Клеточная теория строения организмов вирусы

Обновлено: 23.04.2024

Клеточная теория – исторически первая теория, с которой связано становление биологии как самостоятельной науки. Выделение клеточного уровня вызвало цепную реакцию изучения других систем и уровней организации живой природы.

Цитология – наука о клетке. Изучает строение, функции, размножение, развитие, приспособление клеток к условиям окружающей среды.

Клетка – это элементарная биологическая система, способная к самообновлению, к самовоспроизведению и развитию.

История развития представлений о клетке.

Дальнейший прогресс в изучении клетки был связан с развитием микроскопической техники. Голландский естествоиспытатель Антони Левенгук открыл мир одноклеточных организмов (1680). Он же впервые описал животную клетку (эритроциты крови). Чешский ученый Ян Пуркинье установил, что важнейший компонент клетки – протоплазма, а не клеточная оболочка, как полагал Р.Гук (1830). В протоплазме было обнаружено ядро. Я.Пуркинье описал ядро в яйцеклетке птиц, а Роберт Броун – в клетках растений (1833).

Создание классической клеточной теории.

Вывод:Клеточная теория это обобщение всех знаний о клетке. Она лежит в основе представлений о единстве всего живого, общности его происхождения и эволюционного развития.

Современный период развития представлений о клетке.

В 1866 г Гегель установил, что хранение и передача наследственных признаков осуществляет ядро.

В конце ХIХ в. световые микроскопы были уже технически совершенны. Развивались методы изготовления микропрепаратов и их окрашивания. Это позволило открыть некоторые компоненты клетки – органоиды, подробно описать процессы деления клеток.

В 1930 году появился первый электронный микроскоп. С 1945 г начинается широкое применение его в биологии (дает увеличение от 100 000 раз и более).

Методы изучения клетки:

3.Метод культуры тканей;

4.Метод меченных атомов;

В середине ХХ в. было установлено, что существует два типа клеточной организации: прокариотические и эукариотическиеклетки. Для эукариот характерно наличие ядра, отделенного от цитоплазмы двойной мембраной, и органойдов. В клетках прокариот оформленное ядро и многие органоиды отсутствуют. (К эукариотам относят все растения, животных, грибы. К прокариотам – бактерии). В результате была сформулирована современная клеточная теория, в основе которой лежит идея Т.Шванна о клетке как структурной и функциональной единице живого.

КЛЕТОЧНАЯ ТЕОРИЯ. ВИРУСЫ И ПРОКАРИОТЫ (2)

План

Основные положения клеточной теории

Прокариоты и эукариоты

Вирусы

Прокариоты и эукариоты

Существует два типа клеточной организации: прокариотические и эукариотическиеклетки. Для эукариот характерно наличие ядра, отделенного от цитоплазмы двойной мембраной, и органойдов. В клетках прокариот оформленное ядро и многие органоиды отсутствуют. (К эукариотам относят все растения, животных, грибы. К прокариотам – бактерии).

Вирусы.

Вирусы – неклеточные формы жизни. Они были открыты Ивановским в 1892 г. Они имеют очень малые размеры, поэтому изучают с помощью электронного микроскопа.

Являются внутриклеточными паразитами. Они проявляют свойства живого, только попадая в клетку и включаясь в ее обмен. В клетке вирусы способны к размножению, передачи своих свойств по наследству из поколения в поколение, изменению наследственных признаков.

Вне клетки вирусы неактивны и существуют в кристаллической форме. Попадая в живые клетки, вирусы переходят в активную форму и вызывают заболевания. Каждый вид вируса имеет строго определенного хозяина: клетку человека, животного, растения, гриба, бактерии.

Строение вирусов. На поверхности вируса белковая оболочка, капсид, которая предохраняет нуклеиновую кислоту (ДНК или РНК) от повреждений.

Размножение вирусов: 1. Синтез вирусной нуклеиновой кислоты.

2.Синтез вирусных белков

3.Сборка вирусных частиц.

При этом они разрушают клетку хозяина и выделяются в окружающую среду.

Значение:

1)Вирусы вызывают заболевания у человека: грипп, ОРВИ, оспа, корь, гепатит, бешенство, СПИД и др., у животных – бешенство и др.

2)Являются биологическими мутагенами, т.е. изменяют генетическую информацию клеток и органов.

3)Могут вызывать злокачественные перерождения клеток (рак).

КЛЕТОЧНАЯ ТЕОРИЯ. ВИРУСЫ И ПРОКАРИОТЫ (1)

План

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.



Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

Вирусы — объекты живой природы, не имеющие клеточного строения, способные размножаться только в живых клетках. Они являются переходной формой между живой и неживой материей. По размерам вирусы намного меньше бактерий, поэтому увидеть их смогли только после создания электронных микроскопов.

Вне живой клетки вирусы не проявляют никаких признаков жизни (не растут, не питаются, не вырабатывают энергии, у них нет обмена веществ).

  • способны воспроизводить себе подобные формы (размножаться);
  • обладают наследственностью и изменчивостью.

Устроены вирусы очень просто. Они состоят из генетического материала, который представлен молекулой РНК или ДНК, и белков, образующих оболочку (капсид). Некоторые вирусы имеют ещё дополнительную липопротеиновую оболочку.

2 (25).jpg


Рис. \(1\). Вирусы

Оказавшись в клетке, вирус встраивает свою нуклеиновую кислоту в её наследственный аппарат. Заражённая клетка начинает производить нуклеиновую кислоту и белки, необходимые для сборки вирусных частиц. Внутри клетки-хозяина из образовавшихся молекул собираются новые вирусы. Когда их образуется много, оболочка клетки разрушается, она погибает, а вирусы попадают в окружающую среду.

Пока однозначного ответа о происхождении вирусов наука не даёт. Часть учёных высказывает мысли о том, что вирусы являются фрагментами клеток, которые утратили все составные части (кроме наследственного аппарата) в результате адаптации к паразитизму. По своему строению вирусы напоминают хромосому.

Вирусы являются причиной возникновения болезней. Примерами вирусных заболеваний могут служить бешенство, чума свиней, мозаичная болезнь растений. К вирусным относятся такие опасные заболевания людей, как грипп, гепатит, СПИД, корь.

Вирус иммунодефицита человека (ВИЧ), который является причиной синдрома приобретённого иммунодефицита (СПИДа), был обнаружен в США в \(1981\) г. По данным ВОЗ с начала эпидемии заразились этим вирусом уже более \(60\) млн человек.

ВИЧ поражает лейкоциты, в первую очередь лимфоциты-хелперы, которые участвуют в иммунном ответе на заражение. Иммунитет нарушается, клетки крови перестают распознавать болезнетворные агенты, которые оказываются в организме, и человек оказывается незащищённым от любых инфекций. Больше половины больных СПИДом умирают от пневмонии, которую здоровый человек обычно переносит без тяжёлых последствий.

Чаще всего ВИЧ заражаются через сперму или кровь. \(90\) % заражённых инфицированы половым путём. При этом чем больше половых партнёров, тем выше вероятность заражения. Быстро распространяется вирус среди наркоманов из-за использования одного и того же шприца. Можно заразиться, если контактировать с кровью заражённого вирусом человека, например, при перевязывании раны. Возможно заражение при переливании донорской крови, если она не проверена на наличие ВИЧ. Ещё один путь заражения — это передача вируса от больной матери к ребёнку через плаценту или с грудным молоком.

Цитология (греч. cytos — клетка + logos — наука) - наука о строении и жизнедеятельности клетки. На данный момент нам кажется очевидным, что растения, грибы и животные состоят из клеток, однако раньше об этом и не догадывались.

Цитология начала свой путь развития относительно недавно, в этой статье мы обсудим клеточную теорию и методы, которые используются в цитологии для изучения клеток (методологию).

Строение клетки

Клеточная теория

Создание и развитие клеточной теории стало возможным после изобретения микроскопа в 1590 году голландским мастером по изготовлению очков - Захарием Янсеном. Первый микроскоп мог увеличивать изучаемый объект до 3-9 раз.

Первый микроскоп

В 1665 году Роберт Гук, используя микроскоп собственного изобретения, смог различить ячеистые структуры пробки ветки бузины. Эти ячеистые структуры напомнили Роберту Гуку монашеские кельи, он ввел термин клетка (от лат. сеllа — комната, келья).

На самом деле Роберт Гук увидел не живые клетки, как он предполагал, а оставшиеся от них плотные клеточные стенки, которые и представляли собой ячеистую структуру.

Роберт Гук

В 70-х годах XVII века нидерландский натуралист Антони ван Левенгук открыл целый мир, невидимый невооруженным глазом. Он увидел в микроскопе простейшие организмы: инфузорий, сперматозоидов, а также дрожжи, бактерии, эпидермис кожи.

В течение 50 лет он отсылал результаты своих наблюдений в Лондонское королевское общество. Поначалу они были встречены со скептицизмом, но когда комиссия ученых лично во всем убедилась и подтвердила подлинность его исследований, Антони ван Левенгук был избран действительным членом Лондонского королевского общества.

Антони ван Левенгук

В последующее время было много описаний самых разных клеток, однако обобщить накопленный материал оказалось не легкой задачей. С ней в 1839-1840 годах справились немецкий ботаник Маттиас Шлейден и немецкий зоолог Теодор Шванн.

  • Все организмы состоят из клеток
  • Клетка - мельчайшая структурная единица жизни
  • Образование новых клеток - основополагающий способ роста и развития растений и животных
  • Организм представляет собой сумму образующих его клеток

Допустили ли Шлейден и Шванн ошибки? Да, они были. Ошибочно предположение о том, что клетка может образоваться из неклеточного вещества.

Важное дополнение в 1855 в клеточную теорию внес Рудольф Вирхов, который утверждал, что любая клетка может образоваться только путем деления материнской клетки.

Рудольф Вирхов

  • Клетка является структурной, функциональной и генетической единицей живого
  • Клетки растений и животных сходны между собой по строению и химическому составу
  • Клетка образуется только путем деления материнской клетки
  • Клетки у всех организмов окружены мембраной (имеют мембранное строение)
  • Ядро клетки - ее главный регуляторный органоид
  • Клеточное строение растений, животных и грибов свидетельствует о едином происхождении всего живого
  • В многоклеточном организме клетки подразделяются (дифференцируются) по строению и функции. Они объединяются в ткани, органы и системы органов.
  • Клетка - элементарная, открытая и живая система, способная к самообновлению, воспроизведению и саморегуляции

XX век несомненно стал веком биологических наук: цитологии, генетики. Это произошло во многом благодаря клеточной теории.

Я хочу поделиться с вами моим искренним восхищением новой жизни. Вдумайтесь - мы ведь когда-то с вами были всего одной единственной клеткой, зиготой! Как в одной клетке природе удалось уместить столько всего: кожу, мышцы, нервную систему, пищеварительный тракт? Мы приоткроем завесу этой тайну в статьях по генетике и эмбриологии, и, тем не менее, мое восхищение этим безгранично.

Наши клетки рождаются и умирают: эпителий кишечника обновляется каждые 5 дней полностью, при удалении 70% печени оставшиеся клетки способны восстановить всю структуру этого органа, каждые 30 дней мы получаем новую кожу. При этом наше сознание и память остаются с нами. Мы - чудо, настоящее чудо природы, созданное из одной единственной клетки.

Клеточная дифференцировка

Микроскопия

Микроскопия - важнейший метод цитологии, в ходе которого объекты рассматриваются при помощи микроскопа. Его оптическая система состоит из двух основных элементов: объектива и окуляра, закрепленных в тубусе. Микропрепарат (срез тканей) располагается на предметном столике, расстояние от которого до объектива регулируется с помощью винта (винтов).

Чтобы посчитать увеличительную способность микроскопа следует умножить увеличение окуляра на увеличение объектива. К примеру, если окуляр увеличивает объект в 20 раз, а объектив - в 10, то суммарное увеличение будет в 200 раз.

Устройство микроскопа

Некоторое внимание уделим направлениям в биологии, которые необходимо знать на современном этапе технического прогресса.

Биоинженерия

Биоинженерия - направление науки и техники, развивающее применение инженерных принципов в биологии и медицине. В рамках биоинженерии происходят попытки (и довольно успешные) выращивания тканей и создание искусственных органов, протезов.

То есть биоинженерия занимается преимущественно технической частью. Медицинское направление в биоинженерии ищет замену органам и тканям человека, которые утратили свою функциональную активность и требуют "замены".

Биоинженерия

Биотехнология

Биотехнология - направление биологии, изучающее возможность применения живых организмов или продуктов их жизнедеятельности для решения технологических задач. В биотехнологии путем генной инженерии создают организмы с заданным набором свойств.

В рамках биотехнологии происходит получение антибиотиков - продуктов жизнедеятельности бактерий, очищение водоемов с помощью моллюсков, увеличение плодородия почвы с помощью дождевых червей, клонирование организмов.

Это разительно отличается от задач биоинженерии, хотя безусловно, эти дисциплины смежные. Все-таки в биотехнологии происходит большее вторжение в живой мир, по сути человек выступает эксплуататором, достигая с помощью животных, растений и грибов своих целей. Человек проводит искусственный отбор, отделяя особей, которые продолжат род, от других, "менее перспективных".

Биотехнология

Представляет собой совокупность методов и технологий, которые приводят к получению рекомбинантных РНК и ДНК, выделению генов из клеток и внедрения их в другие организмы.

Изменив молекулу ДНК или РНК, человек добивается своей цели: клетка начинает синтезировать с нее белок. Он то и нужен человеку, такие продукты жизнедеятельности активно используются в медицине, к примеру, при изготовлении антибиотиков.

  • Сорт кукурузы, устойчивый к действию насекомых-вредителей
  • Бактерии, продуктом жизнедеятельности которых является человеческий инсулин, используемый в дальнейшем как лекарство
  • Культура клеток, вырабатывающих гормон человека - эритропоэтин, также используемый в лечебных целях

Генная инженерия

Представляет собой совокупность методов и технологий, используемых для конструирования новых клеток. В основе лежит идея культивирования клеток тканей вне организма.

С помощью клеточной инженерии возможно бесполое размножение ценных форм растений. Часто получаются, так называемые, гибридные клетки, которые сочетают свойства, к примеру, раковых клеток и лимфоцитов, в результате становится возможно быстрое получение антител.

Клеточная инжерения

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Клеточная теория

Биология

Клеточная теория — это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов. Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный (более трехсот лет) период накопления наблюдений о строении различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с усовершенствованием различных оптических методов исследований и расширением их применения.

Основные положения клеточной теории

Наблюдения Гука

Открытие Левенгука

Позднее А. Левенгук(1680) открыл мир одноклеточных организмов и впервые увидел клетки животных (эритроциты). Позднее клетки были вновь описаны животных, но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии клетки связан с развитием микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое – протоплазма. В протоплазме был открыт постоянный компонент клетки — ядро.

Клеточная теория Шванна и Шлейдена

Клеточная теория

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужила главным фундаментом для развития таких дисциплин как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя за более чем сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток.

Постулаты клеточной теории

В настоящее время клеточная теория постулирует следующее:

1. Клетка — элементарная единица живого: вне клетки нет жизни.

2. Клетки сходны (гомологичны) по строению и по основным свойствам.

3. Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала (ДНК): клетка от клетки.

4. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Клетка — элементарная единица живого

Что такое клетка

Что же такое клетка, какое ей можно дать общее определение? Из школьного курса известно, что разнообразные клетки имеют совершенно несходную морфологию, их внешний вид и величины значительно расходятся. Действительно, что общего между звездчатой формой некоторых нервных клеток, шаровидной формой лейкоцита и трубкообразной формой клетки эндотелия. Такое же разнообразие форм встречается и среди микроорганизмов. Поэтому мы должны находить общность живых объектов не в их внешней форме, а в общности их внутренней организации.

Среди живых организмов встречаются два типа организации клеток. К наиболее простому типу строения можно отнести клетки бактерий и синезеленых водорослей (цианобактерий), к более высокоорганизованному — клетки всех остальных живых существ, начиная от низших растений и кончая человеком.

Прокариотические и эукариотические клетки

Принято называть клетки бактерий и синезеленых водорослей прокариотическими (доядерными клетками), а клетки всех остальных представителей живого — эукариотическими (собственно ядерными), потому что у последних обязательной структурой служит клеточное ядро, отделенное от цитоплазмы ядерной оболочкой. Клетки прокариот сильно отличаются от клеток эукариот: они не только не имеют оформленного ядра, но и не имеют многих органоидов (митохондрий, лизосом, аппарата Гольджи и так далее). Более подробно об этих различиях мы поговорим на соответствующем уроке. А пока что разберемся с тем, что объединяет эти организмы и почему же все-таки клетки всего живого сходны по строению.

Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной, клеточной, системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах; сходны и другие процессы, такие, как синтез РНК и репликация ДНК, похожи и биоэнергетические процессы. Исходя из вышесказанного, клетке можно дать общее определение.

Клетка - определение

Клетка — это ограниченная активной мембраной упорядоченная структурированнаясистема биополимеров и их макромолекулярных комплексов, участвующих вединой совокупности метаболических и энергетических процессов,осуществляющих поддержание и воспроизведение всей системы в целом.

У многоклеточных организмов часть клеток утрачивает свойство размножаться, но они остаются клетками до тех пор, пока способны осуществлять синтетические процессы, регулировать транспорт веществ между клеткой и средой, использовать для этих процессов энергию. Есть примеры безъядерных клеток (эритроциты млекопитающих, некоторые мышечные клетки моллюсков), это скорее не собственно клетки, а их остатки — одетые мембраной участки цитоплазмы с ограниченными функциональными потенциями.

Одно время первый постулат клеточной теории подвергался многочисленным нападкам и критике. Некоторые авторы указывали, что в многоклеточных организмах, особенно у животных, кроме клеток существуют и межклеточные, промежуточные вещества, которые тоже, казалось бы, обладали свойствами живого. Однако было показано, что межклеточные вещества (так называемое основное вещество и волокна соединительной ткани) представляют собой не самостоятельные образования, а продукты активности отдельных групп клеток.

Гомологичность клеток

Это обобщение, сделанное еще Т. Шванном, нашло свое подтверждение и развитие в современной цитологии, использующей новые достижения техники, такие, как электронный микроскоп. Гомологичность строения клеток наблюдается внутри каждого из типов клеток: прокариотическом и эукариотическом. Хорошо известно разнообразие клеток как бактериальных, так и высших организмов. Такое одновременное сходство строения и разнообразие форм определяются тем, что клеточные функции можно грубо подразделить на две группы: обязательные и факультативные. Обязательные функции, направленные на поддержание жизнеспособности самих клеток, осуществляются специальными внутриклеточными структурами.

Та же картина наблюдается и для эукариотических клеток. При изучении клеток растений и животных бросается в глаза разительное сходство не только в микроскопическом строении этих клеток, но и в деталях строения их отдельных компонентов. У эукариот, как и у прокариот, клетки отделены друг от друга или от внешней среды активной плазматической мембраной, которая может принимать участие в выделении веществ из клетки и построении внеклеточных структур, что особенно выражено у растений. У всех эукариотических клеток от низших грибов до позвоночных всегда имеется ядро, принципиально сходное по построению у разных организмов. Строение и функции внутриклеточных структур также в принципе определяются гомологичностью общеклеточных функций, связанных с поддержанием самой живой системы (синтез нуклеиновых кислот и белков, биоэнергетика клетки и т.д.).

Одновременно мы видим и разнообразие клеток даже в пределах одного многоклеточного организма. Например, по форме мало похожи друг на друга такие клетки, как мышечная или нервная. Современная цитология показывает, что различие клеток связано со специализацией их функций, с развитием особых функциональных клеточных аппаратов. Так, если рассматривать мышечную клетку, то в ней кроме общеклеточных структур (мембранные системы ретикулума, аппарат Гольджи, рибосомы и др.) встречаются в большом количестве фибриллярные компоненты, обеспечивающие специальную функциональную нагрузку, характерную для этой клетки.

Структурное разнообразие клеток многоклеточного организма можно объяснить отличием их специальных функций, осуществляющихся данной клеткой как бы на фоне общих, обязательных клеточных функций. Другими словами, гомологичность в строении клеток определяется сходством общеклеточных функций, направленных на поддержание жизни самих клеток и на их размножение. Разнообразие же в строении клеток многоклеточных организмов — результат функциональной специализации.

Клетка от клетки

Размножение прокариотических и эукариотических клеток происходит толькопутем деления исходной клетки, которому предшествует воспроизведение еегенетического материала (редупликация ДНК).

Всякая клетка от клетки

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления — клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических (как растительных, так и животных) клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот.

Клетка и многоклеточный организм

Роль отдельных клеток в многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Действительно, какую бы сторону деятельности целого организма мы ни брали, будь то реакция на раздражение или движение, иммунные реакции, выделение и многое другое, каждая из них осуществляется специализированными клетками. Клетка — это единица функционирования в многоклеточном организме.

Но клетки объединены в функциональные системы, в ткани и органы, которые находятся во взаимной связи друг с другом. Поэтому нет смысла в сложных организмах искать главные органы или главные клетки. Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.

Клетка в многоклеточном организме

В итоге можно сказать, что клетка в многоклеточном организме — это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки — антитела, которые связываются с чужими белками и их инактивируют.

Эти антитела представляют собой продукты синтетической активности определенных клеток-плазмацитов. Но чтобы плазмациты начали вырабатывать специфические антитела, необходимы работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример, простейший рефлекс — слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы (клетки) передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни клетки вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.

Жизнь нового организма начинается с зиготы — клетки, получившейся в результате слияния женской половой клетки (ооцита) со спермием. При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и выработки ими разнообразных продуктов (например, вещества кости или хряща).

Подводя итог рассмотрению современного состояния клеточной теории, нужно сказать, что именно клетка является единицей развития многоклеточных, единицей их строения, функционирования и единицей патологических изменений организма.



Сочинение на тему: Теория Раскольникова и жизнь.


Вирус (лат. virus - яд) - неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.

Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.

Вирус гепатита C

В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.

Ивановский Д.И.

  • Наличие наследственности и изменчивости
  • Способность к репродукции (воспроизведению себе подобных)

    Неживое (инертное) состояние

Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы - облигатные внутриклеточные паразиты.

У вирусов отсутствует обмен веществ с внешней средой (метаболизм).

Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.

У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.

Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни - безудержное размножение.

Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент - его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов - полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.

Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.

Строение вируса

Взаимодействие вируса с клеткой

Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.

Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код - она принимает его как свой собственный, а в результате синтезирует вирусные белки.

Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.

Вирус в клетке

Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.

Бактериофаги ("бактерия" + греч. phag(os) — пожирающий)

Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом - ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.

Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.

Строение бактериофага

Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.

Вирусные инфекции

Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.

Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.

Клетки вырабатывают защитный белок - интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).

Повышение температуры тела

Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах - клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.

Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.

Строение ВИЧ

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: