Молекулярно-генетический метод исследования вирусов

Обновлено: 19.04.2024

Выявление изменений в 2 основных генах системы гемостаза для оценки наличия факторов риска развития тромбоза (гены протромбина и фактора Лейдена).

Выявление изменений в 2 основных генах системы гемостаза для оценки наличия факторов риска развития тромбоза (гены протромбина и фактора Лейдена).

Анализ направлен на исследование полиморфизмов в гене β-полипептида фибриногена FGB, которые могут обуславливать увеличение риска развития тромбофилических состояний. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Анализ направлен на исследование полиморфизмов в гене β-полипептида фибриногена FGB, которые могут обуславливать увеличение риска развития тромбофилических состояний. Описание результатов врачом-генетиком не выдается.

Выявление изменений в основных генах ферментов фолатного цикла для оценки наличия склонности к гипергомоцистеинемии (рекомендовано оценивать в комплексе с иммунохимическим тестом на определение уровня гомоцистеина).

Исследование полиморфизмов в генах интегрина альфа-2 и тромбоцитарного гликопротеина 1b проводят для выявления генетической предрасположенности к раннему развитию инфаркта миокарда, ишемического инсульта, тромбоэмболии, а также для оценки риска развития тромбозов. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Исследование полиморфизмов в генах интегрина альфа-2 и тромбоцитарного гликопротеина 1b проводят для выявления генетической предрасположенности к раннему развитию инфаркта миокарда, ишемического инсульта, тромбоэмболии, а также для оценки риска развития тромбозов. Описание результатов врачом-генетиком не выдается.

Определение полиморфизмов в гене тромбоцитарного рецептора фибриногена (β3-интегрина) выполняют для выявления наследственной предрасположенности к тромбофилическим состояниям. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Определение полиморфизмов в гене тромбоцитарного рецептора фибриногена (β3-интегрина) выполняют для выявления наследственной предрасположенности к тромбофилическим состояниям. Описание результатов врачом-генетиком не выдается.

Выявление изменений в основных генах ферментов фолатного цикла для оценки наличия склонности к гипергомоцистеинемии (рекомендовано оценивать в комплексе с иммунохимическим тестом на определение уровня гомоцистеина).

Анализ полиморфизмов в генах ACE, AGT, NOS3 дает возможность обнаружить наследственные факторы риска развития артериальной гипертензии. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Анализ полиморфизмов в генах ACE, AGT, NOS3 дает возможность обнаружить наследственные факторы риска развития артериальной гипертензии. Описание результатов врачом-генетиком не выдается.

Тест позволяет определить наличие генетических факторов риска развития артериальной гипертензии в результате сужения просвета сосудов и нарушения водно-солевого баланса, возникающих при наличии полиморфизмов в генах ACE, AGT. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Тест позволяет определить наличие генетических факторов риска развития артериальной гипертензии в результате сужения просвета сосудов и нарушения водно-солевого баланса, возникающих при наличии полиморфизмов в генах ACE, AGT. Описание результатов врачом-генетиком не выдается.

В результате анализа полиморфизмов в гене NO-синтазы возможно оценить генетический риск развития артериальной гипертензии в результате нарушения тонуса сосудистой стенки. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

В результате анализа полиморфизмов в гене NO-синтазы возможно оценить генетический риск развития артериальной гипертензии в результате нарушения тонуса сосудистой стенки. Описание результатов врачом-генетиком не выдается.

Тест используют при диагностике болезни Крона, для определения прогноза тяжести течения заболевания и риска развития осложнений. Также исследование применяют для дифференциальной диагностики болезни Крона с язвенным колитом и в качестве прогностического теста у родственников пациентов с болезнью Крона.

Выявление индивидуальных особенностей в гене MCM6 (c.-13910C>T). Может быть рекомендовано взрослым с непереносимостью молока.

Исследование используется для дифференциальной диагностики генетических причин патологии печени - дефицита альфа-1-антитрипсина, болезни Вильсона-Коновалова, классического гемохроматоза и злокачественной формы неалкогольной жировой болезни печени

Тест используется для диагностики гиперлипидемии III типа, а также для прогноза развития болезни Альцгеймера

Исследование применяют для дифференциальной диагностики семейных раковых синдромов (в частности, синдрома множественной эндокринной неоплазии второго типа).

Исследование показано для диагностики, определения прогноза течения заболевания, подбора адекватной терапии и мониторинга минимальной остаточной болезни пациентов с множественной миеломой.

Исследование гена Янус-киназы. Может быть рекомендовано перед началом лечения ХМПЗ и для определения эффективности проводимой терапии.

Определение 8 наиболее часто встречаемых мутаций в генах BRCA1, BRCA2 (Breast Cancer 1/2), связанных с равитием BRCA-ассоциированного рака у мужчин.

Определение 8 наиболее часто встречаемых мутаций в генах BRCA1, BRCA2 (Breast Cancer 1/2), связанных с равитием BRCA-ассоциированного рака у мужчин.

Анализ направлен на исследование мутаций в гене RET, которые приводят к развитию данного заболевания.

Синдром множественной эндокринной неоплазии 2В типа относится к группе семейных опухолевых синдромов, ассоциированных со специфическими мутациями протоонкогена RET, которые выявляют в процессе исследования.

Типирование генов системы HLA II класса. Может быть рекомендовано для диагностики наследственного сахарного диабета 1-го типа.

Генетическая диагностика синдрома Жильбера – неконъюгированной доброкачественной гипербилирубинемии – основана на исследовании возможных мутаций в промоторной области гена UGT1A1.

Исследование проводят при наличии нарушений минерального обмена, а также при отягощенном семейном анамнезе по заболеваниям костной системы.

Исследование проводят при наличии нарушений минерального обмена, а также при отягощенном семейном анамнезе по заболеваниям костной системы.

Исследование проводят при наличии нарушений минерального обмена, а также при отягощенном семейном анамнезе по заболеваниям костной системы.

Исследование проводят при наличии нарушений минерального обмена, а также при отягощенном семейном анамнезе по заболеваниям костной системы.

Исследование генетических факторов риска развития остеопороза проводят при отягощенном семейном анамнезе по заболеваниям костного аппарата, а также при наличии нарушений минерального обмена. На бланке результата выдается информация о полиморфизмах, полученная при молекулярно-генетическом исследовании, с комментариями.

Исследование генетических факторов риска развития остеопороза проводят при отягощенном семейном анамнезе по заболеваниям костного аппарата, а также при наличии нарушений минерального обмена. Описание результатов врачом-генетиком не выдается.

Выявление индивидуальных особенностей в основных генах ферментов фолатного цикла для оценки наличия склонности к гипергомоцистеинемии (рекомендовано оценивать в комплексе с иммунохимическим тестом на определение уровня гомоцистеина).

Выявление индивидуальных особенностей в основных генах ферментов фолатного цикла для оценки наличия склонности к гипергомоцистеинемии (рекомендовано оценивать в комплексе с иммунохимическим тестом на определение уровня гомоцистеина).

Тест используется для диагностики у молодых пациентов сахарного диабета 2-го (взрослого) типа (MODY2).

Тест используется для диагностики у молодых пациентов сахарного диабета 3-го (взрослого) типа (MODY3).

Выявление 2 наиболее часто встречаемых мутаций в гене HFE для оценки риска развития гемохроматоза 1-го типа. Рекомендовано при выявлении повышения концентрации ферритина и % насыщения трансферрина железом в сыворотке крови.

Исследование включает описание врачом-генетиком генетических результатов анализов, которые относятся к первой категории сложности.

Исследование включает описание врачом-генетиком результатов генетических анализов, которые относятся ко второй категории сложности.

Исследование включает описание врачом-генетиком результатов генетических анализов, которые относятся к третьей категории сложности.

Исследование включает описание врачом-генетиком результатов генетических анализов, которые относятся к четвертой категории сложности.

Анализ полиморфизмов в гене ACE необходим для прогнозирования нефропротективного эффекта ингибиторов ангиотензин-превращающего фермента (АПФ) – физиологического регулятора артериального давления и водно-солевого обмена при недиабетических заболеваниях. Посредством исследования можно определить генетические маркеры эффективности атенолола при артериальной гипертензии с гипертрофией левого желудочка или флувастатина при ишемической болезни сердца.

В процессе исследования проводится анализ полиморфизмов в гене CYP2C9, который выступает генетическим маркером риска нарушений метаболизма блокаторов рецепторов ангиотензина II.

Выявление изменений в основных генах ферментов фолатного цикла для оценки вероятности развития побочных реакций при приеме метотрексата.

Анализ полиморфизмов в гене CYP2C9 выполняют с целью выявления наследственных факторов развития побочных реакций по типу желудочных кровотечений при приеме нестероидных противовоспалительных препаратов (НПВП).

При анализе полиморфизмов в гене CYP2C9 определяют генетические маркеры риска развития нежелательных реакций в виде гипогликемии при приеме пероральных сахароснижающих производных сульфонилмочевины.

Цитохром CYP2D6 участвует в метаболизме лекарственных препаратов (β-адреноблокаторов, антиаритмиков, аналептиков, антидепрессантов и наркотических анальгетиков), применяемых при лечении ряда сердечно-сосудистых заболеваний и психических расстройств. Исследование полиморфизмов в гене CYP2D6 позволяет выявить людей со сниженной активностью CYP2D6, поскольку таким пациентам необходимо индивидуально подбирать более низкие дозы препаратов.

Тест целесообразно проводить перед плановым назначением антигипертензивных, антиаритмических, психотропных препаратов, а также при длительном их приеме.

Анализ наличия полиморфизмов в гене цитохрома Р450 проводят для выявления наследственных факторов нарушения детоксикации. CYP2C9 участвует в метаболизме лекарственных средств. При снижении активности цитохрома CYP2C9 метаболизм препаратов замедляется, в результате чего происходит увеличение их концентрации в крови, что может быть причиной развития нежелательных реакций.

Определение резус-принадлежности плода по крови матери используется для выбора тактики ведения резус-отрицательной беременной. У генотипически резус-положительной матери получение результата невозможно.

Вопросы
и ответы

Выбирая, где выполнить Генетические предрасположенности в Москве и других городах России, не забывайте, что стоимость, методы и сроки выполнения исследований в региональных медицинских офисах могут отличаться

Лабораторное исследование генетических предрасположенностей подразумевает выявление мутаций/полиморфизмов генов, ассоциированных с повышенной частотой встречаемости определенных заболеваний (например, онкологических, сердечно-сосудистых, аутоиммунных), невынашивания или осложнений беременности, неблагоприятных реакций при применении некоторых лекарственных препаратов и пр.

Подобное тестирование по различным перечням генов позволяет врачам понять индивидуальные особенности пациента, дать рекомендации по снижению соответствующих рисков путем профилактического изменения образа жизни с устранением вредоносных факторов, ограничениям применения тех или иных лекарств, дополнительным мерам предосторожности при ведении беременности, сделать прогноз эффективности планируемой терапии и т.п.

Основным направлением деятельности онкологическом отделении (вирусологии) является проведение молекулярно-биологических исследований с использованием метода полимеразной цепной реакции (ПЦР) в режиме реального времени и иммуноферментного анализа для выявления вирусного и бактериального инфицирования.

Диагностика вирусных и бактериальных инфекций позволяет:

  1. Выявить вирусное и бактериальное инфицирование на ранней стадии;
  2. Провести эффективное лечение на раннем этапе;
  3. Осуществлять мониторинг проводимого лечения;
  4. Оценивать эффективность проведённого лечения.

Вирусный канцерогенез

вирусологические исследования

Молекулярно-генетические исследования с использованием методов полимеразной цепной реакции (ПЦР), позволяют диагностировать ДНК/РНК вирусных и бактериальных агентов, которые имеют немаловажное значение в преобразовании нормальной клетки в злокачественную.

Внедрение опухолеродного вируса в геном клетки, приводящее к нарушению контроля клеточного деления, является одним из инициирующих шагов многоступенчатого процесса канцерогенеза. При этом заражение онкогенным вирусом не означает однозначно, что в последующем образуется злокачественная опухоль, но сформируется вероятность ее появления.

В настоящее время можно считать установленным, что на долю опухолей, ассоциированных с вирусами, приходится около 20% всех опухолей человека. Онкогенные вирусы, принадлежащие к разным семействам, используют во многом сходную стратегию для инициации канцерогенеза.

Среди этих общих свойств можно назвать нарушения работы клеточных сигнальных путей, контролирующих пролиферацию, дифференцировку, целостность генома, миграцию клеток, апоптоз, иммунный ответ.

Механизмы реализации онкогенного потенциала вирусов включают:

  1. взаимодействие вирусных белков с клеточными белками – компонентами сигнальных путей;
  2. встраивание генома вируса в геном клетки (интеграция);
  3. влияние на эпигенетические механизмы регуляции экспрессии генов.

Исследования последних лет позволяют предположить, что все онкогенные вирусы успешно используют ограничение транскрипции своих генов, накладываемые метилированием ДНК, репрессивными модификациями гистонов и клеточными микроРНК, для ухода от иммунологического контроля, что способствует персистенции вирусного генома в клетке хозяина.

В настоящее время выявлено несколько групп вирусов, предрасполагающих к развитию опухолей у человека.

Опухоли человека, ассоциированные с вирусами

ВирусОпухоль
Вирусы папиллом (HPV) типов 3, 6, 11, 32, 72, 73 Доброкачественные: папилломы, кондиломы кожи и слизистых
Вирусы папиллом (HPV) типов 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 70 Злокачественные: рак шейки матки, рак анального канала
Вирус гепатита В (HBV) Первичный рак печени
Вирус гепатита С (HСV) Первичный рак печени
Вирус Т-клеточной лейкемии человека (HTLV-1) Т-клеточный лейкоз у взрослых
Вирусы герпеса: вирус Эпштейна-Барр (EBV) вирус герпеса 8 типа (HSV-8) Лимфомы, рак носоглотки, рак желудка Саркома Капоши (на фоне иммуносупрессии)

Рак шейки матки (РШМ)

Рак шейки матки (РШМ) – одно из наиболее распространенных онкологических заболеваний, занимающее второе место по частоте встречаемости среди женщин в мире. Ежегодно регистрируется около 600 тыс. новых случаев РШМ и свыше 95% РШМ ассоциировано с вирусами папилломы человека (HPV) высокого онкогенного риска.

Эпидемиологические исследования показали, что заболевание могут вызывать 18 типов вируса, из которых наиболее часто (в 94 % случаев) встречаются двенадцать: 16, 18, 31, 33, 35, 39, 45, 52, 56, 58, 59, 66.

Инфицированность HPV достаточно высока: геном вируса определяется у 46% женщин и 33% мужчин. Максимальный риск заражения отмечен в возрасте от 16 до 25 лет. Однако не у всех женщин развиваются дисплазия и рак шейки матки – примерно у 80% иммунная система организма в течение 2 лет после инфицирования сама избавляется от вируса. Таким образом, носительство этих вирусов свидетельствует не о злокачественном процессе как таковом, а многократном повышении риска его возникновения. Диагностика HPV-инфекции необходима для отбора пациенток, которым показано проведение комплексных мероприятий, направленных на профилактику и раннюю диагностику рака шейки матки.

Заболеваемость раком анального канала также тесно связано с инфицированием HPV – геном вируса определяется в 80-85% случаев.

В настоящее время доказано участие и других вирусных агентов (вирусов гепатита В и С, вируса Т-клеточной лейкемии человека, вируса Эпштейна-Барр, вируса герпеса 8 типа) в развитии злокачественных опухолей различных локализаций.

Вирусные гепатиты

Инфицирование вирусными гепатитами ведет к увеличению риска развития первичного рака печени. Во всем мире хронические вирусные гепатиты В и С, зачастую имея бессимптомное течение, являются самыми значимыми факторами риска развития цирроза и рака печени.

Своевременная диагностика вирусных гепатитов позволяет не только выявить заболевание на ранней стадии, тем самым предотвратив возникновение осложнений, но и исключить возможное инфицирование окружающих Вас людей. Кроме печени вирусы гепатитов способны поражать лимфатическую ткань, вызывая развитие неходжкинских лимфом, селезенку, почки, слюнные железы и др.

Рак – бич человечества. По смертности он занимает второе место после сердечно-сосудистых заболеваний, по страху, который внушает людям – первое. Тысячи исследователей стремятся понять его причины, найти пути к его профилактике и лечению.

Роль вирусов в канцерогенезе

В.А. Матусевич, И.В. Стукалова

Рак – бич человечества. По смертности он занимает второе место после сердечно-сосудистых заболеваний, по страху, который внушает людям – первое. Тысячи исследователей стремятся понять его причины, найти пути к его профилактике и лечению.

Десятки институтов и сотни лабораторий во всем мире работают над этой проблемой, пытаясь достичь успеха в ее понимании и прогресса в профилактике и лечении этого заболевания.

Современной науке известны некоторые факторы, вызывающие развитие злокачественных опухолей и, вместе с тем, ученые вынуждены констатировать, что основная часть злокачественных опухолей возникает спонтанно, то есть без видимой связи с индуцирующими агентами.

К факторам, способным вызывать развитие опухоли, относятся:

  1. различные канцерогенные вещества,
  2. наследственная предрасположенность,
  3. ионизирующее излучение
  4. опухолеродные вирусы.

Вирусно-генетическая теория возникновения опухолей

Вирусно-генетическая теория возникновения опухолей, предложенная еще в 40-х годах ХХ века Л.И. Зильбером, получила за прошедшие годы многочисленные подтверждения.

В настоящее время, очевидно, что хотя вирусы и не являются единственной причиной рака, но они играют большую роль в возникновении злокачественных заболеваний как у человека, так и у животных. Характерной особенностью опухолевых заболеваний, ассоциированных с вирусами, является длительный латентный период, от момента инфекции до проявления заболевания могут пройти годы и даже десятилетия.

Согласно современным данным, этиологическими агентами около 15% опухолевых новообразований человека являются вирусы.

К таким вирусам относятся:

  • вирус Т-клеточного лейкоза/лимфомы (human T-leukemia/lymphoma virus),
  • вирус иммунодефицита человека (ВИЧ),
  • вирус папилломы человека (ВПЧ),
  • вирусы гепатита В и С,
  • вирус Эпштейна-Барр (ВЭБ)
  • и другие.

Важно отметить, что некоторые вирусы ассоциированы с опухолями только одной локализации, тогда как другие — с разными злокачественными новообразованиями, что, вероятно, обусловлено тропизмом вирусов к клеточным системам определенного типа.

Вирус Т-клеточного лейкоза/лимфомы (HTLV-1)

Вирус Т-клеточного лейкоза/лимфомы (HTLV-1). HTLV-1 – это онкогенный вирус, способный вызывать Т-клеточный лейкоз/лимфому у взрослых, а также тропический спастический парапарез и ряд других неонкологических заболеваний.

Существуют 3 основных пути передачи инфекции от инфицированных лиц:

  1. с молоком матери;
  2. при половом контакте;
  3. с переливаемой кровью при гемотрансфузиях.

Вирусы гепатита В и С (Hepatitis B virus и Hepatitis C virus, HBV/HCV)

Смертность от рака печени на планете среди всех смертностей от онкологических заболеваний занимает 3-е место после смертности от рака легкого и желудка. При этом каждая пятая диагностируемая в мире опухоль – это рак печени.

Основными методами диагностики вирусов гепатита В и С являются методы иммуноферментного анализа и полимеразной цепной реакции.

Вирус папилломы человека

В середине 70-х гг. прошлого века было высказано предположение, что вирус папилломы человека является этиологическим агентом рака шейки матки, и эта область онкологии и вирусологии получила стремительное развитие.

Действительно, к настоящему моменту роль ВПЧ в развитии рака шейки матки не вызывает сомнений.

Многочисленные исследования доказали, что не менее 95% злокачественных опухолей шейки матки содержат разновидности ВПЧ, принадлежащие к так называемым типам "высокого онкогенного риска" (ВПЧ 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 типов).

Среди них максимальной онкогенной активностью обладают ВПЧ 16 и 18 типов. Действительно, ВПЧ достаточно часто (примерно в 30% случаев) выявляется у абсолютно здоровых женщин.

Однако не у всех женщин, зараженных вирусом папилломы человека, возникает дисплазия шейки матки и рак шейки матки. Примерно у 80% женщин иммунная система организма в течение 2 лет после инфицирования сама избавляется от вируса.

Таким образом, носительство этих вирусов свидетельствует не о злокачественном процессе как таковом, а о многократно повышенном риске его возникновения.

Диагностика ВПЧ-инфекции обладает очень высокой клинической значимостью. Она позволяет выявить тех пациенток, для которых жизненно необходимы активные, комплексные меры, направленные на профилактику и раннюю диагностику рака шейки матки. Самым надежным диагностическим тестом по выявлению всех 12 онкогенных типов вируса папилломы человека в настоящее время является метод полимеразной цепной реакции в режиме реального времени.

Вирус Эпштейна-Барр (ВЭБ)

Известен широкий спектр патологических состояний, представленный опухолями лимфоидного и эпителиального происхождения, в возникновении которых ВЭБ принимает непосредственное участие. Доказано, что этот вирус причастен к возникновению не только лимфомы Беркитта, но и ряда других злокачественных и доброкачественных новообразований, таких, как рак носоглотки, лимфома Ходжкина, инфекционный мононуклеоз и многие другие.

Согласно некоторым исследованиям, ВЭБ широко циркулирует среди населения, о чем свидетельствует высокий процент людей, имеющих в крови антитела к ВЭБ 50% детей и 85% взрослых. Но поскольку инфекция, как правило, протекает бессимптомно, сложилось ошибочное мнение о невысокой заболеваемости ВЭБ-инфекцией.

Вирус герпеса человека 8 типа (HHV-8)

В настоящее время считается доказанной его роль в возникновении саркомы Капоши, выпотной лимфомы полостей тела и болезни Кастельмана. В геноме HHV-8 содержится ряд генов, продукты которых играют важную роль в регуляции размножения и жизнеспособности клеток; повышение их активности приводит к возникновению опухоли.

Следует понимать, что HHV-8 является всего лишь фактором риска развития вышеуказанных заболеваний. Если человек инфицирован HHV-8, то это не означает, что у него обязательно разовьётся саркома Капоши или лимфома.

Сам по себе вирус герпеса 8 типа опасности для здорового человека практически не представляет. Большинство людей с нормальным иммунитетом, инфицированных этим вирусом, не отмечают каких-либо проявлений, и он не оказывает на них никакого вредного влияния.

Свое негативное действие HHV-8 может проявить только в случае стойкого снижения иммунитета (иммунодепрессии), и то лишь у больных СПИДом (зараженных вирусом ВИЧ) или при длительном лечении, снижающем иммунитет (после пересадки органов и тканей, лучевой терапии).

По данным статистики у 45% людей, имеющих HHV-8 и ВИЧ в течение 10 лет развилась саркома Капоши. У людей с нормальным иммунитетом вирус герпеса человека никак себя не проявляет. Он не влияет на состояние здоровья.

Вирус иммунодефицита человека (ВИЧ)

ВИЧ может создавать необходимые условия (иммунодефицит) для возникновения рака. Этот вирус был открыт в 1983 г. и его ассоциация с синдромом приобретенного иммунодефицита (СПИД) доказана в 1984 г.

Чаще всего у таких больных диагностируют саркому Капоши либо одну из разновидностей неходжкинских лимфом.

Биологические свойства онкогенных вирусов

Несмотря на различную организацию онкогенных вирусов человека они обладают рядом общих биологических свойств, а именно:

  1. вирусы лишь инициируют патологический процесс, усиливая процессы деления клеток и генетическую нестабильность инфицированных ими клеток;
  2. у инфицированных онкогенными вирусами лиц возникновение опухоли, как правило, событие нечастое: один случай новообразования возникает среди сотен, иногда тысяч инфицированных;
  3. от момента инфицирования до возникновения опухоли имеет место продолжительный латентный период, длящийся годами, иногда десятилетиями;
  4. у большинства инфицированных лиц возникновение опухоли не является обязательным, но они могут составить группу риска, с более высокой вероятностью ее возникновения;
  5. для злокачественной трансформации инфицированных клеток необходимы дополнительные факторы и условия, приводящие к прогрессированию наиболее агрессивного опухолевого клона.

Такими дополнительными факторами, играющими роль сопутствующих канцерогенов, могут быть: злоупотребление алкоголем, табакокурение, коинфекция генитальным герпесом, малярия, нитрозамины в продуктах питания, пестициды.

Основные методы диагностики

На сегодняшний день основными методами лабораторной диагностики являются метод иммуноферментного анализа (ИФА) и метод полимеразной цепной реакции (ПЦР).

Первый позволяет выявить белок вируса либо антитела к нему, которые выделяет организм в ответ на инфицирование. При помощи метода ПЦР мы можем выявить генетический материал самого вируса.

Метод иммуноферментного анализа

Метод иммуноферментного анализа является стандартным методом лабораторной диагностики.

Следует также отметить, что не всегда возможно определение вирусных белков в плазме крови. В таких случаях методом ИФА можно диагностировать только наличие антител в плазме крови пациента. Однако, важно помнить, что антитела могут вырабатываться в довольно длительный срок.

Так, например, при инфицировании ВИЧ антитела вырабатываются в течение 6 месяцев, в случае гепатита С этот период может длиться до года, а антитела к вирусу Эпштейна-Барр (иммуноглобулины класса G) присутствуют у большого количества практически здоровых людей и их диагностика обладает низкой прогностической значимостью.

Полимеразная цепная реакция (ПЦР)

Полимеразная цепная реакция (ПЦР) — метод молекулярной биологии, позволяющий обнаружить возбудителя заболевания на основе его генетической информации.

ПЦР диагностика дает возможность существенно ускорить и облегчить диагностику различных заболеваний, в частности, вирусов гепатита В, С, D, цитомегаловирусной инфекции, вируса Эпштейна-Барр, вируса простого герпеса, а также хламидиоза, микоплазмоза, уреаплазмоза и т.п.

При помощи данного метода вирусные инфекции можно обнаружить уже через 5–7 дней после заражения, за недели или месяцы до того, как появятся антитела или первые симптомы. Метод ПЦР позволяет выявить даже единичные клетки возбудителя, благодаря многократному увеличению последовательностей ДНК.

Полимеразная цепная реакция это один из самых точных методов лабораторной диагностики. Его чувствительность составляет 95–99%, а специфичность достигает 100%.

Достижения науки в области онкологии

Таким образом, достижения науки в области онкологии внесли определенную ясность в понимание механизмов возникновения некоторых злокачественных новообразований и все же большую часть из них не удается увязать с инфицированностью тем или иным вирусом, что создает большое поле деятельности современным онкологам в направлении дальнейшего изучения механизмов развития онкологических заболеваний.

Все вышеуказанные методы диагностики существуют у нас в РНПЦ онкологии и медицинской онкологии им. Н.Н.Александрова.

В лаборатории клинической молекулярной генетики и иммунологических методов диагностики можно пройти обследование на вирусы герпеса,цитомегаловируса, Эпштена-Барра, вирусы гепатита В и С, а также пройти обследование на инфицирование вирусом папилломы человека, данные исследования может пройти любой человек обратившийся в центр.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.


Полимеразную цепную реакцию (ПЦР, PCR) изобрёл в 1983 году Кэри Мюллис (американский учёный). Впоследствии он получил за это изобретение Нобелевскую премию. В настоящее время ПЦР-диагностика является, одним из самых точных и чувствительных методов диагностики инфекционных заболеваний.


Полимеразная цепная реакция (ПЦР) — экспериментальный метод молекулярной биологии, способ значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК) в биологическом материале (пробе).


В основе метода ПЦР лежит многократное удвоение определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro). В результате нарабатываются количества ДНК, достаточные для визуальной детекции. При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце.

Кроме простого увеличения числа копий ДНК (этот процесс называется амплификацией), ПЦР позволяет производить множество других манипуляций с генетическим материалом (введение мутаций, сращивание фрагментов ДНК), и широко используется в биологической и медицинской практике, например, для диагностики заболеваний (наследственных, инфекционных), для установления отцовства, для клонирования генов, введения мутаций, выделения новых генов.

Специфичность и применение


ПЦР позволяет диагностировать наличие долго растущих возбудителей, не прибегая к трудоёмким микробиологическим методам, что особенно актуально в гинекологии и урологии при диагностике урогенитальных инфекций, передающихся половым путем (ИППП).

    Исследование урогенитального тракта методом ПЦР на ИППП ;
    тест методом ПЦР на коронавирус Covid-19, мазок из носа и зева на определение РНК вируса SARS-CoV-2;

Для проведения исследования в медицинских офисах необходимо предъявить СНИЛС и документ удостоверяющий личность. Запись на исследование В случае получения положительного или сомнительного результата на COVID-19 и при необходимости проведения подтверждающего тестирования обра.


Особенно эффективен метод ПЦР для диагностики трудно культивируемых, некультивируемых и скрыто существующих форм микроорганизмов, с которыми часто приходится сталкиваться при латентных и хронических инфекциях, поскольку этот метод позволяет избежать сложностей, связанных с выращиванием таких микроорганизмов в лабораторных условиях.


Применение ПЦР-диагностики также очень эффективно в отношении возбудителей с высокой антигенной изменчивостью и внутриклеточных паразитов. Методом ПЦР возможно выявление возбудителей не только в клиническом материале, полученном от больного, но и в материале, получаемом из объектов внешней среды (вода, почва и т. д.). В урологической и гинекологической практике - для выявления хламидиоза, уреаплазмоза, гонореи, герпеса, гарднереллёза, микоплазменной инфекции, ВПЧ - вирусов папилломы человека; в пульмонологии - для дифференциальной диагностики вирусных и бактериальных пневмоний, туберкулёза; в гастроэнтерологии - для выявления хеликобактериоза; в клинике инфекционных заболеваний - в качестве экспресс-метода диагностики сальмонеллёза, дифтерии, вирусных гепатитов В, С и G; в гематологии - для выявления цитомегаловирусной инфекции, онковирусов.


Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами - короткими синтетическими олигонуклеотидами длиной 18 - 30 букв. Каждый из праймеров сопоставим (комплементарен) с одной из цепей двуцепочечной матрицы, обрамляя начало и конец амплифицируемого участка.

После соединения (гибридизации) матрицы с праймером (отжиг), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы.

Проведение ПЦР

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица, содержащая тот участок ДНК, который требуется амплифицировать;
  • два праймера, комплементарные концам требуемого фрагмента;
  • термостабильная ДНК-полимераза;
  • дезоксинуклеотидтрифосфаты (A, G, C, T);
  • ионы Mg2+, необходимые для работы полимеразы;
  • буферный раствор.

ПЦР проводят в амплификаторе — приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1°C. Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Добавление специфичеких ферментов может увеличить выход ПЦР-реакции.

Ход реакции

Обычно при проведении ПЦР выполняется 20 - 35 циклов, каждый из которых состоит из трех стадий. Двухцепочечную ДНК-матрицу нагревают до 94 - 96°C (или до 98°C, если используется особенно термостабильная полимераза) на 0,5 - 2 минуты, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией — разрушаются водородные связи между двумя цепями. Иногда перед первым циклом проводят предварительный прогрев реакционной смеси в течение 2 - 5 минут для полной денатурации матрицы и праймеров.

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом. Температура отжига зависит от праймеров и обычно выбирается на 4 - 5°С ниже их температуры плавления. Время стадии — 0,5 - 2 минут.

ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это — стадия элонгации. Температура элонгации зависит от полимеразы. Часто используемые полимеразы наиболее активны при 72°C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации, чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 10 - 15 мин.

Подготовка материала к исследованию и транспорт его в лабораторию

Для успешного проведения анализа важно правильно собрать материал у пациента и правильно провести его подготовку. Известно, что в лабораторной диагностике большинство ошибок (до 70%) совершается именно на этапе пробоподготовки. Для взятия крови в лаборатории ИНВИТРО в настоящее время применяются вакуумные системы, которые с одной стороны минимально травмируют пациента, а с другой - позволяют произвести взятие материала таким образом, что он не контактирует ни с персоналом, ни с окружающей средой. Это позволяет избежать контаминации (загрязнения) материала и обеспечивает объективность анализа ПЦР.

ДНК – дезоксирибонуклеиновая кислота - биологический полимер, один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках — долговременное хранение информации о структуре РНК и белков.

РНК– рибонуклеиновая кислота - биологический полимер, близкий по своему химическому строению к ДНК. Молекула РНК построена из тех же мономерных звеньев - нуклеотидов, что и ДНК. В природе РНК, как правило, существует в виде одиночной цепочки. У некоторых вирусов РНК является носителем генетической информации. В клетке играет важную роль при передаче информации от ДНК к белку. РНК синтезируется на ДНК-матрице. Процесс этот называется транскрипцией. В ДНК имеются участки, где содержится информация, ответственная за синтез трех видов РНК, различающихся по выполняемым функциям: информационной или матричной РНК (мРНК), рибосомальной (рРНК) и транспортной (тРНК). Все три вида РНК тем или иным способом участвуют в синтезе белка. Однако информация по синтезу белка содержится только в мРНК.

Нуклеоти́ды - основная повторяющаяся единица в молекулах нуклеиновых кислот, продукт химического соединения азотистого основания, пятиуглеродного сахара (пентозы) и одной или нескольких фосфатных групп. Нуклеотиды, представленные в нуклеиновых кислотах, содержат одну фосфатную группу. Они называются по содержащемуся в них азотистому основанию - адениновый (A), содержащий аденин, гуаниновый (G) - гуанин, цитозиновый (C) - цитозин, тиминовый (Т) - тимин, урациловый (U) - урацил. В состав ДНК входят 4 типа нуклеотидов - A, T, G, C, в состав РНК также 4 типа - A, U, G, C. Сахаром в составе всех нуклеотидов ДНК является дезоксирибоза, РНК - рибоза. При образовании нуклеиновых кислот нуклеотиды, связываясь, образуют сахаро-фосфатный остов молекулы, по одну сторону которого находятся основания.

Праймер – котроткая ДНК, используемая для репликации матричной цепи. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы, обрамляя начало и конец амплифицируемого участка.

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Колоректальный рак (КРР) является одним из наиболее распространенных среди злокачественных новообразований: как с точки зрения заболеваемости, так и смертности. При этом, менее 10% случаев КРР представляет собой наследственный характер заболевания. Одним из наиболее распространенных наследственных опухолевых синдромов является синдром Линча (СЛ) (наследственный неполипозный рак толстой кишки), который составляет 2-4%. Данное заболевание обусловлено наличием герминальных мутаций в генах системы MMR (MLH1, MSH2, MSH6, PMS2, EpCAM) обуславливают появление микросателлитной нестабильности (MSI). Однако MSI встречается также и при спорадическом КРР. Определение MSI рекомендовано всем пациентам с колоректальным раком.

Микросателлитная нестабильность (MSI) представляет собой молекулярный фенотип дефектной системы репарации ошибочно спаренных нуклеотидов (DNA mismatch repair (MMR). Злокачественные новообразования, у которых отсутствует данные альтерации, имеют фенотип микросателлитной стабильности (MSS).

Опухоли с MSI имеют сниженную способность к метастазированию. У пациентов со II стадией наличие MSI ассоциировано с благоприятным прогнозом и с отсутствием доказанной эффективности применения адъювантной химиотерапии фторпиримидинами. Следует отметить, что низкодифференцированная опухоль не является достоверным показателем высокого риска рецидивирования у пациентов со II стадией заболевания и наличием MSI. Наличие MSI является показанием для назначения иммунотерапии у пациентов с метастатическим КРР.

Мутации в гене KRAS встречаются в 40% всех случаев колоректального рака, а аберрации в гене NRAS- в 4-9% случаев. В соответствии с ESMO и NCCN всем пациентам с 4 стадией заболевания рекомендовано определение аберраций во 2, 3, 4 экзонах генов KRAS, NRAS для определения дальнейшей тактики ведения пациента. Наличие мутации в гене KRAS, NRAS ассоциировано с резистентностью к терапии анти-EGFR антителами, такими как цетуксимаб и панитумумаб, у пациентов с метастатическим КРР.

Мутация V600E в гене BRAF встречается при 5-9% всех случаев КРР. Наличие мутации в гене BRAF является причиной резистентности к терапии анти-EGFR антителами, такими как цетуксимаб и панитумумаб, у пациентов с метастатическим КРР. Мутация BRAF V600E у пациентов с метастатическим КРР является показанием к назначению BRAF-ингибитора. BRAF V600E также служит прогностическим маркером у пациентов с метастатическим КРР вне зависимости от терапии.

Тест предназначен для определения наличия активирующих мутаций в генах BRAF, KRAS, NRAS и наличия микросателлитной нестабильности для принятия решения о проведении таргетной и иммунотерапии.

Читайте также: