Кто открыл вирусы и вакцину от нее

Обновлено: 24.04.2024


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

 Фото: Shutterstock

В отличие от бактерий, которых ещё в 1676 году описал основатель научной микроскопии Антони ван Левенгук, вирусы в световой микроскоп видны не были. А электронный создали лишь спустя 40 лет после открытия вирусов. Как же их вообще удалось заметить? Благодаря табаку, точнее, его болезни, которая была страшной проблемой для фермеров.

В современный световой микроскоп крупные вирусы увидеть можно. Они выглядят так же, как выглядели бактерии для Левенгука. Просто точки. Но бактерии при этом активно двигаются.

Некротические пятна на листьях табака резко снижали урожай, а главное, из таких листьев не получалось сделать сигары. Производители с подобным положением дел мириться не могли и спонсировали исследования патологии. В 1886 году немецкий агроном Адольф Майер доказал, что "мозаичное заболевание табака", как он окрестил эту напасть, легко передаётся с соком растения, а значит, тут замешан инфекционный агент. Поскольку прогревание при 80 ºС обеззараживало исходный биоматериал (Пастер, напомним, уже изобрёл пастеризацию), Майер решил, что возбудитель болезни - бактерия.

Фото: Из личного архива Михаила Щелканова

Российского ботаника Дмитрия Ивановского болезнь табака волновала ничуть не в меньшей степени. Полагая, что этот недуг вызывают бактерии, Ивановский планировал осадить их на специальном фильтре, поры которого меньше этих организмов. Такая процедура позволяла полностью удалить из раствора все известные патогены. Но экстракт заражённых листьев сохранял инфекционные свойства и после фильтрации!

Этот парадокс, описанный Ивановским в работе 1892 года, стал отправной точкой в развитии вирусологии. При этом сам учёный думал, что сквозь его фильтр прошли мельчайшие бактерии либо выделяемые ими токсины, то есть вписывал своё открытие в рамки существующего знания. Впрочем, это частности. Приоритет Ивановского в открытии вирусов не оспаривается.

Спустя 6 лет голландский микробиолог Мартин Бейеринк, не зная поначалу о работе Ивановского, провёл серию аналогичных экспериментов. То, что патоген проходит сквозь бактериальный фильтр и не может, подобно бактериям, размножаться в питательной среде, привело Бейеринка к выводу, что перед ним новый, неизвестный науке инфекционный агент. Учёный окрестил его "вирусом" (от лат. virus - яд), повторно введя это слово в научный оборот: прежде оно использовалось для обозначения всего агрессивного и токсичного.

Вирус табачной мозаики стал нашим проводником в абсолютно новую область биологии - вирусологию. И в знак признания особых заслуг перед человечеством был первым среди вирусов исследован на электронном микроскопе.

Вирус табачной мозаики до сих пор любим вирусологами: на его основе легко делать вакцины. Одну из них - от COVID-19 - сейчас разрабатывают на биологическом факультете МГУ имени М.В. Ломоносова.

Что мы знаем сегодня

Вирусы присутствуют во всех земных экосистемах и поражают все типы организмов: от животных до бактерий с археями. При этом учёные до сих пор спорят, являются ли вирусы живыми существами. Серьёзные аргументы есть и за, и против.

Конечно да! У вирусов есть геном, они эволюционируют и способны размножаться, создавая собственные копии путём самосборки.

Решительно нет! У них неклеточное строение, а именно этот признак считается фундаментальным свойством живых организмов. А ещё у них нет собственного обмена веществ - для синтеза молекул, как и для размножения, им необходима клетка-хозяин.

Впрочем, большинство учёных склонны рассматривать этот спор как чисто схоластический.

2. Как устроены вирусы

Самая суть: Вирус - это генетическая инструкция в белковом контейнере. Расшифровать строение вирусов удалось, превращая их в кристаллы.

История открытия

К началу 1930-х годов всё ещё оставалось непонятным, что такое вирус и как он устроен. И по-прежнему не было микроскопа, в который его можно было бы разглядеть. В числе прочих высказывалась гипотеза, что вирус - это белок. А структуру белков в то время изучали, преобразуя их в кристаллы. Если бы вирус удалось кристаллизовать, то его строение можно было бы изучать методами, разработанными для исследования кристаллов.


В 1932 году Уэнделл Мередит Стэнли отжал сок из тонны больных листьев табака и воздействовал на него разными реагентами. После трёх лет опытов он получил белок, которого не было в здоровых листьях. Стэнли растворил его в воде и поставил в холодильник. Наутро вместо раствора он обнаружил игольчатые кристаллы с шелковистым блеском. Стэнли растворил их в воде и натёр полученным раствором здоровые листья табака. Через некоторое время они заболели. Эти опыты открыли учёным путь к получению и изучению чистых препаратов вируса, а самому Стэнли принесли Нобелевскую премию.

Структуру вируса расшифровала Розалинд Франклин - та самая "леди ДНК", которая впервые получила чёткую рентгенограмму структуры ДНК и умерла за четыре года до вручения Нобелевки за это невероятно важное открытие. Рассматривая вирус табачной мозаики в рентгеновских лучах, Розалинд поняла, что он представляет собой белковый контейнер, к внутренним стенкам которого прикреплена спираль РНК.

Что мы знаем сегодня

Постепенно накопились данные, позволившие разработать классификации вирусов. Выяснилось, что вирусы различаются по типу молекул ДНК или РНК, на которых записана их генетическая программа. Другое различие - по форме белкового контейнера, который называется капсид. Бывают спиральные, продолговатые, почти шарообразные капсиды и капсиды сложной комплексной формы. Многие капсиды имеют ось симметрии пятого порядка, при вращении вокруг которой пять раз совпадают со своим первоначальным положением (как у морской звезды).

У некоторых вирусов капсид заключён в дополнительную оболочку, суперкапсид, которая состоит из слоя липидов и специфичных вирусных белков. Последние часто формируют выросты-шипы - ту самую "корону" коронавируса. Вирусы с такой оболочкой называют "одетыми", а без неё - "голыми".

Необходимость кристаллизовать вирусы для их изучения отпала лишь недавно с появлением атомных силовых микроскопов и лазеров, генерирующих сверхкороткие импульсы.

3. Кто такие фаги

Самая суть: Большая часть вирусов - "пожиратели бактерий", хоть никого и не жрут. Фаг может убить бактерию, а может сделать из неё зомби. Для нас это хорошо.

История открытия

В конце XIX века британский бактериолог Эрнест Ханкин, сражавшийся с холерой в Индии, изучал воды рек Ганг и Джамна, которые местные жители считали целебными. Ханкин, энтузиаст кипячения воды и теории Пастера о том, что болезни вызываются микроорганизмами, а не миазмами (вредоносными испарениями - так думали врачи ещё в середине XIX века), обнаружил, что суеверные индусы правы: какой-то неопознанный объект непонятным образом обеззараживает воду священных рек без всякого кипячения.

Лишь спустя двадцать лет неопознанному объекту придумали название: Феликс Д'Эрелль из Института Пастера предложил называть этих существ "бактериофагами", в переводе с греческого - "пожирателями бактерий". Он пришёл к выводу, что бактериофаги - вирусы, паразитирующие на бактериях.


Сейчас их нередко зовут просто фагами. Эти вирусы прикрепляются к стенкам бактерий и впрыскивают в них свой генетический материал. Попав внутрь, генетическая программа вируса запускает производство новых вирусов. В итоге одни ферменты бактерии создают копии вирусного генома, другие - строят по вшитым в него инструкциям белки, третьи - собирают мириады клонов. Порабощённая фагом бактерия превращается в фабрику по созданию его клонов, которые могут выходить наружу вместе с метаболитами или "взрывать" бактериальную клетку. Так или иначе полчища клонов освобождаются и отправляются заражать всё новые бактерии.

Для бактерии встреча с фагами не всегда заканчивается печально: бактериофаги бывают вирулентными и умеренными. Если клетке не повезёт и она повстречает вирулентного фага, то погибнет (у биологов этот процесс называется лизисом). Фаг использует такую клетку как ясли для своего потомства. Умеренные фаги обычно более дружелюбны. Они делают из бактерии зомби: она переходит в особую форму - профаг, когда вирус интегрируется в геном клетки и сосуществует с ней. Это сожительство может стать симбиозом, в котором бактерия приобретёт новые качества и эволюционирует.

Способность вирусов уничтожать вредоносные бактерии привлекла к ним внимание учёных. Впервые фагов, этих цепных собак биологов, натравили на стафилококк ещё в 1921 году. Их активно изучали в Советском Союзе. Основоположник этого направления грузинский микробиолог Георгий Элиава был учеником Феликса Д'Эрелля. По его инициативе в 30-е годы был создан Институт исследования бактериофагов в Грузии, а позднее фаготерапия в СССР получила одобрение на самом высоком уровне. Были разработаны стрептококковый, сальмонеллёзный, синегнойный, протейный и другие фаги.

Западные учёные отнеслись к фагам с меньшим энтузиазмом. Фаги очень чувствительные и в неподходящих условиях внешней среды теряют супергеройские способности. А тут как раз открыли и успешно применили первый антибиотик, и о фагах надолго позабыли.

Что мы знаем сегодня

В 2005 году биологи из Университета Сан-Диего показали, что вирусы - самые распространённые биологические объекты на планете, и больше всего среди них именно бактериофагов.

Всего на данный момент описано более 6 тысяч видов вирусов, но учёные предполагают, что их миллионы.

4. Как создали первую вакцину

Самая суть: Вакцинация - одно из величайших изобретений человечества, благодаря которому многие смертельные заболевания остались в истории. Но почему слово "вакцина" происходит от слова "корова"?

История открытия

Главное событие в истории вакцинации произошло в конце XVIII века, когда английский врач Эдвард Дженнер использовал коровью оспу для предотвращения оспы натуральной - одного из самых страшных заболеваний в истории, смертность от которого тогда достигала полутора миллионов человек в год.

Коровья оспа передавалась дояркам, протекала легко и оставляла на руках маленькие шрамы. Сельские жители хорошо знали, что переболевшие коровьей оспой не болеют человеческой, и эта закономерность стала отправной точкой для исследований Дженнера.


Предотвращение распространения Variola vera - натуральной оспы - главное событие в истории вакцинации Фото: iStock

Хотя идея была не нова: ещё в Х веке врачи придумали вариоляцию - прививку оспенного гноя от заболевшего к здоровому. На Востоке вдыхали растёртые в порошок корочки, образующиеся на местах пузырьков при оспе. Из Китая и Индии эта практика расходилась по миру вместе с путешественниками и торговцами. А в Европу XVIII века вариоляция пришла из Османской империи: её привезла леди Мэри Уортли-Монтегю - писательница, путешественница и жена британского посла. Так что самому Дженнеру оспу привили ещё в детстве. Вариоляция действительно снижала смертность в целом, но была небезопасна для конкретного человека: в 2% случаев она приводила к смерти и иногда сама вызывала эпидемии.


Но вернёмся к коровам. Предположив близкое родство вирусов коровьей и натуральной оспы, Дженнер решился на публичный эксперимент. 14 мая 1796 года он привил коровью оспу здоровому восьмилетнему мальчику, внеся экстракт из пузырьков в ранки на руках. Мальчик переболел лёгкой формой оспы, а введённый через месяц вирус настоящей оспы на него не подействовал. Дженнер повторил попытку заражения через 5 месяцев и через 5 лет, но результат оставался тем же: прививка коровьей оспы защищала мальчика от оспы натуральной.

Дженнеру потребовались годы, чтобы убедить коллег-врачей в необходимости вакцинации, - и эпидемии оспы в Европе наконец были остановлены. Идеи Дженнера развивал великий Луи Пастер: он ввёл термин "вакцина" (от латинского vacca - корова), описал научную сторону вакцинации, создал вакцины против сибирской язвы, бешенства, куриной холеры и убедил мир, что прививки необходимы для предотвращения многих болезней.

Что мы знаем сегодня

В 1980 году Всемирная организация здравоохранения объявила о полном устранении натуральной оспы. Это первое заболевание, которое победили с помощью массовой вакцинации.

После прививки в организме вырабатывается такой же иммунитет, как после перенесённого заболевания. При этом даже не нужно встречаться с живым патогеном. Обычно в вакцинах содержится его часть, например поверхностный белок, или сам вирус, но ослабленный или убитый. Такой агент, его называют антигеном, учит иммунную систему распознавать его как врага и уничтожать в будущем. В следующий раз, когда в организм попадёт настоящий вирус или бактерия, специфичные антитела - иммунные белки - "подсветят" его для клеток иммунной системы, которые тут же мобилизуются и уничтожат патоген.

Сейчас существует более сотни вакцин, защищающих от 40 вирусных и бактериальных заболеваний. Иммунизация спасает миллионы жизней, поэтому наши дети не умирают от столбняка, поцарапавшись на улице.

Современные вакцины, прошедшие все стадии клинических испытаний, безопасны - они могут вызвать сильную иммунную реакцию у некоторых людей, но никак не тяжёлую форму болезни с летальным исходом или тем более эпидемию.

5. Как вирусы поселились в нашей ДНК

Самая суть: В геноме человека затаились древние вирусы. Они составляют более 8% нашей ДНК. И мы им многим обязаны.

История открытия

В 1960-х годах учёные поняли, что некоторые вирусы могут вызывать рак. Одним из них был вирус птичьего лейкоза, угрожавший всему птицеводству. Вирусологи выяснили, что он относится к группе так называемых ретровирусов, внедряющих свой генетический материал в ДНК клетки-носителя. Такая ДНК будет производить новые копии вируса, но если вирус по ошибке встроился не в то место ДНК, клетка может стать раковой и начать делиться. Вирус птичьего лейкоза оказался очень странным ретровирусом. Учёные находили его белки в крови совершенно здоровых куриц.

Робин Вайс, вирусолог из Университета Вашингтона, первым понял, что вирус мог интегрироваться в ДНК курицы, стать её неотъемлемой и уже неопасной частью. Вайс и его коллеги обнаружили этот вирус в ДНК многих пород кур. Отправившись в джунгли Малайзии, они изловили банкивскую джунглевую курицу, ближайшую дикую родственницу домашней, - она несла в ДНК тот же вирус! Когда-то давно иммунная система куры-предка сумела подавить вирус, и, обезвреженный, он стал передаваться по наследству. Учёные назвали такие вирусы эндогенными, то есть производимыми самим организмом.

Вскоре выяснилось, что эндогенных ретровирусов полно в геномах всех групп позвоночных. А в 1980 году их обнаружили и у человека.

Что мы знаем сегодня

Согласно данным исследователей из Мичиганского университета, на долю эндогенных ретровирусов приходится более 8% нашего генома. При этом обнаружены далеко не все вирусные последовательности, которые осели в геноме человека. Искать их сложно: они встречаются у одного и отсутствуют у другого.

Некоторые эндогенные вирусы остаются опасными, но большинство уже неспособно запустить вирусную программу и захватить мир. До недавнего времени их считали "генетическим мусором". Но оказалось, что порой интеграция вирусов в ДНК ведёт к появлению полезных генетических программ. Например, многие участки ДНК, которые регулируют активность генов, участвующих во врождённом иммунитете, являются ретровирусами. А недавно российские учёные обнаружили у человека эндогенный ретровирус, регулирующий работу мозга и отсутствующий у других приматов, - получается, мы обязаны вирусам какими-то важнейшими своими особенностями! Правда, этот же вирус, возможно, привёл к возникновению шизофрении.

Друзья или враги нам эндогенные ретровирусы, сказать сложно, потому что нет уже деления на нас и них, - мы соединились в одно существо.

Вирус - самая жестокая форма демократии. Равны перед ним все, от высокого вельможи до последнего бродяги. Но история знает случай, когда перебороть грозную болезнь помог не только иммунитет, но прежде всего - сила характера и особо важный статус пациента.

Анна Розина де Гаск. Петр III и Екатерина II. 1756 год.

В разгар свирепой эпидемии оспы, 12 (23) октября 1768 года, императрица Екатерина II первой в России сделала себе, а затем и наследнику престола, 14-летнему Павлу Петровичу, прививку от страшной болезни. Пошла на огромный риск. Одержала победу. И стала для подданных примером не только, как сейчас сказали бы, "ответственного отношения к здоровью". Но и гораздо более важных вещей - которые и нынешним руководителям разного калибра хорошо бы взять за образец.

История эпидемии

Эпидемия 1768 года была в России далеко не первой. Болезнь на протяжении веков ходила по континентам кругами и волнами. Умирали от оспы до 40% зараженных, особенно часто - маленькие дети (в России - каждый седьмой ребенок). Если вы не видели фотографии больных, то и не надо - они ужасны. Оспа уносила до миллиона жертв в Европе, в России больше. Не обходила высоких вельмож - в 1730 году от нее умер последний потомок Петра I по мужской линии, 14-летний Петр II.


Сама Екатерина II оспой не болела, но очень ее опасалась. Оспу незадолго до свадьбы перенес ее жених, царь Петр Федорович - и до конца жизни страдальчески смотрел в зеркало на свое изуродованное лицо. Екатерина откровенно признавалась в письме прусскому королю Фридриху II:

"С детства меня приучили к ужасу перед оспою, в возрасте более зрелом мне стоило больших усилий уменьшить этот ужас. Весной прошлого года (1768 - Авт.), когда эта болезнь свирепствовала здесь, я бегала из дома в дом. не желая подвергать опасности ни сына, ни себя. Я была так поражена гнусностию подобного положения, что считала слабостию не выйти из него. Мне советовали привить сыну оспу. Я отвечала, что было бы позорно не начать с самой себя и как ввести оспопрививание, не подавши примера? Я стала изучать предмет. Оставаться всю жизнь в действительной опасности с тысячами людей или предпочесть меньшую опасность, очень непродолжительную, и спасти множество народа? Я думала, что, избирая последнее, я избрала самое верное. "


История выбора

В этих строках - суть характера императрицы. Да, болезнь жертв не выбирает. Но выбор есть у человека - заранее смириться или встать "из окопа в атаку". Екатерина была красавицей - статная, с прямой спиной, густыми каштановыми волосами и прекрасным цветом лица. В 1768 году ей было всего 39 лет. Ни смерть, ни уродливые шрамы в ее планы не входили. Потеря сына и близких - тем более.

Но главное - Екатерина была монархом не обычным, а просвещенным. И, действительно, умела, как она выразилась, "изучать предмет".

Ее письмо Фридриху II - стремление переубедить категорического противника оспопрививания. Задача сложная. В те годы лишь в Англии врачи рисковали делать от оспы прививки. Британцы переняли метод в 1718 году от турок, опробовали - без малейшего сочувствия - на преступниках-смертниках и воспитанниках сиротских приютов. А когда опыт удался, сделали прививку даже семье короля Британии Георга I.

Метод прививок тогда был один - вариоляция, когда здоровому человеку через разрезы на руке протягивали нитки или ткань, смоченную в содержимом оспенных пузырьков (пустул) больного. Инфекция попадала в кровь, человек заражался. Смертность после вариоляции составляла 2%, то есть в 20 раз меньше обычной. Но риск сохранялся, и после гибели нескольких знатных персон прививок стали бояться. Во Франции их и вовсе запретили в 1862 году специальным актом парламента.

Опасались прививок и в России. Как писал историк С.М. Соловьев, "медики вопили против безумной новизны, вопили против нее проповедники с кафедр церковных. Екатерина решила собственным примером уничтожить колебание русской публики".

Трусливой императрица не была никогда, а предусмотрительной - всю жизнь. К выбору доверенного врача подошла серьезно. Самым искусным в прививочном деле в то время считался англичанин Томас Димсдейл (Thomas Dimsdale).

На него и пал выбор императрицы.


История болезни

За несколько месяцев до этого большую экспертно-разведывательную работу провели российские дипломаты и шпионы. В том числе бывший резидент русской разведки в Стокгольме, воспитатель цесаревича Павла граф Никита Панин и русский посланник в Лондоне Алексей Мусин-Пушкин. Миссия была выполнена быстро и деликатно, и летом 1768 года Димсдейл вместе с сыном прибыли в Санкт-Петербург. К тому времени тревога при дворе почти дошла до отметки "паника": в конце мая, накануне своей свадьбы, от оспы скончалась молодая графиня Шереметьева, жених которой был наставником юного цесаревича Павла.


Кольцо инфекции сжималось.

Как была сделана прививка высочайшей пациентке и как протекала ее болезнь, Димсдейл рассказывает в своих воспоминаниях подробным языком амбулаторной карты. Четвертое издание его труда "Нынешний способ прививания оспы. " увидело свет в Санкт-Петербурге в 1870 году в русском переводе "порутчика Луки Сичкарева" и хранится сейчас в фондах Государственного исторического музея.


Попрактиковаться на "принудительных добровольцах" не удалось: один тяжело заболел, второй - не среагировал. Екатерина решительно прекратила томительное ожидание, да и рисковать предпочла - сама. Оспенный материал для нее взяли от заболевшего 6-летнего кадета Саши Маркова. Мать ребенка была в ужасе, отец уговаривал и ободрял ее. Ночью спящего, закутанного в одеяло Сашу привезли в царский дворец, потайным ходом провели в покои Екатерины и "с руки на руку" перенесли зараженную лимфу.

После чего государыня уехала в Царское Село.


Пять или шесть дней она чувствовала себя хорошо и вела обычный образ жизни - приемы, обеды, встречи. О чем тогда молились придворные и визитеры, понять несложно - известие об инфицировании царицы тайной оставалось недолго. На пятый день Екатерина почувствовала недомогание и сразу уединилась. Дальнейшая история ее болезни скрупулезно зафиксирована Димсдейлом: жар, озноб, жжение в горле, набухшие подчелюстные железы, появление первых оспин, которые лопаются, темнеют, исчезают. Полоскания смородиновым морсом. Глауберова соль от постоянной головной боли. Тревога. Отсутствие аппетита. Легкая пища. Обильное питье. Снова жар.

И наконец - долгожданное выздоровление, о котором торжественно сообщили народу 29 октября 1768 года.


История выздоровления

От оспы был привит и наследник престола (донором стал младший сын придворного аптекаря Брискорна). Болезнь он перенес легко. Выздоровел и отрок Саша Марков - вместе со всем семейством ему впоследствии был пожалован дворянский титул, фамильный герб, солидное денежное содержание и новая фамилия - Оспенный.

От сердца отлегло у всех участников истории, но больше всех, пожалуй, у Димсдейла. Для него по приказу императрицы все эти дни держали наготове почтовую карету - дабы в случае смерти пациентки скрыться из страны от самосуда. Екатерина нравы своих царедворцев знала хорошо. А доктора она одарила по-царски: баронский титул, 500-фунтовая ежегодная пенсия (огромная сумма), звание лейб-медика и чин действительного статского советника.


Синод и Сенат направили императрице приветствия, писанные высоким штилем, она скромно благодарила. 21 ноября 1768 года было объявлено в России днем торжества в честь "великодушного, беспримерного и знаменитого подвига" Екатерины. В театре спешно поставили балет "Побежденное предрассуждение", для простонародья напечатали сотни лубочных картинок - пропаганда работала на полную мощь. Метод вариоляции пошел в массы и применяться стал повсеместно.


Обязательной прививку от оспы сделала советская власть в 1919 году. У многих рожденных в СССР на руке два круглых шрамика - след от вакцинирования в роддоме. Окончательно победить оспу на земном шаре смогли только в 1980 году


Доктор Димсдейл продолжил свою практику в Англии, но вернулся в Россию через 13 лет - чтобы привить теперь уже внуков императрицы.

Ее наследник, император Павел I был убит в Михайловском замке в ночь на 12 марта 1801 года. Прививок против дворцовых заговоров, увы, не изобретено.


Живчик и умница Саша Оспенный подростком был принят и обласкан при дворе. Закончил Пажеский корпус, но с карьерой и службой не сложилось. Сохранились его письма к Екатерине со слезными просьбами насчет денег и жалобами на жизнь. Умер, не оставив потомства, в 1800 году.

Имя императрицы Екатерины II по-прежнему сопровождается титулом "Великая".

Ирина Дворкина

Кто и когда придумал первую прививку? Как работают вакцины и какие есть сейчас?

Первая вакцина появилась после счастливого предположения: в XVIII веке британский врач Эдвард Дженнер провёл эксперимент, доказывающий, что коровья оспа сможет защитить человека от заболевания натуральной оспой. Однако стоит заметить, что при всех великих заслугах Дженнер не имел представления о природе самого возбудителя болезни, ему помогли лишь гениальная интуиция и исследовательская наблюдательность. Врачу так и не довелось узнать, в чём заключается научный смысл предложенного им способа.

Прошло больше двух столетий, теперь все мы знаем про вакцины намного больше, чем Эдвард Дженнер. Но на случай, если ваши знания необходимо освежить, коротко пробежимся по истории вакцинации, чтобы вы стали научной звездой любой вечеринки.

Начало больших изменений


В 1921 году был разработан единственный на сегодняшний день препарат иммунопрофилактики туберкулёза. Эту вакцину на основе живой коровьей туберкулезной бациллы разработали микробиолог Альберт Кальмет и ветеринар Камилла Герен. В первой половине ХХ века были созданы новые виды препаратов для вакцинации. Даниэл Салмон и Теобальд Смит предложили идею убитой вакцины. В дальнейшем для создания вакцин активно использовались методы генной инженерии.

Вакцина вакцине рознь

В состав вакцин входят: иммуногены (действующие вещества) и вспомогательные вещества.

Задача иммуногенов — активировать иммунитет. Вспомогательные вещества применяются для повышения эффективности, увеличения срока годности, создания оптимального состава.


Какие вакцины можно встретить сегодня?

Традиционные. Состоят из бактерий или вирусов, сохраняющих в процессе изготовления свою целостность. Могут быть живыми и убитыми. Используемые в настоящее время включают в себя вакцины против ветряной оспы, гриппа, жёлтой лихорадки, кори, краснухи, полиомиелита, паротита и ротавируса.

На основе разрушенных микроорганизмов или полученная путём обезвреживания. Используются против дифтерии, столбняка, стафилококка, ботулизма и газовой гангрены.

Генно-инженерные (рекомбинантные, химерные) вакцины. Представитель этой группы — вакцина против вирусного гепатита В.

Экспериментальные синтетические. Химические аналоги защитных белков, полученные методом прямого химического синтеза.

Вехи нашего прогресса

Вакцинопрофилактика — самый эффективный и экономически выгодный способ снижения инфекционной заболеваемости. Сейчас нам сложно представить жизнь без прививок, хотя все они были созданы и введены в широкое применение относительно недавно.


Результаты работы учёных в этом веке поражают:

  • 2003 год — первая назальная вакцина против гриппа;
  • 2006 год — первая вакцина против вируса папилломы человека;
  • 2012 год — первая вакцина против гепатита E;
  • 2012 год — первая четырёхвалентная вакцина против гриппа;
  • 2015 год — первая вакцина против энтеровируса 71, вызывающего энтеровирусный везикулярный стоматит;
  • 2015 год — первая вакцина против малярии;
  • 2015 год — первая вакцина против лихорадки Эбола, GamEvac от НИЦЭМ имени Н. Ф. Гамалеи;

За два с небольшим столетия созданы более 100 вакцин от 40 заболеваний.

Источники:
Шамшева О. В., Учайкин В. Ф., Медуницын Н. В. Клиническая вакцинология. Москва: ГЭОТАР-Медиа, 2016. 576 с.
Зверев В. В. Вакцины и вакцинация: национальное руководство / под ред. В. В. Зверева, Р. М. Хаитова. Москва: ГЭОТАР-Медиа, 2014. 640 с.

Существуют доказательства того, что китайцы использовали прививку от оспы (точнее, вариоляцию ❓ Вариоляция включает подкожную инъекцию или вдыхание материала из пустул оспы, такого как гной или сухие струпья. ) еще в 1000 году нашей эры . Вот так давным-давно жители Поднебесной прознали, что люди, которые однажды заразились оспой, неуязвимы для повторного заражения. Сложив два и два, они пришли к идее сохранять оспенные пустулы людей, перенесших болезнь в легкой форме, сушить их, измельчать до состояния порошка и вдувать в ноздрю. После такой процедуры пациенты страдали от симптомов оспы (сыпи и лихорадки), однако у тех, кто заразился посредством вариоляции, было гораздо больше шансов на выживание, чем у тех, кто заразился натуральной оспой: от вариоляции умирал 1 человек из 50, а от натуральной оспы — 3 из 10.


Сегодня вакцинация находится в центре внимания мирового сообщества в связи с исследованиями фармацевтических компаний и университетов, которые, несмотря на первые результаты, по-прежнему стремятся разработать наиболее эффективный способ предотвращения дальнейшего распространения COVID-19. И тому, что сегодня мы можем получать вакцины за один год (а это астрономическая скорость разработки!), мы обязаны столетиям непрерывной работы, превратившей вакцинацию из грубой и зачастую рискованной практики в высокоразвитую науку.

Упомянутая практика вариоляции распространилась в Европе и, в частности, в Великобритании в 1720-х годах. Леди Мэри Уортли Монтегю , жена британского посла в Турции, узнала о процедуре, к которой прибегали турки, и попросила, чтобы ее маленький сын прошел через введение гноя в разрез, сделанный на его руке. Шестилетний Эдвард Монтегю был вариолирован в 1718 году доктором Чарльзом Мейтлендом в Константинополе, а леди Монтегю порекомендовала сделать прививки другим своим детям и жителям родной страны. В течение следующих нескольких десятилетий вакцинация путем вариоляции стала обычной практикой в ​​Великобритании .

До тех пор, пока ей на смену не пришла инновация уже упомянутого Эдварда Дженнера : его метод претерпевал медицинские и технологические изменения в течение следующих 200 лет и в конечном итоге привел к искоренению оспы. В настоящее время вирус оспы существует только в качестве образца для изучения в двух лабораториях, связанных с ВОЗ, — одна расположена в России, и еще одна — в США.


Но у подхода Дженнера были свои пределы: не у каждой болезни человека есть аналог в виде болезни животного, который может давать иммунитет, не вызывая самого заболевания. И некоторые болезни животных, которые действительно передаются людям, могут быть смертельными для обоих видов. Поэтому самая большая сложность в дальнейшей разработке вакцин заключалась в том, чтобы работать с вирусами и бактериями, которые вызывают болезни человека, но обезоружить их, лишить их способности заражать и при этом обучать иммунную систему распознавать и нейтрализовать их в случае более позднего реального заражения.

Первая вакцина, изготовленная в лаборатории, была получена ​​в 1879 году и была создана Луи Пастером , важной фигурой в микробиологии… для кур. Чем известен Пастер? Например, его исследование ферментации показало, что за этот процесс ответственны микроорганизмы, и он продемонстрировал, что загрязнение пищевых продуктов вызывается бактериями из воздуха, а не их спонтанным зарождением внутри или на поверхности продукта. Пастер же — изобретатель и тезка пастеризации, обработки продуктов питания и напитков нагреванием для уничтожения микробов. Его работа в целом оказала ключевую поддержку микробной теории болезней — идее о том, что инфекционные заболевания вызываются микроорганизмами, а не миазмами.


Наконец, как уже было сказано выше, именно Пастер разработал первую вакцину, произведенную в лаборатории. В далеком 1879 году он изучал куриную холеру, вызванную бактерией Pasteurella multocida, вводя бактерии цыплятам и наблюдая за развитием болезни. По случайному совпадению Пастер обнаружил, что введение цыплятам более старых образцов бактерий привело к тому, что они заболевали менее серьезной формой болезни. Когда таким цыплятам вводили свежие бактерии, они не болели — то есть воздействие ослабленных бактерий сделало их устойчивыми к будущим инфекциям. Используя идею ослабления патогенов, Пастер продолжил изучение сибирской язвы и бешенства и использовал их для создания вакцин.

Это был невероятно важный шаг вперед в науке о вакцинации. Одна из основных категорий современных вакцин — это вакцины, в которых используются живые ослабленные версии вирусов и бактерий. Вакцины MMR (против кори, эпидемического паротита и краснухи) и ветряной оспы — особенно яркие примеры живых аттенуированных вирусных вакцин. В спреях для носа от сезонного гриппа и H1N1-2009 (свиного гриппа) также использовались живые ослабленные вирусы.

Вакцина против бешенства, созданная Луи Пастером в 1885 году, стала следующим шагом, оказавшим влияние на лечение человеческих болезней. А затем наступила заря бактериологии, когда разработки быстро последовали одна за другой. В начале XX века французский врач Альбер Кальмет и ветеринар Камиль Герен разработали вакцину от туберкулеза, аналогичным образом ослабляя штамм бактерии крупного рогатого скота, пропуская 230 ее поколений через искусственные питательные среды, при каждом проходе отбирая все более и более слабые версии. В 1930-е годы были разработаны антитоксины и вакцины против дифтерии, столбняка, сибирской язвы, холеры, чумы, брюшного тифа, туберкулеза и других болезней.

Главная проблема с аттенуированными вирусами заключается в том, что возможны мутации и в некоторых редких случаях вакцина может вызывать болезнь, а не предотвращать ее. По этой причине исследователи XIX и XX веков разработали вакцины, полностью уничтожая патоген либо с помощью тепла, либо с помощью формалина, разбавленной версии формальдегида. Так, прорывная вакцина от полиомиелита Джонаса Солка , одобренная в 1955 году, была основана на полиовирусе, убитом формалином. В более поздней версии Альберта Сабина 1962 года использовался ослабленный штамм.


В конце 1940-х годов и позже ученые стали еще умнее и начали использовать для запуска иммунного ответа лишь кусочки оболочки вирусов и бактерий. Середина XX века в целом была периодом активных исследований и разработок вакцин, когда методы выращивания вирусов в лаборатории привели к новым открытиям и инновациям. Самые серьезные исследования были нацелены на распространенные детские болезни, такие как корь, эпидемический паротит и краснуха, вакцины от которых значительно снизили бремя болезней.

Инновационные методы современной медицины также стимулируют продолжение исследования вакцин: в последнее время, когда геномы стали легко декодировать, исследователи начали разрабатывать вакцины, основанные на извлечении РНК или ДНК из патогенов и их введении в организм. Кусочки генетического материала в теле пациента заставляют клетки производить белки, которые не могут вызывать болезни, но могут повышать чувствительность и обучать иммунную систему. В XXI веке целевые показатели болезней расширились и некоторые исследования все чаще начинают сосредотачиваться на неинфекционных состояниях, таких как зависимость и аллергия — например, долгие годы ведется работа по подготовке вакцины от крайне распространенной аллергии на кошек.

Вековой успех человечества в разработке вакцин означает, что сегодня найти безопасную и эффективную прививку стало проще, чем когда-либо. А поскольку новые вирусы продолжают появляться, арсенал вакцин будет неизбежно расти. Патогены бессмысленны, но безжалостны. Но и наука неумолима. Как и в любой гонке вооружений, в этой есть человеческие жертвы, но со временем, по мере продвижения исследований, будут спасены многие миллионы жизней.


5 интересных фактов о вакцинах


Вирус гриппа A был выделен лишь в 1933 году, а вирус гриппа B — в 1936 году.


Клетки HeLa сыграли огромную роль в разработке вакцин


Методы хранения первых вакцин были довольно… изобретательны


Вакцины вызывают коллективный иммунитет

Если большинство людей в сообществе вакцинированы против болезни, невакцинированный человек заболеет с меньшей вероятностью , потому что люди вокруг вряд ли заболеют и распространят болезнь. И наоборот: чем меньше вакцинированных, тем выше риск заболеваний. В среднем вакцины предотвращают более 2,5 миллиона смертей ежегодно. А еще уже существуют вакцины, которые могут остановить ротавирус и пневмонию — два заболевания, от которых ежегодно умирают почти 3 миллиона детей в возрасте до пяти лет.


Муравьи иммунизируют друг друга, а иногда и другие виды насекомых

Муравьи используют так называемую социальную иммунизацию: если один муравей в колонии заражен грибком, другие муравьи вылизывают зараженное насекомое , чтобы распространить инфекцию по всей колонии. Как итог, это делает всю колонию невосприимчивой к грибку. Так что коллективный иммунитет — это не привилегия одних лишь людей.

Читайте также: