Коронавирус днк или рнк содержащий вирус

Обновлено: 28.03.2024

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.


Вирус в настоящее время известен как коронавирус 2 тяжелого острого респираторного синдрома (Severe acute respiratory syndrome-related coronavirus 2 - SARS-CoV-2), и вызванное им заболевание называется коронавирусной болезнью 2019 (COronaVIrus Disease 2019 - COVID-19).

Коронавирусы – семейство РНК-содержащих вирусов, которые могут инфицировать как животных (крупного рогатого скота, птиц, собак), так и человека.

Вирусы, патогенные для животных, вызывают у них болезни печени, желудочно-кишечного тракта, повреждения мозга. Среди них наиболее изучен вирус инфекционного бронхита кур.

До 2002 года коронавирусы рассматривали в качестве агентов, которые могут вызывать нетяжелые заболевания верхних дыхательных путей. Смертельные исходы регистрировались крайне редко.

Семейство Coronaviridae содержит четыре рода вирусов:

Настоящая пандемия COVID19 вызвана вирусом SARS-Cov-2, который относится к роду β-коронавирусов. Инфицирование человека могут вызывать только альфа- и бетта- подтипы коронавируса.

Строение и размножение вирусов

Коронавирусы названы в соответствии с их внешним видом под электронным микроскопом. Вирусы выглядят так, как будто они покрыты остроконечными шипами, которые окружают их как корону.

Строение коронавируса COVID-19

Пути распространения

SARS-Cov-2 – относится к зооанторопонозным заболеваниям, то есть к заболеваниям общим для животных и человека. К этому же типу, в числе прочего, относят бешенство, лептоспироз, сибирскую язву, ящур.

Животные могут быть как резервуаром (естественной средой обитания вируса), так и источником инфекции при определенных условиях. По классификации Международного эпизоотического бюро (МЭБ) большинство коронавирусных инфекций относят к Типу 2+: болезни, передающиеся от диких животных домашним и человеку. Как известно, вспышка сегодняшней коронавирусной инфекции началась с рынка в китайском городе Ухань, на котором продаются морепродукты, летучие мыши, лягушки, змеи, птицы, сурки, кролики, и быстро поразила первых 50 человек.

Иными словами, первые пациенты получили вирус от животных, но масштаб пандемии COVID19 приобрел именно из-за передачи вирусной инфекции от человека к человеку.

Способы передачи коронавирусов COVID-19

Ключевые резервуары и способ передачи коронавирусов (предполагаемые резервуары SARS-CoV-2 обведены красным на рис. 2); только α и β коронавирусы обладают способностью инфицировать людей. Пунктирная черная стрелка показывает возможность переноса вируса из летучей мыши, тогда как сплошная черная стрелка обозначает подтвержденный перенос.

2012 год – вспышка ближневосточного респираторного синдрома, возбудителем которого также стал коронавирус, который получил название MERS-Cov. Во время вспышки было зафиксировано 2519 случаев заражения, из них более 860 со смертельным исходом. Вирус циркулирует по настоящее время, ежегодно регистрируются единичные случаи заболевания, вызываемые MERS-Cov.

Подробные исследования показали, что SARS-Cov передавался людям от циветт (хищных зверьков, дальних родственников кошки), а MERS-Cov – от одногорбых верблюдов. Генетическая последовательность нынешнего SARS-Cov-2 показала более 80% идентичности с SARS-CoV и 50% с MERS-CoV, причем как SARS-CoV, так и MERS-CoV происходят от летучих мышей. Существует вероятность того, что в передаче вируса человеку участвовал промежуточный хозяин. Более тщательный анализ показал, что по генам, кодирующим белки, SARS-Cov-2 ближе к коронавирусу змеи. Эти рептилии охотятся на летучих мышей, так что между ними вполне возможен обмен вирусами.

Понимание путей заражения и механизмов преодоления межвидового барьера очень важно для прогнозирования развития подобных вспышек эпидемий.

Приоритетные задачи расследования по идентификации животного источника обсуждались на заседании неформальной консультативной группы МЭБ по COVID-19 и были представлены на Глобальном форуме ВОЗ по научным исследованиям и инновациям (11-12 февраля 2020 г.)

1. Andersen KG, Rambaut A., Lipkin WI et al. Проксимальное происхождение SARS-CoV-2. NatMed 26, 450–452 (2020).

2. Muhammad AdnanShereen, SulimanKhan, AbeerKazmi,NadiaBashir,RabeeaSiddique. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Researc, July 2020, Pages 91-98July 2020, Pages 91-98

3. Официальный сайт Россельхознадзора

4. Jie Cui, Fang Li, and Zheng-Li Shi. Origin and evolution of pathogenic coronaviruses. NatRevMicrobiol. 2019; 17(3): 181–192.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.


Обзор

Межвидовые контакты приводят к зоонозам

коллаж автора статьи (изображения из открытых источников)

Автор
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Надо признаться: мы не знаем, сколько вирусов существует в природе. Сейчас известно 6590 видов этих облигатных внутриклеточных паразитов. Но, по некоторым осторожным оценкам, только среди млекопитающих могут циркулировать сотни тысяч пока не описанных видов вирусов [1]. Отмечу, что разнообразие живого мира, мягко говоря, не ограничивается одним классом позвоночных животных. Безусловно, неизвестные вирусы способны вызывать заболевания человека. Самое грустное в том, что даже при наличии известной геномной последовательности (а чаще всего сиквенса нет — объект-то неизвестный!) невозможно сказать, насколько опасен тот или иной вирус. Таким образом, неизвестно даже примерное число вирусов, потенциально способных приводить к эпидемиям или пандемиям.

Чем чаще и тяжелее протекает инфекция, тем больше ресурсов вкладывают в изучение аспектов взаимодействия патогена с организмом человека. Из понимания этих деталей возникают идеи для разработки лекарств. Сейчас эффективно и специфично можно вылечить или предотвратить примерно 20 вирусных заболеваний, от которых погибало или погибает много людей (например полиомиелит и бешенство). Но наше знание даже, казалось бы, хорошо изученных объектов весьма обрывочно. Например, десятки, если не сотни, научных групп много лет активно изучают вирус полиомиелита. Структуру генома и вирусные белки описали десятилетия назад. А в 2019 году внезапно нашли еще один белок, облегчающий распространение вируса в клетках кишечного эпителия [2].

Сейчас активно разрабатывают методы специфической терапии еще примерно 20 болезней, которые вызывают вирусы (например ВИЧ или SARS-CoV-2). Но это лишь верхушка айсберга: около 200 других вирусов (например лиссавирус Иркут [3] или тоготовирус Бурбон [4]) приводят к заболеваниям человека разной степени тяжести. Про них по большей части можно сказать только то, что:

  • нуклеотидная последовательность известна;
  • это опасно.

Более того, есть страшная статистика. Когда человек умирает от вирусного энцефалита (воспаления головного мозга, вызванного вирусной инфекцией), в 60% случаев конкретный возбудитель заболевания остается неизвестным [5].

Возможность межвидовой передачи вирусов зависит от интенсивности контактов между разными животными [6]. Например, число контактов между людьми и летучими мышами считается небольшим: летучих мышей, как правило, не содержат в качестве домашних животных и не разводят для употребления в пищу. Тем не менее в некоторых регионах мира этих животных едят. В рационе почти половины жителей деревень на юге Камеруна присутствуют летучие мыши [7]. Летучие мыши этого региона — естественные резервуары филовирусов и хенипавирусов, вызывающих такие опасные заболевания, как лихорадка Эбола [8] и инфекция Нипах [9]. Таким образом, прямая передача вируса от летучих мышей к людям возможна, что периодически и происходит в разных уголках земного шара.

Возможность распространения патогена зависит от многих факторов. Например, вирус бешенства передается при ослюнении раневой поверхности. Такой способ делает возможным циркуляцию бешенства среди лисиц [15]. Но заражение человека бешенством от другого человека в литературе не описано — у людей в норме не принято кусать друг друга. По этой причине бешенство было и будет оставаться классическим примером зооноза для людей. Отмечу, что эта болезнь не всегда циркулировала в популяции плотоядных животных.

Какие бывают коронавирусы и все ли они опасны для человека?

Cемейство Coronaviridae включает в себя два подсемейства. Подсемейство Letovirinae состоит из единственного вида Microhyla letovirus 1, недавно обнаруженного в лягушках [17]. Подсемейство Orthocoronavirinae состоит из четырех родов: Alphacoronavirus (19 видов), Betacoronavirus (14 видов), Deltacoronavirus (7 видов), Gammacoronavirus (5 видов) (рис. 1). До введения греческих букв в качестве приставок (альфа-, бета-, гамма-) рода называли классификационными группами номер 1, 2 и 3 соответственно [18]. После пересмотра номенклатурных деталей описали четвертый род вирусов, который по аналогии назвали дельтакоронавирусами. Коронавирусы могут поражать разных позвоночных животных (куриц, индеек, собак, свиней, дельфинов, китов, грызунов, летучих мышей, верблюдов и других).

Orthocoronavirinae

Рисунок 1. Филогенетические взаимоотношения избранных представителей подсемейства Orthocoronavirinae. Названия вирусов, описанных у человека, выделены жирным шрифтом.

Неизвестно, какие из коронавирусов потенциально способны распространиться в нашей популяции, а какие — нет. Более того, непонятна даже доля уже обнаруженных коронавирусов: тут можно предположить любое значение в диапазоне между 0 и 100 процентами. При этом даже родственные коронавирусы могут распространяться между людьми с разной эффективностью. Например, SARS-CoV и SARS-CoV-2 принадлежат к одному виду коронавирусов [19]. SARS-CoV — это аббревиатура от Severe Acute Respiratory Syndrome CоronaVirus, то есть вызывающий тяжелый острый респираторный синдром коронвирус (ТОРС-КоВ). После вспышки атипичной пневмонии 2002–2004 годов у диких животных обнаружили сотни вирусов, которые, согласно филогенетическому анализу, принадлежали к этому же виду. Совокупность таких патогенов обозначили как родственные SARS-CoV. К февралю 2020 года стало понятно, что ранее неизвестный представитель SARS-related coronavirus вызывает человеческую респираторную инфекцию. Всемирная организация здравоохранения и международный комитет по таксономии вирусов предложили назвать коронавирусную инфекцию, начавшуюся в 2019 году, аббревиатурой COVID-19 (Coronavirus disease 2019), а возбудителя болезни — SARS-CoV-2 соответственно. Два человеческих SARS-коронавируса (то есть два варианта одного вида) приводят к разным заболеваниям. В летучих мышах циркулируют другие представители этого вида, случаи заражения человека которыми пока не описали. Пандемический потенциал этих вызывающих SARS коронавирусов неясен, но вызывает серьезные опасения. Сейчас известно, что люди заражались коронавирусами животных как минимум семь раз.

Естественным резервуаром предков бетакоронавирусов HKU1 и OC43 были грызуны, а предков альфакоронавирусов NL63 и 229E — летучие мыши (рис. 2) [32]. Промежуточными хозяевами OC43 считаются коровы, а 229E — альпаки [25]. Такие выводы получают при сравнении нуклеотидных последовательностей патогенов. Практически идентичные последовательности геномов вирусов, выделенных из разных видов животных, показывают недавнюю межвидовую передачу вируса. Отсутствие же очень похожих последовательностей вирусов в разных видах говорит лишь о незнании реального распространения патогена в окружающей среде.

Естественные резервуары коронавирусов

Рисунок 2. Летучие мыши — это естественные резервуары NL63, 299E, SARS-CoV, MERS-CoV, SARS-CoV-2, а грызуны — естественные резервуары HKU1 и OC43. Коровы, альпаки, циветы и верблюды — промежуточные хозяева OC43, 229E, SARS-CoV и MERS-CoV соответственно. Промежуточные хозяева HKU1, NL63 и SARS-CoV-2 неизвестны из-за неполноты знаний экологии коронавирусов.

рисунок автора статьи

В XXI веке произошло три случая заражения человека коронавирусами животных, в результате которых инфекция начала циркулировать в нашей популяции. Все три вируса относятся к бетакоронавирусам.

SARS-CoV

В 2002–2004 годах в Китае случилась вспышка атипичной пневмонии. Это заболевание назвали SARS. Эпидемия началась в ноябре 2002 года в южной провинции Гуандун, откуда быстро распространилась на соседние территории. Последний случай первой вспышки SARS зафиксировали в июне 2003-го. Всего заболело примерно 8000 человек, 9% погибло [33]. Следует отметить, что в конце 2003 года, спустя полгода после завершения эпидемии, в Китае произошли новые заражения SARS [33]. Вторую вспышку быстро локализовали, заболели всего четыре человека. Природным резервуаром SARS-CoV оказались летучие мыши. От летучих мышей заразились циветы — промежуточные хозяева коронавирусной инфекции, через контакт с которыми SARS-CoV попал в человеческую популяцию [32].

MERS-CoV

Второй случай возникновения способного к передаче от человека к человеку коронавируса произошел на Аравийском полуострове. Инфекцию назвали MERS, то есть Middle East Respiratory Syndrome, или ближневосточный респираторный синдром. Эту болезнь вызывает коронавирус MERS-CoV. Конкретное время начала эпидемии остается загадкой: называют сроки от ноября 2009 года до апреля 2012 года [34]. Всего, по данным ВОЗ, на 31 января 2020 года были лабораторно подтверждены 2506 случаев в 27 странах. Максимальное число заражений произошло в 2013–2015 годах, однако эпидемия продолжается до сих пор. Заболевание протекает как бессимптомно, так и с развитием тяжелой пневмонии, септическим шоком и полиорганной недостаточностью, что приводит к смерти примерно в 36% случаев [35]. Естественным резервуаром предковых форм MERS-CoV оказались летучие мыши, а промежуточными хозяевами — верблюды. Антитела к MERS-CoV у верблюдов обнаружили в архивном биологическом материале, собранном в 1983 году. Это значит, что не позднее 1983 года вирус попал в популяцию верблюдов, которые стали промежуточными хозяевами [32]. Заражение человека от верблюда вирусом MERS-CoV происходило много раз, то есть MERS продолжает оставаться инфекцией зоологического происхождения (зоонозом). Передача вируса от человека к человеку тоже возможна, но считается недостаточно эффективной для развития пандемии [35]. Тем не менее при нарушении эпидемиологических норм возможно успешное распространение MERS-CoV в человеческой популяции. Например, в 2015 году гражданин Южной Кореи путешествовал по странам Аравийского полуострова. После возвращения домой у пациента поднялась температура и появился кашель. Больной посетил три больницы, где находился в переполненных помещениях, ожидая своей очереди к врачу [36]. Всего в результате единственного завоза MERS-CoV в Южную Корею заболели 186 человек, 38 из них погибли. Эпидемия продлилась два месяца. Вспышку удалось локализовать за счет составления общей сети распространения инфекции, выявления возможных контактов и последующего карантина двух десятков тысяч человек [37].

SARS-CoV-2

Согласно филогенетическому анализу, SARS-CoV-2 попал в человеческую популяцию в конце ноября — начале декабря 2019 года [38], [39]. Судя по всему, это было единичное случайное событие. SARS-CoV-2 вызывает COVID-19 [40]. SARS-коронавирусы чаще всего циркулируют в летучих мышах, которые являются естественными резервуарами этих патогенов. Пандемический потенциал других SARS-коронавирусов неясен, но вызывает серьезные опасения.

Филогенетически ближайший к SARS-CoV-2 коронавирус RaTG13 обнаружили у летучей мыши в китайской провинции Юннань [41]. Число идентичных нуклеотидов между геномами этих двух вирусов составляет приблизительно 96%. Четыре процента различий — это довольно много. Последний общий предок SARS-CoV-2 и RaTG13 существовал десятки лет назад: за один год в геноме возникает примерно 0,08% мутаций. Некоторые участки поверхностного белка SARS-CoV-2 больше похожи на соответствующие регионы коронавируса, выделенного из панголинов [39]. Это говорит лишь о том, что сейчас не известны практически идентичные SARS-CoV-2 последовательности геномов вирусов, выделенных не из человека. Значит, промежуточный хозяин SARS-CoV-2, от которого заразился нулевой пациент, пока неизвестен. Отметим, что геномы коронавирусов, выделенных из цивет и верблюдов, практически идентичны геномам SARS-CoV и MERS-CoV соответственно. В результате промежуточный хозяин двух предыдущих человеческих коронавирусов был быстро определен. Есть надежда, что секвенирование вирома животных того региона, где началась пандемия, покажет промежуточного хозяина SARS-CoV-2 [39].

По разным оценкам, в результате предыдущей пандемии (гриппа в 2009 году) погибли десятки [42] или сотни [43] тысяч человек. А от все еще продолжающейся пандемии COVID-19 по данным на июль 2020 года умерли сотни тысяч пациентов. К сожалению, пока не наступило то время, когда можно было бы оценить итоговый урон, нанесенный человечеству этой коронавирусной инфекцией. В текущей ситуации больше всего пугает неизвестность нового патогена. Аспекты взаимодействия SARS-CoV-2 с хозяином на молекулярном, клеточном, тканевом, организменном и популяционном уровнях остаются предметом активного изучения, которое, по сути, началось лишь несколько месяцев назад. Очень многие детали неясны. Например, NL63 можно повторно обнаружить в пациенте спустя несколько месяцев после первого выздоровления [44]. Непонятно, насколько подобная особенность характерна для других человеческих коронавирусов. Другая деталь — существует феномен антитело-зависимого усиления (antibody-dependent enhancement, ADE) инфекции, при котором болезнь протекает тяжелее, если в организме уже есть антитела к возбудителю. Эту особенность наблюдали для вирусов Эбола, Зика, Денге, SARS-CoV [45]. Роль ADE в патогенезе COVID-19 сейчас активно изучается. Кроме того, для HKU1 и OC43 показана сезонность в распространении инфекции [46]. Но для SARS-CoV-2 сейчас отсутствует понимание вклада этого важнейшего фактора, прошло слишком мало времени. Для ответа на эти и многие другие вопросы потребуются годы кропотливой работы тысяч исследователей. Но, несмотря на то, что очень многого мы пока не знаем, некоторые факты уже известны. Например, концентрация SARS-CoV-2 при COVID-19 в верхних дыхательных путях на несколько порядков выше, чем у SARS-CoV при SARS [47]. Значит, SARS-CoV-2 эффективнее реплицируется в глотке, что приводит к более интенсивному распространению респираторной инфекции.

Заключение

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.


Вирус в настоящее время известен как коронавирус 2 тяжелого острого респираторного синдрома (Severe acute respiratory syndrome-related coronavirus 2 - SARS-CoV-2), и вызванное им заболевание называется коронавирусной болезнью 2019 (COronaVIrus Disease 2019 - COVID-19).

Коронавирусы – семейство РНК-содержащих вирусов, которые могут инфицировать как животных (крупного рогатого скота, птиц, собак), так и человека.

Вирусы, патогенные для животных, вызывают у них болезни печени, желудочно-кишечного тракта, повреждения мозга. Среди них наиболее изучен вирус инфекционного бронхита кур.

До 2002 года коронавирусы рассматривали в качестве агентов, которые могут вызывать нетяжелые заболевания верхних дыхательных путей. Смертельные исходы регистрировались крайне редко.

Семейство Coronaviridae содержит четыре рода вирусов:

Настоящая пандемия COVID19 вызвана вирусом SARS-Cov-2, который относится к роду β-коронавирусов. Инфицирование человека могут вызывать только альфа- и бетта- подтипы коронавируса.

Строение и размножение вирусов

Коронавирусы названы в соответствии с их внешним видом под электронным микроскопом. Вирусы выглядят так, как будто они покрыты остроконечными шипами, которые окружают их как корону.

Строение коронавируса COVID-19

Пути распространения

SARS-Cov-2 – относится к зооанторопонозным заболеваниям, то есть к заболеваниям общим для животных и человека. К этому же типу, в числе прочего, относят бешенство, лептоспироз, сибирскую язву, ящур.

Животные могут быть как резервуаром (естественной средой обитания вируса), так и источником инфекции при определенных условиях. По классификации Международного эпизоотического бюро (МЭБ) большинство коронавирусных инфекций относят к Типу 2+: болезни, передающиеся от диких животных домашним и человеку. Как известно, вспышка сегодняшней коронавирусной инфекции началась с рынка в китайском городе Ухань, на котором продаются морепродукты, летучие мыши, лягушки, змеи, птицы, сурки, кролики, и быстро поразила первых 50 человек.

Иными словами, первые пациенты получили вирус от животных, но масштаб пандемии COVID19 приобрел именно из-за передачи вирусной инфекции от человека к человеку.

Способы передачи коронавирусов COVID-19

Ключевые резервуары и способ передачи коронавирусов (предполагаемые резервуары SARS-CoV-2 обведены красным на рис. 2); только α и β коронавирусы обладают способностью инфицировать людей. Пунктирная черная стрелка показывает возможность переноса вируса из летучей мыши, тогда как сплошная черная стрелка обозначает подтвержденный перенос.

2012 год – вспышка ближневосточного респираторного синдрома, возбудителем которого также стал коронавирус, который получил название MERS-Cov. Во время вспышки было зафиксировано 2519 случаев заражения, из них более 860 со смертельным исходом. Вирус циркулирует по настоящее время, ежегодно регистрируются единичные случаи заболевания, вызываемые MERS-Cov.

Подробные исследования показали, что SARS-Cov передавался людям от циветт (хищных зверьков, дальних родственников кошки), а MERS-Cov – от одногорбых верблюдов. Генетическая последовательность нынешнего SARS-Cov-2 показала более 80% идентичности с SARS-CoV и 50% с MERS-CoV, причем как SARS-CoV, так и MERS-CoV происходят от летучих мышей. Существует вероятность того, что в передаче вируса человеку участвовал промежуточный хозяин. Более тщательный анализ показал, что по генам, кодирующим белки, SARS-Cov-2 ближе к коронавирусу змеи. Эти рептилии охотятся на летучих мышей, так что между ними вполне возможен обмен вирусами.

Понимание путей заражения и механизмов преодоления межвидового барьера очень важно для прогнозирования развития подобных вспышек эпидемий.

Приоритетные задачи расследования по идентификации животного источника обсуждались на заседании неформальной консультативной группы МЭБ по COVID-19 и были представлены на Глобальном форуме ВОЗ по научным исследованиям и инновациям (11-12 февраля 2020 г.)

1. Andersen KG, Rambaut A., Lipkin WI et al. Проксимальное происхождение SARS-CoV-2. NatMed 26, 450–452 (2020).

2. Muhammad AdnanShereen, SulimanKhan, AbeerKazmi,NadiaBashir,RabeeaSiddique. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Researc, July 2020, Pages 91-98July 2020, Pages 91-98

3. Официальный сайт Россельхознадзора

4. Jie Cui, Fang Li, and Zheng-Li Shi. Origin and evolution of pathogenic coronaviruses. NatRevMicrobiol. 2019; 17(3): 181–192.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Исследовательские группы фармакологических компаний и университетов по всему миру разрабатывают более 90 вакцин против SARS-CoV-2. Исследователи тестируют различные технологии, некоторые из которых ранее не использовались для конструкции вакцин. По меньшей мере шесть исследовательских групп уже начали вводить препараты добровольцам в испытаниях на безопасность; другие же проводят исследования на животных. Инфографика из журнала Nature объясняет идею и дизайн каждой вакцины.


Новый коронавирус с помощью S-белков фиксируется на поверхности клеток человека, используя в качестве рецептора мембранно-связанный ангиотензин-превращающий фермент 2 (АПФ-2). Попав внутрь клетки, вирус заставляет ее начать трансляцию его РНК, чтобы продуцировать еще больше вирусных частиц.

Все вакцины так или иначе направлены на то, чтобы подвергнуть организм воздействию чужеродного антигена. Он не приводит к развитию заболевания, но вызывает иммунный ответ, который может блокировать или убить вирус на случай, если человек заразится. В отношении коронавируса испытывают как минимум восемь типов вакцин, основанных на различных типах вирусов или вирусных компонентах.

Вакцины на основе вируса

По меньшей мере семь групп ученых разрабатывают вакцины с использованием данного вируса в ослабленной или инактивированной форме. Многие существующие на данный момент вакцины сделаны таким же образом (например, против кори и полиомиелита), но эти препараты требуют тщательной проверки их безопасности. Sinovac Biotech в Пекине начал тестировать инактивированную вакцину против SARS-CoV-2 на людях.

Аттенуированные вакцины

При изготовлении данной вакцины вирус обычно ослабляется путем пассирования в клетках животных или человека, пока не проявятся мутации, которые делают его менее способным вызывать заболевание. Codagenix в Фармингдейле, штат Нью-Йорк, работает с Индийским институтом сывороток, производящим вакцины в г. Пуне, с целью ослабления SARS-CoV-2 путем изменения его генетического кода, что приведет к менее эффективной выработке вирусных белков.

Инактивированный вирус

В таких вакцинах вирус убивают с использованием химических веществ, таких как формальдегид, или физических факторов, например, тепла. Создание вакцин такого типа, однако, необходимо начинать с большого количества активного вируса.

Вакцины на основе нуклеиновых кислот

По крайней мере 20 групп ученых нацелены на использование генетических конструкций на основе ДНК или РНК для синтеза белка коронавируса, который вызывает иммунный ответ. Нуклеиновая кислота встраивается в клетки человека, которые затем производят копии вирусного белка; большинство из этих вакцин кодируют S-белок вируса. Вакцины на основе РНК и ДНК безопасны и просты в разработке: для их производства необходимо создавать только генетический материал, а не вирус. Но доказательная медицина пока их не признала: ни одна лицензированная вакцина не использует эту технологию.

Вирусный вектор

Около 25 исследовательских групп сообщают, что работают над вакцинами на основе вирусного вектора. Вирус, такой как корь или аденовирус, генетически модифицирован таким образом, что он может продуцировать коронавирусные белки в организме. Такие вирусы ослаблены, поэтому они не вызывают заболевание. Есть два типа вирусов: реплицирующиеся в клетках и нереплицирующиеся, вследствие отключения ключевых генов.

Реплицирующийся вирусный вектор (например, ослабленный вирус кори)

Недавно одобренная вакцина против вируса Эбола является примером вирусно-векторной вакцины, реплицирующейся внутри клеток. Такие вакцины, как правило, безопасны и вызывают сильный иммунный ответ. Однако уже существующий иммунитет к вектору может снизить эффективность такой вакцины.

Нереплицирующийся вирусный вектор (такой, как аденовирус)

Ни одна из лицензированных вакцин не использует этот метод, но он уже давно существует в контексте генной терапии. Над этим подходом работает американский фармацевтический гигант Johnson & Johnson.

Вакцины на основе белков

Многие исследователи пытаются вводить белки коронавируса прямо в организм. Для этого так же могут быть использованы фрагменты белков или белковые оболочки, имитирующие внешний слой коронавируса.

Белковые субъединицы

Около 28 исследовательских команд работают над субъединичными вакцинами. Большинство исследователей сосредоточены на S-белках вируса или ключевой его части, называемой участком связывания рецептора. Подобные вакцины против вируса атипичной пневмонии защищали обезьян от инфекции, но не были протестированы на людях. Для работы этих вакцин могут потребоваться адъюванты — иммуностимулирующие молекулы, доставляемые вместе с вакциной, а также введение нескольких доз.

Вирусоподобные частицы

Читайте также: