Куда вирусы могут проникнуть

Обновлено: 28.03.2024

Ниже приведены наиболее распространенные случаи заражения устройств вредоносными программами.

Ваш браузер не поддерживает видео.

Письма со спамом

Авторы вредоносных программ часто пытаются обманным умыслом скачать вредоносные файлы. Это может быть письмо с вложенным файлом, который описывается как уведомление о доставке, возврат налогового платежа или счет по купленному билету. В письме может быть сказано, что необходимо открыть вложение, чтобы получить отправление или деньги.

Если вы откроете вложение, то на ваш компьютер будет установлена вредоносная программа.

Иногда вредоносное письмо легко заметить: в нем может быть орфографические и грамматические ошибки, или оно может быть отправлено с незнакомого электронного адреса. Тем не менее, эти письма могут выглядеть и так, будто их отправила настоящая компания или знакомый вам человек. Некоторые вредоносные программы могут взламывать учетные записи электронной почты и использовать их для отправки вредоносной нежелательной почты на все адреса, найденные в списке контактов.

Чтобы снизить вероятность заражения устройства:

Если вы не уверены, что знаете отправителя, или что-то кажется подозрительным, не открывайте письмо.

Дополнительные сведения см. в статье Защита от фишинга.

В Microsoft OneDrive встроена система защиты от атак программ-шантажистов. Дополнительные данные см. в этой теме.

Вредоносные Office макрос

Microsoft Office включает в себя мощный язык сценариев, позволяющий разработчикам создавать дополнительные инструменты, которые помогут вам работать продуктивнее. К сожалению, злоумышленники также могут использовать этот язык для создания вредоносных сценариев, которые устанавливают вредоносные программы или делают другие плохие вещи.

Если вы откроете файл Office и увидите такое уведомление:

не в enable that content unless you're certain you know exactly what it does, even if the file appears to come from someone you trust.

Предупреждение: Злоумышленники могут сообщить вам о том, что с вас будут взиматься плата за службу, на которую вы никогда не подписаны. Когда вы свяжитесь с ним, чтобы сообщить вам, что для отмены службы вам нужно просто скачать Excel файл, который они предоставляют, и упростят некоторые сведения. Если скачать и открыть файл, Excel вы увидите предупреждение выше. Если выбрать включить содержимое, запустится вредоносный макрос и заражает вашу систему.

Ни одна законная компания никогда не задаст вам Office, чтобы отменить службу. Если кто-то попросит вас, просто повесь трубку. Это мошенническое решение, и вам не нужно отменять службу.

Дополнительные информацию о том, как управлять запуском макроса на устройстве, см. в Office файлах.

Зараженные съемные носители

Многие вредоносные программы распространяются, заражая съемные носители, такие как USB-устройства флэш-памяти или внешние жесткие диски. Вредоносная программа может автоматически установиться при подключении зараженного носителя к компьютеру.

Ниже приведены рекомендации, которые помогут защититься от этого типа заражения.

Во-первых, необходимо очень осторожно относиться к USB-устройствам, которые вам не принадлежат. Если вы нашли USB-устройство, которое предположительно было утеряно или выброшено, не подключайте его к компьютеру с важными данными. Иногда злоумышленники намеренно оставляют зараженные USB-устройства в общественных местах, рассчитывая, что кто-нибудь их найдет и подключит к компьютеру.

Совет: Это называется "USB-drop attack".

Если не подключать это устройство, вы не сможете заразить компьютер. Если вы обнаружили, что USB-накопитель просто затерялся, посмотрите, есть ли ближайший регистратор или потерянный и найденный, что его можно сдать.

Во-вторых, если вы подключили неизвестное съемное устройство к компьютеру, незамедлительно выполните его сканирование.

Вместе с другим программным обеспечением

Некоторые вредоносные программы могут устанавливаться одновременно с другими скачанными программами. К таким программам относится программное обеспечение со сторонних веб-сайтов или файлы, передаваемые через одноранговые сети.

Кроме того, некоторые программы могут устанавливать другое ПО, которое Майкрософт определяет как потенциально нежелательные программы. К такому ПО могут относиться панели инструментов или программы, отображающие дополнительную рекламу при просмотре веб-страниц. Как правило, вы можете отказаться от установки такого дополнительного программного обеспечения, сняв флажок в процессе установки. Безопасность Windows защитить вас от потенциально нежелательных приложений. Дополнительные сведения см. в статье Защита компьютера от потенциально нежелательных приложений.

Программы для генерирования программных ключей (генераторы ключей) часто параллельно устанавливают вредоносные программы. Средства обеспечения безопасности Майкрософт обнаруживают вредоносные программы на более чем половине компьютеров с установленными генераторами ключей.

Чтобы избежать установки вредоносных программ или потенциально нежелательных программ, выполните следующее.

Скачивайте программное обеспечение только с официального веб-сайта его поставщика.

Внимательно читайте информацию об устанавливаемом программном обеспечении, прежде чем нажимать кнопку "ОК".

Взломанные или скомпрометированные веб-страницы

Вредоносные программы могут использовать известные программные уязвимости для заражения компьютера. Уязвимость — это брешь в программном обеспечении, через которую вредоносные программы могут получить доступ к компьютеру.

При попытке перейти на веб-сайт он может попытаться использовать уязвимости в веб-браузере, чтобы заражать компьютер вредоносными программами. Это может быть вредоносный веб-сайт или обычный веб-сайт, который был взломан или скомпрометирован.

Именно поэтому очень важно поддерживать все программное обеспечение, особенно веб-браузер, в актуальном состоянии и удалять не используемую программу. К ним относятся неиспользованые расширения браузера.

Таким образом вы можете снизить вероятность получения вредоносных программ с помощью современного браузера, например Microsoft Edge ирегулярно обновляя его.

Совет: Не хотите обновлять браузер, так как открыто слишком много вкладок? Все современные браузеры снова откроют вкладки после обновления.

Другие вредоносные программы

Некоторые типы вредоносных программ могут загружать на компьютер другие угрозы. После установки этих угроз на компьютере они продолжат загружать дополнительные угрозы.

Лучший способ защиты от вредоносных программ и потенциально нежелательного программного обеспечения — это последние обновления в режиме реального времени, такие как антивирусная программа в Microsoft Defender.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Как вирусы проникают на компьютер

Вредоносное ПО

Вирусы проникают в компьютер тремя путями:

  1. Через интернет
  2. Через съёмный носитель
  3. Через локальную сеть

Начнём с конца. Это в основном касается корпоративных компьютеров, за безопасностью которых следят сисадмины. Если на работе ваше устройство подключено к общей локальной сети и хотя бы один компьютер заразится вирусом, то инфицируются и другие. Это как дети в детском садике: заболел один — карантин на всю группу.

Чтобы вирус проник на домашний компьютер, достаточно вставить в него флешку (чужую или свою, но побывавшую в другом заражённом компьютере), CD-диск или просто подключить через USB-порт какое-нибудь внешнее устройство (смартфон, фотоаппарат, внешний жёсткий диск и т.п.). Если этот съёмный носитель оказался заражённым вирусом, при открытии устройства на вашем компьютере автозапуск может открыть его даже без вашего ведома. Это всё равно что передать игрушку от больного каким-нибудь ротовирусом другому ребёнку.

И наконец, заражение через интернет. Это, пожалуй, самый распространённый и многоканальный путь распространения компьютерных вирусом. Рассмотрим подробнее, как можно заразиться вирусом через интернет.

Каким образом вирус заражает компьютер через интернет?

В интернете на различных ресурсах блуждают миллионы вирусов. Каждый день появляются всё новые и новые виды. Их создают обычные люди, точнее необычно умные и крайне вредные, но всё же люди, а не роботы. Кто-то делает это с целью вымогательства денег или получения прибыли, кто-то ради спортивного интереса, чтобы войти в историю, кто-то просто злодей от природы и хочет навредить всему человечеству.

Рассмотрим, как происходит заражение компьютерным вирусом, какими путями вы можете получить вирус на свой компьютер.

1. Вредоносные сайты

Вредоносные сайты

Однако чтобы написать такую программу, которая будет запускать себя с браузера, очень сложно, поэтому чаще всего вредоносными являются не сами сайты, а программы на них, которые вы можете случайно или намеренно скачать и открыть на своём компьютере. Часто такие программы маскируются под ссылки, картинки, файлы-вложения или какие-то другие знакомые программы. Например, вы ищите книжку, нажимаете на “скачать” и скачиваете не doc, txt, pdf или что-то похожее, а exe, com или вообще файл с каким-то непонятным расширением (скорее всего такой файл заражен вирусом). Не обратив на это внимание, вы открываете файл на своём компьютере и своими руками запускаете вирус. Либо вы скачивате искомый файл, а параллельно с ним закачивается и вредоносная программа, которую вы даже не заметили.

2. Электронная почта

Вирус в самом письме или во вложениях в нём. Вам приходит письмо от неизвестного отправителя, вы открываете его, переходите по ссылке в нём или скачиваете и открываете вложения, в которых спрятался вирус. На самом деле письмо может прийти и от известного отправителя. Например, если вашего друга заразил особый вирус, который рассылает себя всем, кто есть в его адресной книге. Или же вирус маскирует отправителя под известную фирму. Так он вызывает доверие, и человек не задумываясь, открывает письмо.

Рассыльщики таких писем хорошо разбираются в психологии масс и поэтому пишут такие темы и тексты писем, что очень сложно устоять и не открыть их и не выполнить указания. Например, “с вашего счёта списано 5673 р.”, или “счёт к оплате за вашу покупку”, или “добро пожаловать в аккаунт”, или “вы зарегистрировались на портале”, или “транзакция №34598657 выполнена. Ваш счёт пополнен” и т.п.

Почта вирус

Недавно мне, например, приходили письма от Мегафона о том, что мне на счёт зачислены какие-то деньги. Я написала письмо в поддержку Мегафона с вопросом, что это. Мне ответили, что это не они отправляли и что это мошенники, не открывайте их письма и вложения в них.

Файл заражён вирусом

Рассылка вирусов по email очень прибыльное и неслжное дело. Оно сродни одностраничным сайтам лохотронов. Существует целая индустрия: на специальных сайтах вы можете скачать вредоносные программы (вирусы-вымогатели, взломщики паролей и аккаунтов и т.п.) и делать такие вот рассылки, рассчитывая “на лоха”. Например, если вы наберёте в гугл запрос “Набор хакера скачать”, то удивитесь, как же просто скачать вирус для его распространения.

вирус скачать бесплатно

Пример сайта, где можно скачать вирусы-взломщики

3. Вредоносное программное обеспечение

Вирус — программа — компьютер. Вы скачиваете из интернета необходимое вам ПО, которое заражено вирусом. Чаще всего это касается бесплатных программ на неофициальных сайтах. Например, программа для просмотра видео, для скачивания музыки из вконтакте, для архивирования, монтажа, спам-рассылки и т.п. Здесь как и с любым непроверенным файлом, скачанным с плохого сайта: вы скачиваете одно, а запускаете параллельно какое-то другое вредоносное ПО.

Однако вирусы могут содержаться и в официальном программном обеспечении и обновлениях, которые ваш компьютер скачивает автоматически и устанавливает без вашего ведома. Такое происходит не часто, но зато очень массово. Например, предположительно так распространялся известный вирус-вымогатель “Petya”: им было заражено обновление для бухгалтерской программы M.E.Doc.

4. Соцсети

Другой вариант — вы устанавливаете какое-нибудь полулегальное приложение, типа “посмотреть, кто заходил на твою страничку”, или “скачивать музыку бесплатно”, или “открыть закрытый список друзей друга”, и тем самым закачиваете себе и вирус. Правда, в соцсетях чаще всё-таки не вирусы рассылают, а всеми способами пытаются украсить ваш пароль и захватить ваш аккаунт, чтобы делать вредоносные рассылки вашим друзьям.

Как не поймать вирус и как защититься от вируса?

Вирус программа компьютер

Везде можно подхватить вирус. Но волков бояться — в лес не ходить. Компьютерная безопасность — это очень важно особенно для людей, работающих в интернете. Как же защититься от вирусов? Вот несколько важных правил, как обезопасить свою работу с компьютером:

1. Антивирус. Прежде всего, конечно же установить хороший антивирус и дать ему возможность обновляться хоть каждый день. Он, конечно, тормозит работу компьютера, но зато сразу распознает известный ему вирус или укажет вам на подозрительный объект, будь то скачанный файл, вставленный съёмный носитель или папки на вашем жёстком диске.

2. Не открывать, не нажимать, не скачивать. Большинство вирусов приходят на компьютер по вине самого хозяина. Когда человек видит что-то интригующее или находит то, что давно искал, он теряет бдительность, надеется на авось и сам скачивает себе на компьютер вирус. Так что не открывайте писем от неизвестных отправителей, не переходите по непонятным ссылкам, не кликайте все подряд баннеры, не скачивайте вложений и непроверенных приложений. Всегда будьте на чеку, если вам предлагается файл с расширением exe или com. Это запускные файлы, которые могут содержать в себе вирус.

4. Установите Linux. Большинство вирусов подстраиваются под Windows, поэтому чтобы не бояться переходить по ссылкам на вредоносные сайты, установите другую операционную систему, например, Линукс.

5. Измените настройки браузера. Установите, чтобы браузер всегда спрашивал вашего разрешение на скачивание файлов, а также запретите автозапуск программ.

Защита от вирусов

Работая в интернете, мы часто сталкиваемся с различными мошенниками, будь то лохотронщики, которые пытаются выманить у вас деньги, или хакеры, которые пытаются выманить ваши пароли. Поэтому всегда будьте бдительны. Надеемся, наши советы помогут вам в этом.

Если вам нравятся наши статьи, подписывайтесь на рассылку и получайте небольшой бонус от команды детективов.


Обзор

У вирусов архей семейства Bicaudaviridae вирионы имеют крайне необычную морфологию: к одному или двум концам заостренного капсида прикрепляются белковые хвосты, длина которых может варьировать.

Автор
Редактор

Вирусы заражают все клеточные формы жизни, и археи — не исключение. Хотя сейчас известно гораздо меньше вирусов архей, чем вирусов бактерий и эукариот, разнообразие устройства их вирионов и используемых молекулярных механизмов поражает воображение: некоторые из них имеют вирионы в форме бутылки, у других генетический материал в вирионе хранится в форме А-ДНК, третьи обзавелись уникальным типом биологических мембран или используют для выхода из зараженной археи ранее неизвестные клеточные структуры. Наша статья посвящена этим пока еще малоизученным, но удивительно самобытным генетическим элементам.

Давно прошли те времена, когда археи считались обитателями исключительно тех мест, где никакая другая клеточная жизнь существовать не может, например, горячих источников. В действительности, архей можно найти везде, даже в желудочно-кишечном тракте человека, однако наиболее многочисленны они на глубоководьях морей и океанов. Так, показано, что археи, окисляющие ионы аммония до нитрата (они относятся к типу Thaumarchaeota) являются одной из самых многочисленных клеточных форм жизни в океанах. Неудивительно, что и вирусы архей также очень многочисленны: метагеномный анализ показал, что в некоторых зонах на долю вирусов архей приходится около 10% самых распространенных там вирусов. Объемы клеток архей, которые погибают из-за вирусов, тоже впечатляют: установлено, что в верхних 50 см океанического донного грунта клетки архей, лизированные вирусами, составляют до трети всей ежегодной биомассы погибших микробов, что соответствует 0,3–0,5 гигатоннам углерода ежегодно [1].

Все известные на данный момент вирусы архей имеют геномы, представленные ДНК: одноцепочечной или двухцепочечной, кольцевой или линейной. Недавно, однако, в горячих источниках Йеллоустонского национального парка, которые населены почти исключительно археей Sulfolobus solfataricus, с помощью метагеномики обнаружили вирусный РНК-геном, отдаленно напоминающий эукариотические РНК-вирусы, поэтому, возможно, существуют и РНК-содержащие вирусы архей.

Пока вирусы архей представлены 17 семействами. Стоит отметить, что вирусы архей, вообще-то, составляют две сильно различающиеся группы. К первой относят вирусы, которые структурно и генетически близки к вирусам бактерий и эукариот, а ко второй — вирусы, уникальные для архей и мало похожие на вирусы других клеточных форм. Практически все специфические для архей вирусы поражают представителей типа Crenarchaeota, а вирусы, близкие к бактериофагам и вирусам эукариот, чаще всего паразитируют на археях типа Euryarchaeota [1].

Строение вирусных частиц

Вирусы, специфичные для архей, нередко имеют вирионы необычной формы (рис. 1а).

Так, представители семейства Ampullaviridae имеют вирионы в виде бутылок из-под шампанского, причем поверх белков капсида они обтянуты липидной оболочкой. А у членов семейства Spiraviridae вирионы в виде спиралей. Столь необычная форма вирионов у вирусов этих двух семейств связана с особым способом упаковки генома при помощи белков капсида [1].

Морфология вирионов вирусов, специфичных для архей

Рисунок 1а. Морфология вирионов вирусов, специфичных для архей. Просвечивающая электронная микроскопия.

Морфология вирионов некоторых вирусов архей и бактерий

Рисунок 1б. Морфология вирионов некоторых вирусов архей и бактерий

Некоторые специфичные для архей вирусы имеют веретеновидные капсиды. Среди них у вирусов семейства Fuselloviridae на одном из заостренных концов капсида находится пучок белковых филаментов, а у членов семейства Bicaudaviridae на одном или двух концах капсида — одиночные придатки в виде хвостов. Не менее удивительна морфология вирионов Guttaviridae: у этих вирусов вирионы тоже похожи на веретено, однако один их конец закруглен и имеет каплевидную форму [1].

У многих специфичных для архей вирусов нитчатые вирионы, которые могут нести специальные придатки, предназначенные для распознавания клеток архей. Иногда, как у вирусов семейства Tristromaviridae, капсид сформирован не одним, а тремя типами белков [1].

Некоторые вирусы, специфичные для архей, имеют сферические вирионы, причем иногда поверх капсида находятся липидная мембрана и еще один слой белков, из-за чего частицы принимают икосаэдрическую форму [1].

Вирионы Pleolipoviridae по строению похожи на везикулы, которые образуют многие археи: голая геномная ДНК находится внутри мембранного пузырька, который пронизан белками двух типов. Такие пузырьки могут содержать как одноцепочечную, так и двухцепочечную ДНК линейной или кольцевой формы [1].

Морфология вирионов вирусов архей, родственных бактериофагам и вирусам эукариот

Рисунок 2. Морфология вирионов вирусов архей, родственных бактериофагам и вирусам эукариот. Просвечивающая электронная микроскопия.

Чем можно объяснить столь необычную морфологию вирусов архей? Вирионы некоторых из них удалось не только рассмотреть под электронным микроскопом, но и детально изучить с помощью криоэлектронной микроскопии. Так ученые выяснили, что геномы некоторых вирусов архей в капсидах находятся в А-форме! Это первый известный случай, когда А-форма ДНК присутствует в живых организмах в нормальных условиях. Один из вирусов с геномом в виде А-ДНК, AFV1, имеет очень тонкую липидную оболочку с необычным химическим составом — главным ее компонентом является липид глицеролдибифитанилглицеролтетраэфир (GDGT-0), имеющий необычную U-образную конфигурацию (рис. 3). В мембране, состоящей их таких липидов, их гидрофильные головки обращены наружу, а гидрофобные дуги — внутрь. Наряду с фосфолипидным бислоем и монослоем архей такое строение можно считать третьим из известных типов биологических мембран [1].

GDGT-0

Рисунок 3. Химическая структура GDGT-0 (вверху), его схематическое представление (внизу слева; красным цветом показаны гидрофильные головки) и модель (внизу справа) в U-образной конформации подпись

Геномы

Все выделенные на данный момент вирусы архей имеют ДНК-геномы (хотя, как отмечалось выше, в горячих источниках Йеллоустона с помощью метагеномики удалось найти РНК-геном возможного вируса архей). В большинстве случаев геном представлен двухцепочечной молекулой ДНК, и лишь у членов семейств Spiraviridae и Pleolipoviridae геномы состоят из одноцепочечной ДНК. Размеры геномов архейных вирусов варьируют от 5300 пар нуклеотидов (п.н.) у клававируса APBV1 (это один из мельчайших известных геномов ДНК-содержащих вирусов) до 143 800 п.н. у миовируса HGTV-1. Как правило, вирусы, специфичные для архей, имеют меньшие геномы, чем вирусы архей, родственные бактериофагам и вирусам эукариот [2].

Механизмы репликации геномов вирусов архей экспериментально изучены лишь для небольшого числа вирусов. Известно, что ДНК представителей порядка Caudovirales (которые, кстати, имеют самые большие геномы среди архейных вирусов) кодирует часть или даже все компоненты аппарата репликации ДНК: ДНК-полимеразы, белки скользящего зажима (PCNA), праймазы и хеликазы. Имеющие более скромные размеры геномов вирусы архей, как правило, кодируют белки, которые необходимы для привлечения аппарата репликации клетки-хозяина. Стоит, однако, отметить, что в геномах многих вирусов, специфичных для архей, не удалось найти белки, связанные с репликацией ДНК, так что они либо полностью зависимы от аппарата репликации клетки-хозяина, либо используют уникальные, пока еще не изученные механизмы репликации ДНК. Например, удалось показать, что и инициация, и терминация репликации генома липотриксвируса AFV1 связаны с рекомбинационными процессами [1].

Механизмы упаковки генома в капсид у вирусов архей детально не изучены. Тем не менее известно, что члены порядка Caudovirales имеют гомологи терминазы, которая упаковывает геномную ДНК в пустой капсид. Механизм формирования вирионов с использованием терминазы используют также вирусы бактерий и эукариот. Можно предположить, что упаковка генома в капсид у вирусов архей протекает так же, как и у бактериофагов и вирусов эукариот, а вот в плане репликации ДНК вирусы архей или целиком зависят от клетки-хозяина, либо используют уникальные, пока еще не изученные механизмы [1].

Взаимодействие с клеткой-хозяином

Выход зрелых вирионов из клетки архей во многих случаях напоминает отпочковывание от эукариотической клетки-хозяина у вируса гриппа, ВИЧ и вируса Эбола. Когда вирион покидает клетку археи, он забирает с собой фрагмент ее мембраны, который становится дополнительной оболочкой поверх капсида. У некоторых вирусов архей финальные стадии созревания вирионов происходят уже после выхода из клетки, когда капсид претерпевает морфологические перестройки [1].

У некоторых вирусов архей (а именно, представителей семейств Rudiviridae и Turriviridae) все стадии созревания вириона проходят в цитоплазме клетки. Новые вирусные частицы покидают клетку через специальные структуры с семиосевой симметрией на их поверхности, которые получили название вирусассоциированных пирамид (virus-associated pyramids, VAP). VAP образуются на внутренней поверхности мембраны зараженной клетки, проходят сквозь ее поверхностный S-слой и открываются на финальных этапах инфекции, давая возможность вирионам выйти из клетки (рис. 4) [1].

Вирусассоциированная пирамида

Рисунок 4. Вирусассоциированная пирамида. а и б — Пирамида на поверхности клетки археи Pyrobaculum oguniense в закрытой (а) и открытой (б) конформациях. в и г — Открытая пирамида вируса SIRV2 на поверхности Sulfolobus islandicus. а–в — Визуализация с помощью трансмиссионной электронной микроскопии. г — С помощью электронной криотомографии (CryoET).

Выход некоторых вирусов архей из клетки сопровождается ее лизисом. К их числу относятся вирусы семейства Tristromaviridae, которые, хотя и развиваются целиком в цитоплазме, каким-то образом ухитряются приобрести липидную оболочку. Примечательно, что сифовирус ψM2 кодирует фермент псевдомуреинэндоизопептидазу, который разрушает псевдомуреиновую клеточную стенку археи [1].

Эволюция и родственные связи

Вирусы, специфичные для архей, как правило, заражают только представителей типа Crenarchaeota. Они отличаются от всех других вирусов не только нестандартной морфологией вирионов, но и генетически: около 90% их генов не имеет гомологов в существующих базах данных. В геномах некоторых архейных вирусов не удалось найти ни одного белка, для которого существовал бы функционально охарактеризованный белок-гомолог.

Иногда, если гомологию не удается установить по нуклеотидным или аминокислотным последовательностям, на помощь приходят пространственные структуры. Действительно, для различных белков вирусов архей получили пространственные структуры, но ситуация от этого не стала яснее: оказалось, что во многих из них содержатся совершенно уникальные структурные мотивы. Более того, функции многих генов вирусов архей совершенно непонятны: так, оказалось, что фузелловирус SSV1 может спокойно обойтись без половины своих генов. Можно предположить, что такие неохарактеризованные гены-сироты кодируют белки, участвующие во взаимодействии вируса с клеткой архей, например, противодействующие системам CRISPR-Cas [1].

Впрочем, многие вирусы архей родственны некоторым бактериофагам и вирусам эукариот. Однако вирусы, специфичные для архей, стоят особняком среди всех ДНК-содержащих вирусов. Более того, различные группы вирусов, специфичных для архей, неродственны друг другу и эволюционируют независимо друг от друга. Высказывается предположение, что некоторые группы специфичных для архей вирусов появились на заре эволюции клеточной жизни и были впоследствии утрачены бактериями и эукариотами. Другие группы специфичных архейных вирусов могли появиться в момент обособления домена архей или даже позже, в отдельных группах архей [1].

Любопытно, что некоторые вирусы архей родственны лишенным капсидов мобильным генетическим элементам (например, плазмидам) . Эти вирусы, так же как и мобильные генетические элементы, имеют родственные гены основных белков репликативного аппарата [1], [2].

Несмотря на то, что мы только-только начинаем приподнимать завесу тайны над вирусами архей, многие уже известные особенности их морфологии или генетического аппарата поражают воображение. Несомненно, дальнейшее изучение вирусов архей при помощи метагеномики и других подходов подарит нам множество сюрпризов.

Читайте также: