэтому заболевание наследуется частично. Яркий пример: серповидно-клеточная анемия.

Наследование, сцепленное с полом. Означает, что наследование признаков передаётся только определенному полу. Например, гемофилией болеют исключительно мужчины.

Хромосомные болезни

Патологические изменения могут возникать как при потере генетического материала (например, при выпадении целой хромосомы или её части), так и при добавлении новых хромосом. Клинически характеризуется множественными врождёнными пороками развития. В настоящее время известно более 1000 хромосомных аномалий.

Точные причины возникновения до конца не изучены. Учёные предполагают, что провоцирующими факторами можно назвать ионизирующее излучение, химические вещества, вирусы, приём некоторых лекарств во время беременности, курение, алкоголь, возраст матери.

Хромосомные болезни могут быть связаны с нарушением:

1) числа хромосом;

3) структуры хромосом.

Общей чертой для хромосомных заболеваний является многофакторность поражения. А именно: пороки внутренних и наружных органов, черепно-лицевые дизморфии, замедленный рост и развитие, психическое и умственное отставание от сверстников, нарушение работы многих систем организма.

Перечислим некоторые из заболеваний:

Синдром кошачьего крика (делеция в 5-ой хромосоме);

Синдром Дауна (трисомия по 21-ой хромосоме);

Синдром Патау (трисомия в 13-ой хромосоме);

Генные мутации

изменение ДНК

Генные (точечные) мутации – это те, что возникают в результате изменения химической структуры гена и представляют собой замену, удаление или вставку нуклеотида. Возникают чаще, чем хромосомные и геномные, однако в меньшей степени меняют структуру ДНК. Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.

рассмотрим мутацию ГТТ ЦЦЦ ГГТ → ГТЦ ЦЦЦ ГГТ.

В первом триплете произошла тимина заменился на цитозин. Триплеты ГТТ и ГТЦ кодируют глутаминовую кислоту, поэтому данная мутация не вызвала изменений в структуре белка: глу-гли-про → глу-гли-про.

В других же случаях замена нуклеотида может изменить порядок аминокислот в молекуле белка и привести к фенотипическим последствиям.

ГТТ ЦЦЦ ГГТ → ГТГ ЦЦЦ ГГТ.

В первом триплете тимин заменился на гуанин. ГТТ кодирует глутаминовую кислоту, а ГТГ — гистидин. Соответственно, первичная структура белка изменяется: глу-гли-про → гис-гли-про. Существует большая вероятность появления фенотипических изменений.

Мультифакториальные генетические болезни

Мультифакториальными генетическими заболеваниями называют патологии, возникающие при сочетании генетической предрасположенности и влиянии окружающей среды. Простой пример: пациент предрасположен к раку лёгких + в течении нескольких лет злоупотребляет курением. Соответственно, риск возникновения заболевания увеличивается в 2 и более раз.

К наиболее часто встречающимся мультифакториальным болезням относятся псориаз, цирроз печени, ревматоидный артрит, ишемическая болезнь сердца, бронхиальная астма.

Диагностика наследственных болезней

лаборатория

Жизнь человека начинается с момента зачатия. Чтобы уточнить состояние плода, важно провести пренатальную диагностику во втором триместре беременности. Тест поможет рассчитать риски различных синдромов (Дауна, Эдвардса, Корнели де Ланге) и дефектов.

Для определения метаболитов, специфических для наследственных болезней нарушения обмена веществ (энзимопатий), проводятся специальные пробы:

- проба на гипераминоацидурию;

- микробиологический тест Гатри.

Чтобы диагностировать наследственные нарушения обмена аминокислот, олигосахаридов и гликозамимногликанов (мукополисахаридов), используются более сложные методы аналитической биохимии;

- газовая и жидкостная хроматография;

- магнитная резонансная спектроскопия.

Помимо этого, медицина предрасполагает и другими методами определения генетических заболеваний:

Читайте также: