Какой из химических элементов в мороз страдает от чумы

Обновлено: 27.03.2024

К 120-летию открытия А. Йерсеном и Ш. Китазато микроба чумы Yersinia pestis

Об авторе

Виктор Васильевич Сунцов — доктор биологических наук, ведущий научный сотрудник Института проблем экологии и эволюции им. А. Н. Северцова РАН. Занимается изучением происхождения и эволюции возбудителей природноочаговых инфекций, в частности чумы.

Диаграмма публикаций по проблеме чумы, фиксирующая скачок их числа с 2003 г.

Немного истории

Карта распространения чумы в Европе. Пандемия, начавшаяся в центральных районах Азии, достигла берегов Черного моря в 1347 г.

Когда появился микроб чумы?

Доказанное в 1980 г. молекулярными методами непосредственное родство псевдотуберкулезного (Y. pseudotuberculosis) и чумного (Y. pestis) микробов привело к выводу об их недавней дивергенции, правда, без указания времени и места, когда именно и где это случилось [5]. Высокое сходство их геномов позволяло некоторым авторам даже объединить их в один вид в качестве отдельных подвидов, хотя вызывают они совершенно разные болезни. И псевдотуберкулезного, и чумного микробов относят к семейству Enterobacteriaceae — возбудителям кишечных инфекций, но последний, будучи паразитом крови, не имеет к ним никакого отношения. У него иная адаптивная среда, и в принципе его нужно отнести к другому семейству [3].

Микрофотография чумной палочки. Увел. ×200. Фото с сайта cdc.gov

Идея недавнего отделения чумного микроба от псевдотуберкулезного была неожиданной, но отнюдь не новой. В 1950–1970-х годах такие мысли высказывали В. Н. Беклемишев, В. А. Бибикова, А. И. Дятлов, Л. Н. Классовский, В. С. Петров, Н. М. Хрусцелевская. Но тогда подобные интуитивные ощущения эволюционной молодости возбудителя чумы выглядели теоретически чуждыми, паранаучными и деструктивными, поэтому они не нашли поддержки у ортодоксов.

Головокружение от успехов

В современных исторических реконструкциях в биологии доминирует новая филогенетика (молекулярная филогенетика, генофилетика). Отчасти это лидерство оправдано широкими возможностями, которые предоставляют молекулярные структуры и компьютерные технологии филогенетических построений, позволяющие сравнивать и обрабатывать миллионы признаков, — таких, как последовательности нуклеотидов. Все составляющие новой филогенетики полезны, они необходимы для создания естественных филогенетических схем, но недостаточны, особенно в отношении прокариот. Молекулярная генетика — молодая наука, и закономерности молекулярной эволюции пока не вполне ясны. Филогении можно выстраивать только по гомологичным признакам, а их выявление, в том числе и на молекулярном уровне, представляет немалую проблему. Выводы на основе применения разных молекулярно-генетических методов далеко не однозначны, порой не согласуются между собой и с данными других наук: экологии, биогеографии, микробиологии и др. Такая обескураживающая разноголосица свойственна и заключениям в отношении микроба чумы.

Происхождение Yersinia pestis: взгляд натуралиста

Знание экологии монгольского сурка и его блох позволяет понять селективные (адаптационные) процессы, проходившие в микробных популяциях в природе, и причинно-следственные связи в эволюционных филумах. Появление возбудителя чумы в Центральной Азии предопределили два природных фактора: аридность горно-степных ландшафтов, постепенно увеличивающаяся с олигоцена-миоцена, и максимальное похолодание в сартанское время последнего оледенения. Проще говоря, индуктором видообразования микроба чумы был сухой и холодный климат Центральной Азии в конце ледниковой эпохи. Кроме того, в возникновении чумного микроба важную роль играет физиология, точнее поведение монгольского сурка, связанное с устройством зимовочной пробки, а также особенности сурочьей блохи O. silantiewi.

В Центральной Азии, в горно-степных поселениях сурка тарбагана влажность почвы очень низкая, всего 2–7% [3], а грунт в зимовочной норе зверька сухой и щебнистый. Изготовить из него земляную пробку внутри норы, в вертикальном лазе диаметром 15–20 см, все равно, что замазать сухим песком отверстие в потолке размером с футбольный мяч. Из-за дефицита почвенной влаги у монгольского сурка выработалось специфичное поведение. При залегании в спячку он устраивает зимовочную пробку из специально подготавливаемой смеси мелкозема, щебня и влажных каловых масс, которые летом собираются в отнорках (уборных). Для перетаскивания камней, обвалянных в фекалиях, сурки используют зубы, при этом частицы фекалий, а с ними и возбудитель псевдотуберкулеза, попадают в ротовую полость. Итак, во рту спящих тарбаганов — экскременты, а в них — кишечный паразит, микроб псевдотуберкулеза!

Монгольский сурок тарбаган и его зимовочная (постоянная) нора. Вверху: зимовочная пробка, состоящая из смеси мелкозема, щебня и цементирующих их экскрементов (1); гнездовая камера (2); отнорки-уборные, в которых в летние месяцы сурки накапливают строительную смесь (3). Внизу: слой мелкозема и щебня (а); и коренные породы (б), приведены температуры грунта и спящих сурков во время раскопки (февраль 1979 г.)

Сурки — типичные семейно-колониальные животные. Группировки из 2–22 разновозрастных и разнополых зверьков совместно зимуют в одной постоянной, или зимовочной, норе. У каждого зверька в течение зимней спячки более длительные периоды глубокого сна (торпора) чередуются с короткими периодами бодрствования (эутермии). В торпорной фазе температура тела снижается до 2–5°C, в эутермной может достигать нормальной, у активных сурков — около 37°С. За осенне-зимне-весеннее время сурки не вполне синхронно просыпаются до 15 раз, примерно дважды в месяц. Таким образом, каждый зверек в течение периода подземной жизни имеет два гомеостатических состояния, между которыми лежит промежуток физиологической гетеротермии. Отсюда следствие: блохи в холодное время года питаются на сурках, температура тела которых лежит в диапазоне 5–37°C. Обратим внимание на непрерывность температур!

В 1970-х годах в тувинском очаге чумы, расположенном в Центральной Азии, мы изучали зимнюю спячку тарбагана. В феврале-марте, во время максимального зимнего промерзания грунта (до глубины более 2 м), раскопали три зимовочных норы. Из них изъяли восемь глубоко спящих и девять проснувшихся активных зверьков, среди которых были молодые, полувзрослые и взрослые особи. Из их шерсти собрали 230 личинок O. silantiewi, 60 живых и 452 пустых коконов, а из ротовой полости торпидных зверьков — дополнительно 20 личинок. Пустые коконы (от 4 до 87) обнаружили также на 22 зверьках, отловленных в первые две недели после весеннего пробуждения.

Тувинский природный очаг чумы, Монгун-Тайгинский мезоочаг. Снеговое покрытие в зимне-весенние месяцы не превышает 30–40%, грунт промерзает на глубину более 2 м к началу января, а оттаивает в июле

Отметим распределение коконов на шерсти: большая часть прикреплена на голове, у основания хвоста и на наружной стороне задних ног. Все личинки, извлеченные из ротовой полости, оказались с кровью и увеличенными в размерах за счет развития жирового тела, что свидетельствовало о полноценности пищи и об их готовности к окукливанию. У спящих зверьков поврежденная личинками слизистая ротовой полости и язык обильно кровоточили, изо рта заметно выступала кровяная пена, а рот, зубы, лапы были обильно испачканы экскрементами (следами устройства зимовочной пробки осенью). Незарубцевавшиеся раны в ротовой полости мы наблюдали у всех сурков, отловленных после выхода из нор в конце марта и начале апреля, что говорит о массовости описываемого явления, его общепопуляционном характере.

Отсюда понятна причина концентрации пустых коконов на голове, хвосте и наружной стороне задних ног у спящих и недавно пробудившихся сурков тарбаганов. Зимой грунт промерзает глубже гнездовых камер, и личинки переходят из гнездовой выстилки на более теплые тела спящих зверьков. При этом некоторые личинки, произвольно перемещаясь в шерсти, попадают в ротовую полость сурка, где, питаясь на слизистой, травмируют ее. Перед окукливанием личинки покидают ротовую полость и прикрепляются к шерсти близ рта. Зная позу свернувшегося в шар спящего сурка, у которого нос уткнулся в анус, а задние ноги прижаты к щекам, легко предсказать места прикрепления коконов.

На основе новых эколого-географических, палеоклиматических и генетических данных можно сформулировать основные постулаты теории происхождения и мировой экспансии микроба чумы.

Происхождение, естественное распространение в Евразии и антропогенная мировая экспансия микроба Y. pestis во время первой (I), второй (II) и третьей (III) пандемий. 1 — южная граница зоны многолетнемерзлых грунтов; 2 — граница доминантного распространения в природе микроба Y. pseudotuberculosis O:1b; 3 — ареал сурка-тарбагана, район происхождения микроба чумы; 4 — первичные природные очаги; 5 — вторичные природные очаги; gly + (gly − ) — способность (неспособность) штаммов ферментировать глицерин

Предковая форма возбудителя чумы — микроб псевдотуберкулеза 1-го серотипа (Y. pseudotuberculosis O:1b), который доминирует в северо-центрально-азиатских и дальневосточных районах с суровым климатом.

Метаморфоза микроба псевдотуберкулеза в чумную бактерию произошла в конце позднего плейстоцена. За весь четвертичный период глубокое промерзание грунта (2 м и более) в Центральной Азии отмечено только в сартанское время позднего плейстоцена и в голоцене, т. е. не ранее 22 тыс. лет назад [10].

В ультраконтинентальном районе зимнего антициклона в Центральной Азии личинки блох, паразитирующие на монгольском сурке тарбагане, зимой переходят к факультативной гематофагии, что приводит к устойчивому контакту крови сурков с псевдотуберкулезным микробом [3].

Теперь уже можно легко представить, как сапрозоонозный кишечный псевдотуберкулезный микроб постепенно эволюционировал в облигатный паразит крови незимоспящих грызунов: экскременты тарбагана → спящий сурок → активный сурок → незимоспящий грызун.

Знание молекулярно-генетических, популяционных и биоценотических факторов, а также их многообразных связей позволяет выделить в эволюционной истории возбудителя чумы основные вехи.

IV. Во время третьей пандемии с корабельными крысами микроб уже другого подвида (orientalis) из Азии вновь проник в Африку и впервые на быстроходных морских судах добрался до Нового Света, где закрепился в виде вторичных природных очагов в популяциях земляных белок, луговых собачек, полевок, морских свинок.

В поисках согласия

Экологический сценарий происхождения, эволюции и мировой экспансии возбудителя чумы весьма заметно расходится с гипотезами, построенными на основе генетических данных. Где же истина? Какой из них достоин большего одобрения?

В пользу экологического сценария говорит следующее:

Такие аргументы делают этот экологический сценарий наиболее правдоподобным в сравнении с другими, позволяют принять его за исходную гипотезу и наполнять его генетическими признаками. Биологическое содержание сценария, понятное широкому кругу исследователей, дает существенные гносеологические преимущества перед слишком редуцированными историческими реконструкциями. К примеру, некоторые авторы из-за сходства отдельных генетических признаков у кавказского подвида Y. pestis caucasica и псевдотуберкулезного микроба считают Кавказ родиной чумы и выстраивают соответствующую филограмму [11, 12]. Но на Кавказе, в относительно теплом климатическом регионе, нет псевдотуберкулезного микроба 1-го серотипа или он встречается крайне редко! Истоки чумы следует искать в холодных, суровых краях — как в предложенном сценарии.

Несмотря на разительное несходство экологической и генетической филогений, между ними нет непреодолимой пропасти, более того, есть безусловные точки соприкосновения. Экологический сценарий для молекулярных и генетических признаков очерчивает диапазон генетической изменчивости микробной популяции, вступившей на путь видообразования, выделяет рамки экологической достоверности генетических фактов, привлекаемых для филогенетических выводов [3, 13].

Рис. 1. Влияние чумы середины XIV века на сельское хозяйство Европы

Рис. 1. Влияние чумы середины XIV века (Черной смерти) на сельское хозяйство Европы. Цветовые коды (сверху вниз) обозначают разные типы последствий: существенный рост, умеренный рост, умеренный спад или сильный спад. Иллюстрация из обсуждаемой статьи в Nature Ecology & Evolution

Анализ ископаемой пыльцы из множества мест Европы показал, что крупнейшая эпидемия чумы середины XIV века отразилась на разных европейских регионах очень по-разному. Где-то произошел резкий спад сельского хозяйства (очевидно, вызванный падением численности людей), а где-то, как ни в чем не бывало, продолжался рост. Это ставит новые вопросы насчет того, как именно и насколько сильно великая чума повлияла на жизнь европейцев.

Интерес к XIV веку — ужасному, жестокому, с разобщенностью людей времени, ознаменованному, как многие полагали, торжеством Сатаны, — проявился у меня еще и по той причине, что его, как мне кажется, можно сравнить с нашим временем и найти утешение в том, что хотя два последних десятилетия сопровождались небывалыми потрясениями, в XIV столетии люди жили гораздо хуже.

Одним из самых мрачных эпизодов истории Европы была поразившая ее в середине XIV века Черная смерть. Научное название этого явления — вторая пандемия чумы. Принято считать, что всего пандемий чумы было три. Первая пандемия разразилась в VI веке (Юстинианова чума), третья — во второй половине XIX века (она стала вполне глобальной, но не привела к людским потерям, сопоставимым с предыдущими пандемиями, из-за быстрого развития медицины). Вторая пандемия, охватившая Евразию и Африку, прошлась по человечеству всерьез. Европа потеряла в течение пяти лет как минимум 40% всего населения (R. Jedwab et al., 2019. Pandemics, Places, and Populations: Evidence from the Black Death). Есть и более высокие оценки, основанные на тщательных академических изысканиях и еще сильнее поражающие воображение. Норвежец Оле Бенедиктов (Ole Jørgen Benedictow) подсчитал, что непосредственно перед Черной смертью в Европе жило около 80 миллионов человек, а после нее осталось 28 миллионов; умерло, таким образом, 52 миллиона, или 65% населения Европы. Естественно, что эти трагические события до сих пор привлекают внимание историков — равно как и представителей иных, смежных дисциплин.

Фактором, сильно повлиявшим на ход второй пандемии чумы, было существование Монгольской империи. Это государство, занимавшее большую часть Евразии, обладало надежной сетью коммуникаций, которые позволяли каравану без особых трудностей добраться, скажем, из Гуанчжоу в Астрахань. Для средневековья такая ситуация была редкостью. При условии, что в империи был мир, это создавало уникальный потенциал для распространения чего угодно — и чумные палочки, увы, не стали исключением.

Рис. 2. Распространение Черной смерти по Европе и ее окрестностям

Рис. 2. Распространение Черной смерти по Европе и ее окрестностям. Иллюстрация из книги O. J. Benedictow, 2021. The Complete History of the Black Death

Пыльцевой анализ

Естественно, такой нежный организм не мог бы выдержать перенос по воздуху без плотной оболочки. Эта оболочка (она называется экзиной) обычно обладает сложной структурой, формирующей неповторимую морфологию: знающий человек легко определит, какому растению пыльца принадлежит. И сохраняется она отлично.

Рис. 3. Связь ископаемой пыльцы с последствиями эпидемии чумы

Рис. 3. Связь ископаемой пыльцы с последствиями эпидемии чумы. Иллюстрация из обсуждаемой статьи в Nature Ecology & Evolution

Вот такое исследование и было предпринято для Европы времен Черной смерти (точнее, ее временных окрестностей). Разумеется, характеристика растительных сообществ, пусть сколь угодно детальная, может дать о людях лишь косвенную информацию. Но в европейских странах в XIV веке от 75% до 95% всего населения жило в сельской местности, так что состояние этой самой сельской местности должно быть довольно прямо связано с общей численностью людей.

С точки зрения историка важное преимущество палинологического метода — его полная независимость от письменных источников. Растительному миру все равно, сохранились ли в тех или иных местах летописи, налоговые ведомости и другие документы: с ними бывает ох как по-разному, а пыльца оседает везде. Таким образом, вызванные состоянием источников и, за счет этого, неизбежно искажающие реальную картину провалы и сгущения традиционных исторических сводок здесь нивелируются. Нельзя не признать, что это большой плюс.

Естественно, сделать такую работу мог только большой междисциплинарный и международный коллектив. Статью подписали 64 автора из 16 стран, в том числе и из России. С нашей стороны в работе участвовала Елена Юрьевна Новенко, доктор географических наук, сотрудница географического факультета МГУ и отдела палеогеографии четвертичного периода Института географии РАН.

Что же открыла исследователям средневековая пыльца?

Чумная мозаика

В странах с аграрной экономикой неплохим маркером численности населения может послужить площадь, охваченная пашней. Анализ того, что происходило с пыльцой в ближайшие десятилетия после Черной смерти, позволил исследователям выделить четыре типа динамики пахотных площадей: первый — существенный и статистически достоверный рост, второй — умеренный рост (на грани статистической достоверности), третий — умеренное снижение, и четвертый — существенное, статистически бесспорное падение. В последнем случае заброшенные пашни зарастали молодым лесом (реже — становились пастбищами).

Удивительно, но по карте Европы все эти четыре типа реакции на Черную смерть разбросаны почти равномерно (рис. 1). Очень тяжело пострадала, например, Папская область (точнее, ее часть, охватывающая Лациум) и за компанию с ней Флоренция. А вот, например, в Польше эпидемии будто бы и не было. На самом деле она, конечно, была, но не смогла остановить естественный рост населения и экономики.

В любом случае сама по себе мозаичность последствий чумы XIV века в разных областях Европы — теперь установленный факт. С чем она связана? А вот это уже вопрос к историкам и эпидемиологам. Авторы обсуждаемой статьи пишут, что одной из причин мозаичности скорее всего была структура торговых путей (Милан пострадал меньше, чем Венеция, потому что не закупал зерно из Черноморского региона), но ясно, что это лишь верхушка айсберга. Здесь открывается поле для новых исследований, результаты которых, не исключено, могут пригодиться человечеству и на практике.

Источник: A. Izdebski, P. Guzowski, R. Poniat, L. Masci, J. Palli, C. Vignola, M. Bauch, C. Cocozza, R. Fernandes, F. C. Ljungqvist , T. Newfield, A. Seim, D. Abel-Schaad , F. Alba-Sánchez , L. Björkman, A. Brauer, A. Brown, S. Czerwiński, A. Ejarque, M. Fiłoc, A. Florenzano, E. D. Fredh, R. Fyfe, N. Jasiunas, P. Kołaczek, K. Kouli, R. Kozáková, M. Kupryjanowicz, P. Lagerås, M. Lamentowicz, M. Lindbladh, J. A. López-Sáez, R. Luelmo-Lautenschlaeger, K. Marcisz , F. Mazier, S. Mensing, A. M. Mercuri , K. Milecka, Y. Miras, A. M. Noryśkiewicz , E. Novenko, M. Obremska, S. Panajiotidis, M. L. Papadopoulou, A. Pędziszewska, S. Pérez-Díaz, G. Piovesan, A. Pluskowski, P. Pokorny, A. Poska, T. Reitalu, M. Rösch, L. Sadori, C. Sá Ferreira, D. Sebag, M. Słowiński, M. Stančikaitė, N. Stivrins, I. Tunno, S. Veski, A. Wacnik , A. Masi . Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic // Nature Ecology & Evolution. 2022. DOI: 10.1038/s41559-021-01652-4.


В 1894 году на борьбу с третьей пандемией чумы, начавшейся в Китае, были брошены лучшие врачебные силы многих стран мира. Японское правительство направило в Китай врача Шибасабуро Китадзато, а французское — Александра Иерсена. К этому времени уже были открыты возбудители холеры, туберкулеза, сибирской язвы и некоторых других инфекций, но микроорганизм, вызывающий чуму, оставался неизвестным. Китадзато выделил из тканей умершего больного микроорганизмы, которые посчитал возбудителями чумы. Независимо от японского врача Иерсен, получив культуру микроорганизмов из погибших от чумы, одновременно обнаружил чумную палочку в трупах павших крыс. Долгое время в медицинских кругах считалось, что микроорганизмы, обнаруженные исследователями, идентичны. Но через два года японские бактериологи К. Накамура и М. Огата с патологом М. Ямагава установили, что истинным возбудителем чумы все же является микроб, выделенный А. Иерсеном, а микроорганизм, изолированный Ш. Китадзато, относится к сопутствующей микрофлоре. Об этом Огата сделал доклад на Международном конгрессе в Москве в 1896 году.

Микроорганизм, вызывающий заболевание чумой, — чумная палочка — несколько раз менял свою таксономическую номенклатуру: Bacterium pestis — до 1900 года, Bacillus pestis — до 1923-го, Pasteurella pestis — до 1970-го и, наконец, Yersinia pestis как признание приоритета французского ученого.

Итак, возбудитель чумы был найден, но оставалось непонятным, какими путями происходит распространение болезни.

Схема передачи возбудителя чумы от грызунов человеку

Первое объективное подтверждение того, что чумный микроб может передаваться от грызунов к человеку, получено в 1912 году. Тогда в северо-западном Прикаспии начали работу передвижные лаборатории под началом Д.К. Заболотного и И.И. Мечникова. Участник экспедиции врач И.А. Деминский выделил чумного микроба из органов суслика. Работая с полученным штаммом, И.А. Деминский заразился чумой и умер.



Обзор

Автор
Редактор


Один монах, странствуя по белому свету, встретил Чуму, которая направлялась в его город.
— Ты куда это направляешься, Чума? — спросил он ее.
— Иду в твой родной город, — ответила она. — Мне нужно забрать там тысячу жизней.
Через некоторое время монах снова встретил Чуму на своем пути.
— Почему ты меня обманула тогда? — спросил он ее с укором. — Ты говорила, что должна забрать тысячу жизней, а забрала пять тысяч.
— Я тогда сказала тебе правду, — ответила Чума. — Я действительно забрала тысячу жизней. Остальные умерли от страха.

Жертвы чумы исчислялись сотнями тысяч и даже миллионами человек, вымирали города, становились безлюдными целые области, и ужас пандемий чумы затмевал ужасы всех войн, какие знала история человечества. Целые тысячелетия люди не понимали, что является источником заболевания [2].

Библия — одно из древнейших дошедших до нас свидетельств эпидемий чумы (1 книга Царств, глава 5; 4 книга Царств, глава 19, стихи 35–36). В мировой истории отмечают три пандемии этой болезни:

Бубонная форма чумы является наиболее распространенной формой заболевания и при отсутствии лечения приводит к гибели 40–60% заболевших. Легочная форма возникает либо как осложнение бубонной или септической форм, либо при вдыхании воздуха, зараженного возбудителем чумы. Если лечение не начинают в первые 24 часа после появления симптомов, смерть наступает через 48 часов [8].

В природе чумной микроб встречается практически на всех континентах, исключая Австралию, Антарктиду, а также Арктику, что обусловливает ежегодно регистрируемые случаи этой болезни. Стремительная эволюция микроорганизмов приводит к появлению популяций бактерий (штаммов), устойчивых к антибиотикам [9], что в случае с возбудителем чумы особенно опасно. Кроме того, этих бактерий могут использовать в качестве агента биотерроризма. Все вышесказанное объясняет необходимость изучения чумного микроба.

Возбудитель чумы Yersinia pestis — самая опасная бактерия в мире [10]. Что делает ее столь смертоносной?

Факторы вирулентности, или вооружен и очень опасен

Со времен открытия возбудителя чумы в 1894 году французом Александром Йерсеном и японцем Китасато Сибасабуро ученые пытались выяснить, что определяет патогенность Y. рestis. В результате многолетней тяжелой и рискованной работы, которая продолжается и по сей день, выделили следующие факторы патогенности возбудителя:

  • белки внешней мембраны (Yersinia outer proteins — называемые Yop-белками, эффекторными белками, или комплексом Yop-вирулона) [11];
  • комплекс области пигментации [12];
  • активатор плазминогена [13];
  • капсульный антиген [14];
  • пили адгезии или pH6-антиген [15].

Белки внешней мембраны, или зачем возбудителю чумы шприц?

Схема действия системы секреции III типа

Рисунок 1. Схема действия системы секреции III типа.

Комплекс области пигментации, или может ли стать потребность в чем-либо фактором патогенности?

Активатор плазминогена, или двуликий Янус

При вдыхании чумных микробов (и развитии легочной чумы) этот белок обеспечивает быстрое размножение бактерий в тканях легких и приводит к развитию молниеносной пневмонии и отеку легких, тогда как в отсутствии Pla инфекция не развивается в смертельную пневмонию. Установлено, что активатор плазминогена нарушает постоянство внутренней среды организма хозяина и блокирует иммунные реакции, направленные на уничтожение патогена [27].

Капсульный антиген, или скользкий тип этот возбудитель чумы

Бактерии окружены капсулой из слизистого вещества (фракция I, Fra1), которая препятствует поглощению и обезвреживанию Y. pestis иммунными клетками организма-хозяина в процессе фагоцитоза. На выявлении этого вещества-антигена основаны многие современные методы лабораторной диагностики чумы, оно входит в состав многих экспериментальных химических вакцин против чумы. Однако позднее обнаружили популяции бактерий, лишенные капсулы [28]. Кроме того, слизистая капсула есть у многих других микроорганизмов, например, возбудителя сибирской язвы, туляремии. Капсульное вещество иерсинии образуют при температуре 37 °С.

Антигены, схожие с рН6, были обнаружены у ряда возбудителей, вызывающих менее опасные болезни — кишечные инфекции (Y. pseudotuberculosis [31], Y. enterocolitica [32], Escherichia coli [8]).

Температурный фактор, или то, что действительно имеет значение

Необходимо заострить внимание на особой роли температуры в физиологии чумного микроба. Именно при температуре 37 °С у него повышаются питательные потребности [33] и синтезируются практически все известные детерминанты вирулентности (рис. 2) [34]. У других бактерий подобная зависимость выражена в меньшей степени, что позволяет говорить о ведущей роли температурного фактора в вирулентности возбудителя чумы [8].

Геном или все важное внутри

Помимо хромосомы у чумного микроба есть плазмиды — внехромосомные участки ДНК [38]. Большинство белковых факторов вирулентности закодированы на плазмидах: эффекторные белки на плазмиде pCad; капсула — pFra; активатор плазминогена — рPla (pPst, pPCP). Плазмиды pFra и рPla обнаружены только у Y. pestis (видоспецифические), pCad является общей с возбудителем псевдотуберкулеза (родоспецифическая) [20].

Заключение

В настоящее время продолжается работа по выявлению новых, еще не изученных маркеров вирулентности [39]. С использованием 2D-электрофореза, масс-спектрометрии, полногеномного секвенирования проводят сравнительный анализ отличающихся по вирулентности популяций чумного микроба для выявления различий в их белковых спектрах и геномных последовательностях. Ранее не известные белки и участки генома становятся объектом пристального внимания и изучения как потенциальные детерминанты вирулентности.

Таким образом, патогенность возбудителя чумы — это множественный (полидетерминантный) признак. Соединение многих факторов в единое целое создает страшную угрозу чумных эпидемий, с противостоянием которым, однако, прогрессивное человечество успешно справляется.


Обзор

Споры сибирской язвы под микроскопом

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Так, в 1915 году в ходе Первой мировой войны Германия и Франция перегоняли зараженный сибирской язвой скот — лошадей и коров — на сторону противника [1].

А в 1940-х годах на британской экспериментальной станции Портон-Даун доктор Пол Филдс определил, что наиболее эффективный способ применения сибирской язвы как биологического боевого агента — распыление частиц при взрыве бомбы. В 1942 году он провел серию экспериментов с бактериологическим оружием на пустынном шотландском острове Грюинард (рис. 1), куда доставили отару овец, после чего туда же сбросили бомбы, начиненные спорами сибирской язвы. Все овцы погибли в течение нескольких дней, а земля острова на протяжении долгих десятилетий оставалась зараженной и непригодной для жизни [2].

Остров Грюинард

Рисунок 1. Остров Грюинард

Военный городок Свердловск-19, 1979 год. Внезапная вспышка сибирской язвы унесла жизни 64 людей — и это только по официальным данным. По неофициальным (со слов врачей и пациентов) — не меньше сотни. Подавляющее большинство инфицированных были мужчинами средних лет. Годы спустя президент Борис Ельцин признал, что причиной эпидемии стали секретные разработки, а именно — случайная утечка бактерий из военной лаборатории [3].

Итак, что же в сибиреязвенных спорах так привлекает биотеррористов, и что делает возбудителя сибирской язвы потенциальным биологическим оружием?

С точки зрения бактериологии

Bacillus anthracis

Рисунок 2. Bacillus anthracis. В инфицированной крови или тканях бациллы часто присутствуют в виде коротких цепочек, окруженных полипептидной капсулой.

Грамположительные бактерии — те, что при окраске микроорганизмов по методу Грама приобретают темно-синий цвет и не обесцвечиваются при обработке спиртом. Такая окраска позволяет разделить бактерии по биохимическим свойствам: у грамположительных бактерий спирт вызывает сужение пор в пептидогликане (это полимер в стенках бактериальных клеток), за счет чего краска задерживается в клеточной стенке. Грамотрицательные бактерии, напротив, после воздействия спиртом утрачивают краситель из-за меньшего содержания пептидогликанов [4].

Что касается спор, эти особые формы бактериальных клеток служат для репродукции и/или переживания неблагоприятных условий, то есть хорошо сохраняются во внешней среде (важное свойство для биологического оружия). Они устойчивы к высоким температурам, радиации, высушиванию, действию растворителей и прочих губительных факторов. Более того, споры B. аnthracis могут переносить даже десятиминутное кипячение и сохраняются в почве десятки лет (что демонстрирует случай с островом Грюинард) [2]. В организме животного, которое имело несчастье пастись на такой земле, споры прорастают и вызывают сибирскую язву.

Что насчет патогенеза?

Патогенность B. аnthracis связана со способностью продуцировать токсины — отечный и летальный — и образовывать бактериальную капсулу.

Патогенные свойства B. anthracis кодируются двумя плазмидами: pXO1 отвечает за биосинтез токсинов, а pXO2 кодирует компоненты капсулы. Обе плазмиды необходимы для полной вирулентности (способности к инфицированию), и потеря любой из них приводит к ослаблению штамма.

Небольшая справка

Бактериальные плазмиды — это кольцевые молекулы ДНК, обособленные от хромосом (рис. 3). Они содержат дополнительные гены, необходимые только в специфических условиях для выживания клетки.

Генетический аппарат бактерий

Рисунок 3. Генетический аппарат бактерий. Цифрой 1 обозначена бактериальная ДНК, 2 — обособленные от нее плазмиды.

схема автора статьи

Существует несколько основных групп плазмид.

Col-плазмиды отвечают за синтез белков, действующих против других бактерий (такие вещества называются бактериоцинами). Эти белки вызывают гибель бактерий того же вида (или родственных ему), но не действуют на сами клетки, выделяющие данные вещества.

F-плазмиды (факторы фертильности) ответственны за половой процесс у бактерий. Его обусловливает наличие F-пилей — нитей белковой природы — и их способность к конъюгации, то есть переносу части генетического материала от одной бактериальной клетки к другой при их непосредственном контакте.

R-плазмиды (факторы резистентности) отвечают за устойчивость к действию антибиотиков и сульфаниламидных препаратов (бактериостатиков) — лекарств с противомикробным действием [5–7].

D-плазмиды определяют синтез ферментов, обеспечивающих расщепление углеводородов нефти и других трудноусваиваемых соединений [8].

Однако вернемся к сибирской язве. Плазмида pXO1 кодирует три компонента сибиреязвенных токсинов (рис. 4). Фактор отека (EF) вызывает местную воспалительную реакцию — собственно, отек; протективный антиген (PA) обладает иммуногенным действием, то есть способностью вызывать иммунный ответ организма. И третий фактор — летальный (LF) — нарушает внутриклеточный синтез макромолекул, что приводит к некрозу и разрушению клеток, в первую очередь — макрофагов. Каждый из этих факторов по отдельности не обладает патогенным действием, но сочетание протективного и летального факторов образует летальный токсин, а протективного и отечного — отечный токсин [2], [9–11].

Плазмиды B. anthracis

Рисунок 4. Плазмиды B. anthracis и продукты их синтеза. Регулятор AtxA, кодируемый плазмидой pXO1, контролирует синтез компонентов токсинов сибирской язвы со своей же плазмиды и компонентов капсулы с pXO2. Компоненты EF (фактор отека), LF (летальный фактор) и PA (протективный антиген) собираются в токсины ETx (отечный токсин) и LTx (летальный токсин), вызывая в целевых клетках-хозяевах отек и смерть соответственно. Компоненты капсулы ABCDE взаимодействуют на мембране бактериальной клетки с образованием поли-гамма-D-глутаматной капсулы, которая защищает клетки B. anthracis от уничтожения фагоцитами во время инфекции. PAI — остров патогенности в составе плазмиды.

Виды сибирской язвы

Сибирская язва существует в четырех формах: кожная, желудочно-кишечная, легочная и инъекционная [2], [12], [13].

Кожная форма является самой распространенной и наименее опасной. Она возникает при проникновении бактерий через поврежденную кожу — порез или царапину — при контакте с больным животным или продуктами животного происхождения. В течение двух-трех дней после заражения на коже развивается папула (вид кожной сыпи), которая затем окружается кольцом из везикул (воспалительных элементов сыпи) и, наконец, высыхает. Обычно к 5–6 дню из нее образуется похожий на уголь черный карбункул: он безболезнен и окружен отеком (рис. 5). Без лечения до 20% людей с кожной сибирской язвой погибает от сепсиса, однако при правильном лечении выживают почти все пациенты.

Кожная форма сибирской язвы

Рисунок 5. Кожная форма сибирской язвы

Желудочно-кишечная сибирская язва проявляется при употреблении в пищу сырого или недоваренного мяса зараженного животного. Инфекция так же развивается в течение недели. Характерный карбункул чаще всего встречается на стенке терминальной подвздошной или слепой кишки, однако могут быть поражены и ротоглотка, желудок, двенадцатиперстная кишка и верхняя подвздошная кишка. Желудочно-кишечная сибирская язва имеет две клинические формы: брюшную и пищеводную. При брюшной форме начальные симптомы — тошнота, рвота и лихорадка. По мере прогрессирования заболевания возникают сильные боли в животе, кровоизлияние и диарея с кровью, за которыми следуют сепсис и смерть. Все это — результат тяжелого и широко распространяющегося некроза начального отдела кишечника. При пищеводной форме сибирской язвы симптомы включают боль в горле, нарушение глотания, лихорадку, увеличение лимфоузлов в области шеи и отечность. Из-за таких неспецифических проявлений трудно поставить верный диагноз, что приводит к высокой смертности: умирает более половины пациентов. Однако при правильном лечении выживаемость может достигать 60%.

Самая смертоносная форма сибирской язвы — легочная: она возникает при вдыхании спор В. anthracis. Болезнь начинается коварно — с похожих на грипп симптомов: легкой температуры, усталости, недомогания, боли в мышцах и непродуктивного кашля. Начальная стадия длится около 48 часов, после чего резко сменяется развитием острой фазы. Появляются сильная одышка, тахикардия, учащенное свистящее дыхание, влажные хрипы, лихорадка и посинение кожи (цианоз). В конечном итоге пульс становится очень быстрым и слабым, одышка и цианоз прогрессируют, затем быстро наступают кома и смерть. Без лечения выживает только 10–15% пациентов, однако при агрессивном лечении выживаемость может повышаться и до 55%.

Не так давно была обнаружена новая, инъекционная, форма сибирской язвы в среде героиновых наркоманов. Ее симптомы иногда напоминают кожную форму, однако инфекция в этом случае локализуется глубоко под кожей или в мышце — в зависимости от того, куда была сделана инъекция.

Ни одна из форм сибирской язвы не заразна. Это означает, что болезнь не передается от человека к человеку, как простуда или грипп, — инфицирование может происходить только одним из означенных выше способов [13].

Вскрытие покажет

Лечение и профилактика

Для лечения всех форм сибирской язвы ВОЗ рекомендует интенсивную поддерживающую терапию и антибиотикотерапию. В качестве антибиотика, как правило, выступает знаменитый пенициллин. В тяжелых случаях его комбинируют со фторхинолонами (ципрофлоксацином или левофлоксацином) или макролидами (клиндамицином или кларитромицином). Также могут использоваться и другие антибиотики широкого спектра. При заражении самой опасной, легочной, формой сибирской язвы в ход идет тяжелая артиллерия: гемодинамическая поддержка, искусственная вентиляция легких, назначение кортикостероидов. Очень важно начать своевременное лечение, чтобы уничтожить бактерии раньше, чем их токсины попадут в кровоток [15].

Также при лечении сибирской язвы используют человеческие моноклональные (происходящие от одной клетки-предшественницы) антитела: раксибакумаб и обилтоксаксимаб. Оба препарата связывают протективный антиген (PA), в результате чего нейтрализуются оба сибиреязвенных токсина. Это происходит из-за того, что PA играет ключевую роль в сборке токсинов и поражении клеток-мишеней. Препараты рекомендованы для лечения легочной формы сибирской язвы в сочетании с антибактериальной терапией [17], [18].

Лечение сибирской язвы проводится в течение 3–7 дней при неосложненной кожной форме и 10–14 дней — при системной инфекции, которая охватывает весь организм. Если заболевание — результат биотерроризма, длительность лечения, по рекомендациям ВОЗ, может возрастать до 60 дней. В таком случае назначают ципрофлоксацин или доксициклин с тремя дозами вакцины против сибирской язвы (или же без нее) [15].

Почему различаются курсы лечения инфекций, возникших естественным путем и вызванных искусственно? Дело в том, что искусственные инфекционные болезни обладают самостоятельными клиническими аспектами, этиологией и эпидемиологией. Для заражения злоумышленники могут использовать усовершенствованные штаммы микроорганизмов: с повышенной вирулентностью, устойчивостью к отдельным лекарствам и способностью преодолевать иммунитет, возникший в результате вакцинации. О том, что заболевание вызвано воздействием биологического оружия, могут говорить невозможные эпидемиология и клиническая форма болезни. Проще говоря, можно заподозрить биотерроризм, если в природе не существует условий для развития данного эпидемического процесса, либо подобной клинической картины не наблюдается при естественном заражении. Например, существует патология мелкодисперсного аэрозоля: поражение глубоких отделов легких, вызванное проникновением инфекционных агентов размером менее 5 мкм. Эту патологию может вызвать только целенаправленное распыление биологических частиц из аэрозоля с дисперсной фазой 1–5 мкм [19].

Против сибирской язвы существуют и вакцины (см. табл.).

Несмотря на уже существующие вакцины, разрабатывают и новые — с расчетом на то, что они окажутся более безопасными и эффективными [21]. Однако ни одной вакцины нет в свободном доступе, и ВОЗ рекомендует их только для групп риска — людей, чья деятельность связана с высоким риском инфицирования: ветеринарам, некоторым лабораторным работникам и военнослужащим. Например, с 2015 года вакцину получают сотрудники Министерства обороны США и члены их семей [15].

Идеальное биологическое оружие?

Если сравнить, скажем, B. anthracis и Y. pestis — возбудителя чумы — то окажется, что B. anthracis обладает некоторыми преимуществами — разумеется, в качестве биологического оружия. Так, мы уже говорили о том, что возбудитель сибирской язвы крайне устойчив во внешней среде и может храниться в почве десятилетиями. По сравнению с ним, Y. pestis обладает небольшой устойчивостью: при низкой температуре чумная палочка сохраняется в почве до 28 суток, при высокой — быстро погибает. В выделениях больных людей и животных Y. pestis может сохраняться довольно продолжительное время (что, опять же, зависит от температуры и наличия других бактерий), но обычно не больше месяца. В крови больных животных возбудитель чумы сохраняется до 260 суток, а в замороженных человеческих трупах — 4–5 месяцев [23]. В отличие от B. anthracis, Y. pestis не образует споры.

Clostridium botulinum, возбудитель ботулизма, во многом похож на B. anthracis: это тоже грамположительная спорообразующая бактерия, обитающая в почве. В чем-то C. botulinum даже более устойчив: он выдерживает кипячение до 6 часов, тогда как B. anthracis — только 10 минут. Ботулинический токсин — самый сильный из всех биологических ядов, однако для его продуцирования нужны строго анаэробные условия, а возбудитель сибирской язвы может существовать в любой среде [8].

Читайте также: