Можно ли применять гену мутации при герпесе

Обновлено: 28.03.2024

ФГБУ "Московский научно-исследовательский онкологический институт им. П.А. Герцена" Минздравсоцразвития России

ФГБУ "Московский научно-исследовательский онкологический институт им. П.А. Герцена" Минздрава России

Генная терапия — новое направление в медицине

Журнал: Онкология. Журнал им. П.А. Герцена. 2016;5(2): 64‑72

ФГБУ "Московский научно-исследовательский онкологический институт им. П.А. Герцена" Минздравсоцразвития России

ФГБУ "Московский научно-исследовательский онкологический институт им. П.А. Герцена" Минздрава России

Достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, картирование генов на хромосомах млекопитающих, их идентификация и клонирование, обнаружение мутаций в генах, ассоциированных с наследственными и приобретенными заболеваниями, наряду с бурным ростом в области биотехнологий, клеточных технологий и успехами генной инженерии привели к тому, что в конце прошлого века начался бум в исследованиях по анализу молекулярно-биохимических дефектов, ассоциированных с определенной патологией, который привел к пониманию того, что большинство грозных заболеваний человека сопровождается серьезными изменениями в генетическом аппарате клетки. Особенно выражены и наиболее исследованы эти изменения при злокачественных новообразованиях. Из этих данных следует логичный вывод о том, что наиболее радикальным способом борьбы с заболеваниями, вызываемыми изменениями в генетическом аппарате клеток, должны быть мероприятия, направленные непосредственно на причину заболевания, а не ее последствия.

Генная терапия — это лечение наследственных, мультифакториальных и ненаследственных (инфекционных, злокачественных и др.) заболеваний путем введения генов в соматические клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых свойств.

В 1976 г. в Университете Пенсильвания, США, Уильям Андерсон предложил использование вирусов в качестве носителей ДНК, а в 1990 г. этот исследователь в клинике Университета Пенсильвания ввел больной Ашанти ДеСильва с синдромом комбинированного иммунодефицита (СКИД) генетически модифицированные геном аденозиндезаминазы ее собственные лимфоциты, в последующие 3 года провел 23 внутривенных трансфузии и получил длительную ремиссию, а затем выздоровление.

В 1990—1999 гг. Департамент здравоохранения США за год после выздоровления Ашанти создает свыше сотни лабораторий по генной терапии, проводит более 400 клинических исследований по генной терапии, в которых принимает участие свыше 4 тыс. пациентов. Однако в 1999 г. в госпитале Университета Пенсильвании, США, происходит событие, которое резко затормозило исследования по генной терапии в США. Это — внезапная смерть 17-летнего Джесси Гелзингер в процессе лечения наследственного заболевания печени.

В то же время метод генной терапии все шире распространялся по миру и к настоящему моменту в мире проведено и проводится более 2210 клинических испытаний по генной терапии. География их широка и разнообразна. Это — Америка (63,9%), Европа (24,1%), Азия (6,0%), Австралия (1,5%), международные (4,2%) [1]. По странам имеется распределение, свидетельствующее о том, что эта технология наиболее развита в США и ряде Европейских стран.

Спектр заболеваний, при которых проводятся клинические испытания по генной терапии, также чрезвычайно широк (табл. 1). Независимо от нозологии, в области соматической генной терапии имеются общие задачи. Это:


Таблица 1. Клинические испытания в области генной терапии

— выбор наиболее эффективного для лечения гена;

— разработка способов доставки требуемого гена в нужные клетки;

— изучение и обеспечение эффективных подходов и способов нужной регуляции гена;

— вопросы длительности существования и экспрессии введенного гена;

— обеспечение безопасности больного.

Типы генов, используемых при генной терапии, разнообразны, и их выбор определяется патогенетическими механизмами развития заболевания, идентификацией наиболее болезнетворных генов.

Наиболее простая задача в выборе гена стоит при моногенных наследственных заболеваниях, то есть там, где показано, что определенный дефект в данном гене вызывает патологический процесс. Совершенно другая задача по степени сложности в выборе гена для терапии стоит при многофакториальных заболеваниях, таких как злокачественные новообразования, кардиоваскулярные болезни, при которых в патогенезе заболеваний, во-первых, пока много неясного, во-вторых, задействован ряд генов.

Для эффективной работы выбранный терапевтический ген снабжают сигнальными (регулирующими) элементами, которые необходимы для синтеза полноценной мРНК и целевого белка, а также позволяют управлять специфичностью экспрессии в определенном типе клеток или ткани, длительностью функционирования и нужной регуляцией гена в клетке (рис. 1) [2, 3].


Рис. 1. Схема генно-терапевтической конструкции.

Специфичность экспрессии генов в заданной клетке достигается конструированием векторов, несущих терапевтические гены под контролем промоторов, работающих только в данном типе клеток. К настоящему моменту выявлен ряд тканеспецифичных промоторов, обеспечивающих селективную экспрессию терапевтических трансгенов в клетках определенных органов. В экспериментальной генной терапии сердечно-сосудистых заболеваний в настоящее время используют промоторы, которые обеспечивают преимущественную экспрессию трансгена в миокарде (SM22α-промотор и др.) [4]. Разработан целый ряд тканеспецифичных промоторных систем, в которых использованы гены, высокоэкспрессированные, главным образом, в опухолевых клетках: простатспецифический и простатспецифический мембранный антигены при раке предстательной железы [5], гены, кодирующие сурфактантные белки, А и В, при раке легкого [6, 7], ген мембранно-связанного муцина MUC1/DF3 при раке молочный железы, трахеи, легкого, тонкого или толстого кишечника [8], ген α-фетопротеина — белка, синтезируемого в печени, при раке печени [9], промоторы гена сурвивина человека (hSurv) и гена обратной транскриптазы теломеразы человека (hTERT), обеспечивающих экспрессию трансгена в клетках широкого спектра опухолей [10, 11] (табл. 2).


Таблица 2. Опухолеспецифичные промоторы

Поскольку тканеспецифичные промоторы обладают общим недостатком — низким уровнем экспрессии гетерологичных генов, а также ограниченной областью применения, обусловленной их тканеспецифичностью, в настоящее время идет активный поиск промоторов генов человека, не обладающих тканевой специфичностью — универсальных или гибридных промоторов, направленных исключительно на пролиферирующие клетки и не затрагивающих нормальные дифференцированные клетки.

Одной из сложнейших проблем в генной терапии является доставка требуемого гена в нужные ткани при минимизации его контакта с биологическими средами организма до достижения клетки-мишени, а также обеспечение доставки гена в нужную клетку с целью его эффективной и безопасной работы в ней.


Рис. 2. Системы доставки генетического материала в клетку. (Адаптировано по: Thomas SM, Grandis JR. The Current State of Head and Neck Cancer Gene Therapy. 2009; Y20: 1565—1575 [12])

Альтернативным способом доставки терапевтических генов является использование векторов вирусной, бактериальной и химической природы. Вектор должен эффективно и специфически трансфицировать/трансдуцировать делящиеся и неделящиеся таргетные клетки, экспрессировать трансген в адекватных количествах в течение длительного времени, производиться легко и рентабельно по количеству и качеству, не быть иммуногенным и использоваться для повторного введения гена, являться безопасным при введении и не иметь побочных эффектов.

В качестве векторов для доставки генетического материала в клетку-мишень используют самые разнообразные вирусы, но наиболее распространены векторы на основе аденовируса (ADV), аденоассоциированного вируса, ретро- (RV), лентивируса (LV) и вируса простого герпеса (HSV) (табл. 3). При этом нативные полные вирусные частицы никогда не используются в качестве векторов, так как в этом случае есть опасность встраивания их генетического материала в клетки хозяина с целью приобретения метаболических и биосинтетических продуктов для вирусной транскрипции и репликации. Поэтому вирусы предварительно подвергаются существенной генетической модификации, приводящей к утере их репликационной способности и повышению тропизма к тканям и клеткам.


Таблица 3. Вирусные векторы для генной терапии

Вирусные векторы достаточно хорошо изучены, они имеют высокую эффективность трансфекции in vivo, для их наработки существуют коммерческие паковочные клеточные линии. Векторы на основе аденовируса и аденоассоциированных вирусов не встраиваются в геном клетки, а остаются эпихромосомными. Это уменьшает опасность мутагенеза, который может быть индуцирован при внедрении вируса в геном. При конструировании специфически направленных аденовирусных векторов эффективной оказалась замена вирусных промоторов, контролирующих основные транскрипционные области, так называемыми транскрипционными регуляторами, в результате чего экспрессия гена и репликация вируса происходят преимущественно в целевых клетках [14, 15].

Ретровирусные векторы интегрируют в геном хозяина, что при генной терапии обеспечивает стабильность и стойкую экспрессию трансгена в дочерних клетках, однако несет риск инсерционного мутагенеза, который может вызывать инактивацию генов-супрессоров опухолевого роста или активации онкогенов [16].

Несмотря на описанные недостатки, вирусный метод доставки трансгенов в клетки успешно развивается и в настоящее время является доминирующим: около 70% клинических исследований посвящено изучению генетических конструкций, снабженных вирусными векторами.

В то же время в последние годы активно разрабатываются невирусные системы доставки генетического материала с использованием высокомолекулярных химических соединений для конденсации с ДНК: липидсвязанные комплексы — липоплексы либо поликатионные комплексы, имитирующие поверхность вируса — полиплексы (табл. 4). Эти наночастицы защищают плазмидную ДНК в межклеточном пространстве от деградации нуклеазами и облегчают проникновение в клетки-мишени. Положительно заряженные комплексы связываются со специфическими рецепторами (при наличии на их поверхности макромолекул, обладающих свойствами специфического лиганда) или непосредственно с поверхностью клетки. Комплексы проникают в клетку по механизму эндоцитоза. После высвобождения из эндосомы и разборки комплекса нуклеиновая кислота проникает через поры в ядро клетки [20].


Таблица 4. Невирусные векторы для генной терапии

Невирусные системы на основе катионных липидов или полимеров имеют ряд преимуществ перед вирусными системами доставки: большой объем несущей ДНК, отсутствие какой-либо вирусной составляющей, а следовательно, низкая иммуногенность, высокая технологичность производства. Однако низкая трансфицирующая способность невирусных векторов и недостаток информации о безопасности у человека тормозят развитие исследований в этом направлении, только 5,2% приходится на клинические испытания, где в качестве системы доставки терапевтических генов используют липоплексы или полиплексы.

К настоящему моменту сформировалось два типа геннотерапевтического воздействия: индивидуализированный подход ex vivo — трансфекция стволовых гемопоэтических клеток, полученных из периферической крови и трансплантированных затем больному, и in vivo — трансфекция клеток внутри организма, куда генетический материал в составе вектора доставляется в результате внутривенной или внутриартериальной (в печеночную артерию) инфузии, внутримышечного, подкожного, интратуморального, интраназального или сублингвального введения. В практике лечения сердечно-сосудистых заболеваний испытываются прямые игольные инъекции конструкций в миокард, введение вирусных векторов при помощи разнообразных катетеров, использование стентов с покрытиями, обеспечивающими дозированный выход лекарственного средства. В онкологии используют, как правило, внутриопухолевое введение целевого гена в составе различных векторов.


Таблица 5. Подходы к генной терапии онкологических заболеваний

Представления о патогенезе злокачественных новообразований, в основе которого, в том числе, лежат активация онкогенов и инактивация генов-супрессоров опухолевого роста, позволяют искать пути подавления или восстановления функции этих генов.

К настоящему моменту известно более 24 генов-супрессоров, среди них наиболее изученным является ген р53, контролирующий клеточный цикл и поврежденный в ≈50% опухолей человека [21]. Так, коррекционная замена мутантного гена p53 в опухолевых клетках геном дикого типа (не содержащим мутаций) с помощью методов генотерапии приводила к восстановлению функций белка p53 и инициации процессов, запускающих программированную гибель злокачественных клеток. Клинические испытания аденовирусного вектора Ad-p53 показали, что восстановление дикого типа р53 путем доставки гена при помощи дефектного по репликации Ad приводило к значительному противоопухолевому эффекту на фоне низкой общей токсичности [22]. Более того, восстановление р53 сопровождалось увеличением чувствительности опухолевых клеток к химио- и радиотерапии [23].

Наиболее успешным онколитическим препаратом является OncoVexGMCSF на основе вируса простого герпеса, который проходит II/III фазы клинических испытаний для лечения меланомы, рака молочной железы, опухолей головы и шеи. В геноме этого вируса сохранен ген тимидинкиназы для проведения GDEPT, но удалены обе копии ICP34.5 гена, отвечающего за вирусную репликацию в нормальных клетках, а в область ICP47 встроен ген GM-CSF. Продуцируемый GM-CSF привлекает дендритные клетки (DC) и может стимулировать выброс цитотоксических Т-лимфоцитов [35].

Следует отметить, что современная стратегия развития иммунотерапии рака на фоне расширяющихся знаний о функционировании иммунной системы и формировании иммунного ответа является главной предпосылкой для усовершенствования подходов к лечению с привлечением инновационных лекарственных средств, созданных методами генной инженерии, таких как генные вакцины.

Исследования в этой области ведутся в трех направлениях: модификация опухолевых клеток для придания им большей иммуногенности, введение генов опухолеассоциированных антигенов в дендритные клетки, геномодификация лимфоцитов для повышения цитотоксического ответа.

Метод, известный как технология химерных антигенных рецепторов, или CAR-технология (от англ. chimeric antigen receptor), в настоящее время является одним из наиболее перспективных и быстро развивающихся направлений в области иммунотерапии злокачественных новообразований [42]. Эта технология заключается в выделении из периферической крови пациента Т-лимфоцитов и их двухкомпонентной модификации в условиях ex vivo: присоединение к их поверхности рецептора, распознающего экспрессируемый большинством лейкемических клеток белок CD19, и введение мощного внутриклеточного механизма, запускающего активный рост и деление клеток в ответ на их взаимодействие с белком-мишенью. Такие генномодифицированные Т-лимфоциты возвращают в кровоток пациента. Предварительные результаты исследований свидетельствуют о том, что этот подход позволяет получить хорошие результаты у 2/3 пациентов, не ответивших на традиционные методы лечения [43—45].


Таблица 6. Официнальные препараты для генной терапии различных заболеваний

Заключение

Таким образом, использование метода генной терапии может быть результатом уже не столь отдаленного будущего, но говорить о реальных перспективах этого направления в медицине, по-видимому, пока преждевременно. Несмотря на то, что большинство клинических испытаний свидетельствует об относительной безопасности геннотерапевтических препаратов, требуется время для окончательного доказательства их эффективности. Возможно, в будущем метод генной терапии станет основным в лечении наследственных заболеваний, а для заболеваний онкологического профиля генная терапия будет рассматриваться как часть комплексного противоопухолевого лечения.


Обзор

иллюстрация автора статьи

Автор
Редакторы


Смертельные клешни

Человечество столкнулось с этой загадочной болезнью еще до нашей эры. Ее пытались понять и лечить ученые мужи в самых различных уголках мира: в Древнем Египте — Еберс, в Индии — Сушрута, Греции — Гиппократ. Все они и многие другие медики вели борьбу с опасным и серьезным противником — раком. И хоть эта битва продолжается до сих пор, сложно определить, есть ли шансы на полную и окончательную победу. Ведь чем больше мы изучаем болезнь, тем чаще возникают вопросы — можно ли полностью излечить рак? Как избежать болезни? Можно ли сделать лечение быстрым, доступным и недорогим?

Мутации: погибнуть или жить вечно?

Рак толстой кишки

Рисунок 1. Генетическая модель рака: рак толстой кишки. Первый шаг — потеря или инактивация двух аллелей гена АРS на пятой хромосоме. В случае семейного рака (familiar adenomatous polyposis, FAP) одна мутация гена АРС наследуется. Потеря обоих аллелей ведет к образованию доброкачественных аденом. Последующие мутации генов на 12, 17, 18 хромосомах доброкачественной аденомы могут привести к трансформации в злокачественную опухоль.

Очевидно, что развитие определенных видов рака включают в себя изменение большинства или даже всех этих генов и может проходить различными путями. Из этого следует, что каждую опухоль следует рассматривать как биологически уникальный объект. На сегодняшний день существуют специальные генетические информационные базы по раку, содержащих данные о 1,2 млн. мутаций из 8207 образцов тканей, относящихся к 20 видам опухолей: атлас Ракового Генома (Cancer Genome Atlas) и каталог соматических мутаций при раке (Catalogue of Somatic Mutations in Cancer, COSMIC) [2].

Распространение метастазов

Рисунок 2. Распространение метастазов

Однако клетки вооружены специальными механизмами, защищающими от развития опухолей:

    — механизм эпигенетических модификаций, который контролирует нормальный рост и правильное развитие организма. Любые нарушения в метилировании определенных генов могут поспособствовать возникновению рака. Например, в исследованиях было обнаружено, что потеря импринтинга после инактивации материнского аллеля гена IgF2 увеличивает риск развития рака прямой кишки в 3–5 раз [3]; (например, однонуклеотидная эксцизионная репарация защищает ДНК от мутаций, вызванных канцерогенными агентами) [4]; — используют специфичные белки-мессенжеры, такие как ATM, ATR и комплекс RAD17-RFC для поиска повреждений в молекулах ДНК. Сигнальные белки активируют р53 и инактивируют циклин-зависимые киназы, что, в свою очередь, ингибирует клеточный цикл от G1 до S (G1/S точка рестрикции), репликацию ДНК в S-фазе и G2-фазу (G2/M-точка рестрикции) [5];
  • программируемая клеточная смерть — апоптоз и связанные регуляторные гены имеют огромное влияние на возникновение злокачественного фенотипа. Некоторые онкогенные мутации нарушают апоптоз, что приводит к инициации канцерогенеза и метастазирования [6];
  • иммунная система — активация естественных киллеров (NK — natural killer cells), макрофагов, нейтрофилов, эозинофилов и специфических Т-цитотоксических клеток; синтез цитокинов и специфических антител [7].

Традиционные методы и их недостатки

  • хирургическая (полное удаление опухоли). Используется, когда опухоль имеет небольшие размеры и хорошо локализована. Также удаляют часть тканей, которые контактируют со злокачественным новообразованием. Метод не применяется при наличии метастазов;
  • лучевая — облучение опухоли радиоактивными частицами для остановки и предотвращения деления раковых клеток. Здоровые клетки тоже чувствительны к этому излучению и часто погибают;
  • химиотерапия — используются лекарства, тормозящие рост быстро делящихся клеток. Лекарства оказывают негативное воздействие и на нормальные клетки.

Вышеописанные подходы не всегда могут избавить больного от рака. Часто при хирургическом лечении остаются единичные раковые клетки, и опухоль может дать рецидив, а при химиотерапии и лучевой терапии возникают побочные эффекты (снижение иммунитета, анемия, выпадение волос и др.), которые приводят к серьезным последствиям, а часто и к смерти пациента. Тем не менее, с каждым годом улучшаются традиционные и появляются новые методы лечения, которые могут победить рак, такие как биологическая терапия, гормональная терапия, использование стволовых клеток, трансплантация костного мозга, а также различные поддерживающие терапии. Наиболее перспективной считается генная терапия, так как она направлена на первопричину рака — компенсацию неправильной работы определенных генов.

Генная терапия как перспектива

По данным PubMed, интерес к генной терапии (ГТ) раковых заболеваний стремительно растет, и на сегодняшний день ГТ объединяет ряд методик, которые оперируют с раковыми клетками и в организме (in vivo) и вне его (ex vivo) (рис. 3).

Две основные стратегии генной терапии

Рисунок 3. Две основные стратегии генной терапии. ex vivo — генетический материал с помощью векторов переносится в клетки, выращиваемые в культуре (трансдукция), а затем трансгенные клетки вводят реципиенту; in vivo — введение вектора с нужным геном в определенную ткань или орган.

Вирусные векторы

В качестве вирусных векторов используют ретровирусы, аденовирусы, аденоассоциированные вирусы, лентивирусы, вирусы герпеса и другие. Эти вирусы отличаются по эффективности трансдукции, по взаимодействию с клетками (распознавание и заражение) и ДНК. Главным критерием является безопасность и отсутствие риска неконтролируемого распространения вирусной ДНК: если гены вставляются в неправильном месте генома человека, они могут создать вредные мутации и инициировать развитие опухоли. Также важно учитывать уровень экспрессии перенесенных генов, чтобы предотвратить воспалительные или иммунные реакции организма при гиперсинтезе целевых белков (табл. 1).

Таблица 1. Вирусные векторы. Источник: [10].
ВекторКраткое описание
Вирус кори (measles virus)содержит отрицательную последовательность РНК, которая не вызывает защитного ответа в раковых клетках
Вирус простого герпеса (HSV-1)может переносить длинные последовательности трансгенов
Лентивируспроизводный от ВИЧ, может интегрировать гены в неделящиеся клетки
Ретровирус (RCR)не способный к самостоятельной репликации, обеспечивает эффективное встраивание чужеродной ДНК в геном и постоянство генетических изменений
Обезьяний пенистый вирус (SFV)новый РНК-вектор, который передает трансген в опухоль и стимулирует его экспрессию
Рекомбинантный аденовирус (rAdv)обеспечивает эффективную трансфекцию, но возможна сильная иммунная реакция
Рекомбинантный аденоассоциированный вирус (rAAV)способен к трансфекции многих типов клеток

Невирусные векторы

Синтетические катионные липосомы в настоящее время признаны перспективным способом доставки функциональных генов. Положительный заряд на поверхности частиц обеспечивает слияние с отрицательно заряженными клеточными мембранами. Катионные липосомы нейтрализуют отрицательный заряд цепи ДНК, делают более компактной ее пространственную структуру и способствуют эффективной конденсации. Плазмидно-липосомный комплекс имеет ряд важных достоинств: могут вмещать генетические конструкции практически неограниченных размеров, отсутствует риск репликации или рекомбинации, практически не вызывает иммунного ответа в организме хозяина. Недостаток этой системы состоит в низкой продолжительности терапевтического эффекта, а при повторном введении могут появляться побочные эффекты [12].

Электропорация является популярным методом невирусной доставки ДНК, довольно простым и не вызывающим иммунного ответа. С помощью индуцированных электрических импульсов на поверхности клеток образуются поры, и плазмидные ДНК легко проникают во внутриклеточное пространство [13]. Генная терапия іn vivo с использованием электропорации доказала свою эффективность в ряде экспериментов на мышиных опухолях. При этом можно переносить любые гены, например, гены цитокинов (IL-12) и цитотоксические гены (TRAIL), что способствует развитию широкого спектра терапевтических стратегий. Кроме того, этот подход может быть эффективным для лечения и метастатических, и первичных опухолей [14].

Выбор техники

В зависимости от типа опухоли и ее прогрессии, для пациента подбирается наиболее эффективная методика лечения. На сегодняшний день разработаны новые перспективные техники генной терапии против рака, среди которых онколитическая вирусная ГТ, пролекарственная ГТ (prodrug therapy), иммунотерапия, ГТ с использованием стволовых клеток.

Онколитическая вирусная генная терапия

Для этой методики используются вирусы, которые с помощью специальных генетических манипуляций становятся онколитическими — перестают размножаться в здоровых клетках и воздействуют только на опухолевые. Хорошим примером такой терапии является ONYX-015 — модифицированный аденовирус, который не экспрессирует белок Е1В. При отсутствии этого белка вирус не может реплицироваться в клетках с нормальным геном p53 [15]. Два вектора, сконструированных на базе вируса простого герпеса (HSV-1) — G207 и NV1020 — также несут в себе мутации нескольких генов, чтобы реплицироваться только в раковых клетках [16]. Большим преимуществом техники является то, что при проведении внутривенных инъекций онколитические вирусы разносятся с кровью по всему организму и могут бороться с метастазами. Основные проблемы, которые возникают при работе с вирусами — это возможный риск возникновения иммунного ответа в организме реципиента, а также неконтролируемое встраивание генетических конструкций в геном здоровых клеток, и, как следствие, возникновение раковой опухоли.

Геноопосредованная ферментативная пролекарственная терапия

Минус терапии состоит в том, что в опухолях присутствуют все защитные механизмы, свойственные здоровым клеткам, и они постепенно адаптируются к повреждающим факторам и пролекарству. Процессу адаптации способствует экспрессия цитокинов (аутокринная регуляция), факторов регуляции клеточного цикла (отбор самых стойких раковых клонов), MDR-гена (отвечает за восприимчивость к некоторым медикаментам).

Иммунотерапия

Благодаря генной терапии, в последнее время начала активно развиваться иммунотерапия — новый подход для лечения рака с помощью противоопухолевых вакцин. Основная стратегия метода — активная иммунизация организма против раковых антигенов (ТАА) с помощью технологии переноса генов [18].

Главным отличием рекомбинантных вакцин от других препаратов является то, что они помогают иммунной системе пациента распознавать раковые клетки и уничтожать их. На первом этапе раковые клетки получают из организма реципиента (аутологичные клетки) или из специальных клеточных линий (аллогенные клетки), а затем выращивают их в пробирке. Для того чтобы эти клетки могли узнаваться иммунной системой, вводят один или несколько генов, которые производят иммуностимулирующие молекулы (цитокины) или белки с повышенным количеством антигенов. После этих модификаций клетки продолжают культивировать, затем проводят лизис и получают готовую вакцину.

Когда было доказано, что большинство видов рака имеют специфические антигены и способны индуцировать свои защитные механизмы [22], была выдвинута гипотеза, что блокировка иммунной системы раковых клеток облегчит отторжение опухоли. Поэтому для производства большинства противоопухолевых вакцин в качестве источника антигенов используют опухолевые клетки пациента или специальные аллогенные клетки. Основные проблемы иммунотерапии опухолей — вероятность возникновения аутоиммунных реакций в организме больного, отсутствие противоопухолевого ответа, иммуностимуляция роста опухоли и другие.

Стволовые клетки

Заключение

Если подвести итоги, можно с уверенностью говорить, что наступает эпоха персонализированной медицины, когда для лечения каждого онкобольного будет подбираться определенная эффективная терапия. Уже разрабатываются индивидуальные программы лечения, которые обеспечивают своевременный и правильный уход и приводят к значительному улучшению состояния пациентов. Эволюционные подходы для персонализированной онкологии, такие как геномный анализ, производство таргетных препаратов, генная терапия рака и молекулярная диагностика с использованием биомаркеров уже приносят свои плоды [17].


Обзор

Мутации в генах BRCA 1 и 2 чаще всего являются причиной наследственного рака молочной железы

Автор
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Враг нашего времени

С начала XX века медицина, тесно подружившись с наукой и технологиями, стремительно вырвалась вперед: побеждены многие инфекционные заболевания, колоссально сократилась детская смертность, трансплантация становится доступной все в большем количестве клиник, а нанотехнологии стоят на службе у фармацевтики. Так чего же бояться современному человеку, когда, казалось бы, разработаны средства от всех болезней? К сожалению, пока это не так — против многих групп заболеваний современная медицина пока бессильна. Среди них, согласно данным Всемирной организации здравоохранения, лидируют онкологические заболевания, постепенно приближаясь по частоте смертности к сердечно-сосудистым и инфекционным. Сложность борьбы со злокачественными новообразованиями заключается в том, что при поздней диагностике возможность помочь пациенту существенно сокращается [1], [2]. Согласно статистике, средний возраст диагностики онкологических заболеваний среди россиян составляет 64,5 года. Поэтому людям пожилого возраста важно проходить своевременную комплексную диагностику, помогающую выявить рак на ранних стадиях. Особой группой в структуре онкологических заболевания стоят наследственные типы рака [29]. В этом случае, развитие заболевания может начаться намного раньше (

Рак молочной железы (РМЖ) — наиболее частый тип злокачественных новообразований среди женщин [4]. При этом наследственная форма РМЖ наблюдается приблизительно в 5–10% случаев от общей встречаемости [5], возникая в более раннем возрасте и развиваясь агрессивнее по сравнению со спорадической (ненаследственной) формой. Причиной развития наследственного РМЖ являются мутации в генах, отвечающих за сохранение целостности ДНК [6], [7]. Результаты диагностики указывают на то, что основными виновниками возникновения заболевания являются мутации в генах BRCA1 и BRCA2 (BReast CAncer гены 1 и 2).

Мутации в генах BRCA 1 и 2: составляем фоторобот преступников

Почему именно в генах BRCA 1 и 2 мутации возникают чаще, чем в остальных, кодирующих белки системы репарации ДНК? Чтобы ответить на этот вопрос, начнем с того, что гены BRCA 1 и 2 — огромные по своему размеру: 43 тысячи пар нуклеотидов в BRCA1, 32 тысячи в BRCA2, — и содержат множество полиморфных регионов [8]. Чем не причина быть основной мишенью для мутаций?

Второй причиной возникновения патогенных мутаций могут быть функции белковых продуктов — BRCA1 и BRCA2. Работы у них хватает с лихвой. Эти белки участвуют в репарации двойных разрывов ДНК, инициируя гомологичную рекомбинацию (перераспределение нуклеотидов, во время которого происходит обмен последовательностями между двумя похожими хромосомами) [9]. BRCA 1 и 2 образуют комплекс с белком RAD51, который как одеяло накрывает место разрыва ДНК, сводит две нити вместе, соединяет парные нуклеотиды, а затем производит еще и обмен нуклеотидами между цепями [10]. При этом BRCA2, в отличие от BRCA1, связывается с RAD51 напрямую и регулирует положение этого белка в клетке (рис. 1).

Комплекс белков BRCA1 и BRCA2 с RAD51

Рисунок 1. Комплекс белков BRCA1 и BRCA2 с RAD51. Схематическое изображение образования комплекса белков для репарации разрыва в нити ДНК.

Зато BRCA1 в большей степени участвует в запуске транскрипционного ответа клетки на повреждение ДНК [8], [12]. Делает он это с помощью прямого или опосредованного взаимодействий с факторами транскрипции, которые будят РНК-полимеразу II [13]. А уж если она проснулась — синтез белков пойдет по полной, так как эта полимераза отвечает за активность транскрипции (рис. 2).

Наконец, гены BRCA нужны для регуляции клеточного цикла. Если в клетке произошел разрыв цепочки ДНК, то этой клетке срочно нужно тормозить деление, чтобы не допустить распространение дефектной ДНК. Притормозить клетка может в определенных точках цикла (чек-поинтах) (рис. 2). Таким образом, найдя у себя фосфорилированный (а, следовательно, активно работающий) белок BRCA1, клетка дожидается починки ДНК в точке G2/M и уходит в митоз только после завершения починки [9].

BRCA 1 и 2 как регуляторы репарации и клеточного цикла

Рисунок 2. BRCA 1 и 2 как регуляторы репарации и клеточного цикла. Белковые продукты генов BRCA 1 и 2 участвуют в важнейших клеточных процессах, связываясь с различными кофакторами.

Получается, что BRCA 1 и 2 являются ключевыми молекулами в репарации, а их поломки способствуют нестабильности генома и приводят к развитию онкопатологии [14]. Тем не менее мутации генов BRCA 1 и 2 — не единственные фигуранты в нашем деле.

В 30% случаев наследственного РМЖ мутации выявляются в других генах, однако в большинстве своем продукты этих генов также участвуют в репарации ДНК, а потому механизм патогенеза будет похож на тот, что наблюдается у носителей BRCA-мутаций [15], [16]. Более того, такие мутации также способствуют формированию фенотипа, клинически похожего на тот, что развивается при носительстве BRCA-мутаций. Такой фенотип называют BRCAness. BRCAness-пациенты являются чувствительными к терапии платиновыми препаратами и ингибитором PARP-полимеразы (полиАДФ-рибозой) [17]. Данные препараты вызывают апоптоз клеток, дефектных в отношении репарации ДНК, при этом подавление активности PARP-полимеразы является более таргетной мерой воздействия, так как в этом случае приводит к гибели именно опухолевых клеток, сохраняя нормальные [18].

Итак, виновность BRCA-мутаций в случае наследственного РМЖ доказана. Однако имеются ли доказательства их участия в спорадической форме рака? Ответ на этот вопрос положительный: мутации в генах BRCA 1 и 2 встречаются и при спорадической форме. но достаточно редко [19]. Все-таки для дезактивации генов BRCA 1 и 2 требуется наличие двух мутантных аллелей, а вероятность такого события очень мала, если изначально оба аллеля были без поломок (дикого типа). Тем не менее недавние работы говорят о том, что изменения в генах BRCA 1 и 2 все-таки происходят даже при спорадическом РМЖ [20], [21]. К таким изменениям относится, например, гиперметилирование промоторной области гена, которое не влияет на последовательность нуклеотидов в цепи, однако существенно затрудняет транскрипцию мРНК с гена, поэтому гены начинают работать не в полную силу, и в клетках производится меньше белков BRCA1 и BRCA2 [21].

Первичный очаг заболевания при BRCA-мутациях: идем по следу преступников

Теперь, как принято у настоящих сыщиков, остановимся подробнее на месте и мотиве преступления. С наличием мутаций в генах BRCA 1 и 2 ассоциированы первичные метастазы яичников, фаллопиевых труб, поджелудочной железы, простаты у мужчин, но наиболее часто BRCA-мутации встречаются именно при РМЖ. Почему такая частота наблюдается именно в молочной железе? Для ответа на этот вопрос, давайте кратко вспомним анатомию молочной железы.

Проток молочной железы выстлан двумя слоями клеток: внутренний слой состоит из секреторного люминального эпителия и его клеток-предшественниц, а внешний слой — из стволовых и миоэпителиальных клеток. Эпителий молочной железы имеет уникальное свойство по сравнению с другими тканями, так как он продолжает развиваться после рождения, а именно в период полового созревания, беременности, лактации и менопаузы. Таким образом, деление и рост эпителиальных клеток молочной железы очень чутко реагируют на гормональные изменения. Недавние эпигеномные и транскриптомные исследования молочной железы человека показали, что люминальные клетки имеют в два раза больше гипометилированных энхансеров транскрипции и примерно в четыре раза больше суммарной РНК [22]. А это значит, что транскрипция в этих клетках может протекать очень активно по сравнению с другими тканями. При этом процесс транскрипции сопровождается расплетанием цепей ДНК и синтезом РНК, в результате чего образуются R-петли. Результаты DRIP-seq-анализа носительниц мутаций BRCA и пациенток без этих мутаций также подтверждают, что количество R-петель в люминальных клетках значимо выше по сравнению с другими тканями [23]. Образованию R-петель способствует задержка на том или ином локусе NELF-зависимой РНК-полимеразы II (Negative Elongation Factor (NELF) mediated Pol II) [23]. В тех случаях, когда эта полимераза делает паузу, BRCA1 связывается с различными факторами транскрипции и старается ограничить накопление R-петель на концах промоторов, как бы сгоняя засидевшуюся на месте РНК-полимеразу II. Таким образом, при пониженной экспрессии BRCA1 или нефункциональной форме белка происходит чрезмерное накопление R-петель, что в конечном итоге приводит к геномной нестабильности и способствует онкогенезу (рис. 3).

Независимая от нуклеотидных последовательностей технология, использующая структурно-специфические антитела для иммунопреципитации ДНК—РНК.

Механизм образования R-петель

Рисунок 3. Механизм образования R-петель. На участках ДНК, богатых GC-основаниями, РНК-полимераза II делает задержку, в результате чего образуются R-петли.

Есть определенные сложности в исследовании возникающих транскриптов из-за длительной подготовки библиотек для RNA-seq из тканей и малого количества отсортированных первичных клеток, однако гипотеза о связи R-петель и BRCA-мутаций с развитием злокачественных новообразований не встречает существенных противоречий [24]. Более того, эта гипотеза также является справедливой не только для РМЖ, но и для других типов рака, при условии, что пациент является носителем мутаций в генах BRCA 1 и 2.

Найти и обезвредить


Для цитирования: Наумов Д.А. Генотерапия злокачественных новообразований. Состояние проблемы. РМЖ. 2012;1:9.

Реферат. В статье рассматриваются всесторонние вопросы таргетной терапии злокачественных опухолей – нового направления в лекарственном лечении онкологических заболеваний.

Ключевые слова: таргетная терапия, генотерапия рака, онкогены.

Литература
1. Киселев С.Л. Современная генная терапия: что это такое и каковы ее перспективы?// Практическая онкология. 2003. Т. 4, № 3. С. 170.
2. Примроуз С., Тваймен Р. Геномика. Роль в медицине. М.: БИНОМ. Лаборатория знаний, 2008.
3. Ram Z., Culver K.W., Oshiro E.M., Viola J.J., DeVroom H.L., Otto E., Long Z., Chiang Y., McGarrity G.J., Muul L.M., Katz D., Blaese R.M., Oldfield E.H.
4. Tai C.K., Wang W.J., Chen T.C., Kasahara N. Single–shot, multicycle suicide gene therapy by replication–competent retrovirus vectors achieves long–term survival benefit in experimental glioma // Mol. Ther. 2005. Vol. 12(5). P.842–851.
5. Rein D.T., Breidenbach M., Curiel D.T. Current developments in adenovirus–based cancer gene therapy // Future Oncol. 2006. Vol. 2(1). P.137–143.
6. Flotte T.R. Gene Therapy Progress and Prospects: Recombinant adeno–associated virus (rAAV) vectors // Gene Ther. 2004. Vol. 11(10). P. 805–810.
7. Urabe M., Nakakura T., Xin K.Q. et al. Scalable generation of high–titer recombinant adeno–associated virus type 5 in insect cells // J. Virol. 2006. Vol. 80(4). P.1874–1885.
8. Harland J., Dunn P., Cameron E. et al. The herpes simplex virus (HSV) protein ICP34.5 is a virion component that forms a DNA–binding complex with proliferating cell nuclear antigen and HSV replication proteins // J. Neurovirol. 2003. Vol. 9(4). P.477–488.
9. Derubertis B.G., Stiles B.M., Bhargava A. et al. Cytokine–secreting herpes viral mutants effectively treat tumor in a murine metastatic colorectal liver model by oncolytic and T–cell–dependent mechanisms // Cancer. Gene. Ther. 2007, in press.
10. McIntosh D.P., Tan X.Y., Oh P., Schnitzer J.E. Targeting endothelium and its dynamic caveolae for tissue–specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P.1996–2001.
11. Li J., Le L.P., Sibley D.A. Genetic incorporation of HSV–1 thymidine kinase into the adenovirus protein ix for functioal display on the virion // Virol. 2005. Vol. 338. P.247–258.
12. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine // J. Phys. D. Appl. Phys. 2003. Vol. 36.R167–R181.
13. Roth J.A., Nguyen D., Lawrence D.D., Kemp BL et al. Retrovirus–mediated wild–type p53 gene transfer to tumors of patients with lung cancer // Nat. Med. 1996. Vol. 2. P.985–991.
14. Schuler M., Rochlitz C., Horowitz J.A. et al. A phase I study of adenovirus–mediated wild–type p53 gene transfer in patients with advanced nonsmall cell lung cancer // Hum. Gene Ther. 1998. Vol. 9(14). P.2075–2082.
15. Gahery–Segard H., Molinier–Frenkel V., Le Boulaire C. et al. Phase 1 trial of recombinant adenovirus gene transfer in lung cancer. Longitudinal study of the immune responses to transgene and viral products // J. Clin. Invest. 1997. Vol. 100. P.2218–2226.
16. Nemunaitis J., Swisher S.G., Timmons T. et al. Adenovirus–mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non–smallcell lung cancer // J. Clin. Oncol. 2000. Vol.18. P.609–622.
17. Hwang H.C., Smythe W.R., Elshami A.A. et al. Gene therapy using adenovirus carrying the herpes simplex thymidine kinase gene to treat in vitro models of human malignant mesothelioma and lung cancer // Am. J. Respir. Cell. Mol. Biol. 1995. Vol. 13. P.7–16.
18. Metharom P., Ellem K., Schmidt C., Wei M.Q. Lentiviral vectormediated tyrosinase–related protein–2 gene transfer to dentritic cells for the therapy of melanoma // Hum. Gene Ther. 2001. Vol. 12(18). P.2203–2213.
19. Zhang M., Zhang X., Bai C.X. et al. Inhibition of epidermal growth factor receptor (EGFR) by RNA interference in A549 cells // Acta Pharmacol. Sin. 2004. Vol. 25(1). P.61–67.
20. Theys J., Landuyt A.W., Nuyts S. et al. Clostridium as a tumor–specific delivery system of therapeutic proteins // Cancer. Detect. Prev. 2001. Vol. 25(6). P.548–557.
21. Van Mellaert L., Barbe S., Anne J. Clostridium spores as antitumour agents // Trends Microbiol. 2006. Vol. 14(4). P.190–196.
22. Theys J., Pennington O., Dubois L. et al. Repeated cycles of Clostridium–directed enzyme prodrug therapy result in sustained antitumour effects in vivo // Br. J. Cancer. 2006. Vol.95(9). P.1212–1219.
23. Folkman J. What is the evidence that tumors are angiogenesis dependent? // J. Natl. Cancer. Inst.1990. Vol. 82. P.4–6.
24. Vaupel P., Mayer A. Hypoxia in cancer: significance and impact on clinical outcome // Cancer. Metastasis Rev. in press. 2007, Apr 18.
25. Hay J.G. The potential impact of hypoxia on the success of oncolytic virotherapy // Curr. Opin. Mol. Ther. 2005. Vol. 7(4). P. 353–358.
26. Xu L., Frederik P., Pirollo K.F. et al. Self–assembly of a virus–mimicking nanostructure system for efficient tumor–targeted gene delivery. // Hum. Gene Ther. 2002. Vol. 10;13(3). P.469–481.

В последние годы в инфекционной патологии все большее значение приобретают герпес-вирусы (от греч. herpes — ползучий). Внимание, которое вирусологи и клиницисты проявляют в последние 25 лет к герпес-вирусным заболеваниям человека, связано

В последние годы в инфекционной патологии все большее значение приобретают герпес-вирусы (от греч. herpes — ползучий). Внимание, которое вирусологи и клиницисты проявляют в последние 25 лет к герпес-вирусным заболеваниям человека, связано с их значительной эпидемиологической ролью и социальной значимостью в современном мире. Неуклонный рост числа герпетических заболеваний у взрослых и детей обусловливает необходимость всестороннего изучения герпетической инфекции и разработки эффективных методов профилактики и лечения разнообразных форм этой инфекции. Среди вирусных инфекций герпес занимает одно из ведущих мест в силу повсеместного распространения вирусов, многообразия клинических проявлений, как правило, хронического течения, а также различных путей передачи вирусов.

Он входит в число наиболее распространенных и плохо контролируемых инфекций человека. Герпес-вирусы могут циркулировать в организме с нормальной иммунной системой бессимптомно, но у людей с иммуносупрессией вызывают тяжелые заболевания со смертельным исходом. По данным ВОЗ, смертность от герпетической инфекции среди вирусных заболеваний находится на втором месте (15,8%) после гепатита (35,8%).

Герпес-вирусы объединены в обширное семейство Herpesviridae и в настоящее время наиболее четко классифицированы. Семейство Herpesviridae включает в себя более 80 представителей, 8 из которых для человека наиболее патогенны (human herpes virus-HHV). Герпес-вирусы — филогенетически древнее семейство крупных ДНК-вирусов — подразделяются на 3 подсемейства в зависимости от типа клеток, в которых протекает инфекционный процесс, характера репродукции вируса, структуры генома, молекулярно-биологических и иммунологических особенностей: α, β и γ (табл. 1, по данным Н. Г. Перминова, И. В. Тимофеева и др., Государственный научный центр вирусологии и биотехнологий).

α-герпес-вирусы, включающие HSV-1, HSV-2 и VZV, характеризуются быстрой репликацией вируса и цитопатическим действием на культуры инфицированных клеток. Репродукция α-герпес-вирусов протекает в различных типах клеток, вирусы могут сохраняться в латентной форме, преимущественно в ганглиях.

β-герпес-вирусы видоспецифичны, поражают различные виды клеток, которые при этом увеличиваются в размерах (цитомегалия), могут вызывать иммуносупрессивные состояния. Инфекция может принимать генерализованную или латентную форму, в культуре клеток легко возникает персистентная инфекция. К этой группе относятся CMV, HHV-6, HHV-7.

Герпес-вирусы ассоциированы с малигнизацией и способны (по крайней мере, EBV и HVS) трансформировать клетки in vitro. Все герпес-вирусы сходны по морфологическим признакам, размерам, типу нуклеиновой кислоты (двухцепочечная ДНК), икосадельтаэдрическому капсиду, сборка которого происходит в ядре инфицированной клетки, оболочке, типу репродукции, способности вызывать хроническую и латентную инфекцию у человека.

В эпидемиологическом плане наиболее интересны следующие сведения о герпес-вирусах: вирионы чрезвычайно термолабильны — инактивируются при температуре 50–52°С в течение 30 мин, при температуре 37,5°С — в течение 20 ч, устойчивы при температуре 70°С; хорошо переносят лиофилизацию, длительно сохраняются в тканях в 50-процентном растворе глицерина. На металлических поверхностях (монеты, дверные ручки, водопроводные краны) герпес-вирусы выживают в течение 2 ч, на пластике и дереве — до 3 ч, во влажных медицинских вате и марле — до их высыхания при комнатной температуре (до 6 ч).

Уникальными биологическими свойствами всех герпес-вирусов человека является тканевой тропизм, способность к персистенции и латенции в организме инфицированного человека. Персистенция представляет собой способность герпес-вирусов непрерывно или циклично размножаться (реплицироваться) в инфицированных клетках тропных тканей, что создает постоянную угрозу развития инфекционного процесса. Латенция герпес-вирусов — это пожизненное сохранение вирусов в морфологически и иммунохимически видоизмененной форме в нервных клетках регионарных (по отношению к месту внедрения герпес-вируса) ганглиев чувствительных нервов. Штаммы герпес-вирусов обладают неодинаковой способностью к персистенции и латенции и чувствительностью к противогерпетическим препаратам в связи с особенностями их ферментных систем. У каждого герпес-вируса свой темп персистенции и латенции. Среди изучаемых наиболее активны в этом отношении вирусы простого герпеса, наименее — вирус Эпштейна-Барр.

По данным многочисленных исследований, к 18 годам более 90% жителей городов инфицируются одним или несколькими штаммами по меньшей мере 7 клинически значимых герпес-вирусов (простого герпеса 1 и 2 типов, варицелла зостер, цитомегаловирусом, Эпштейна-Барр, герпеса человека 6 и 8 типов). В большинстве случаев первичное и повторное инфицирование происходит воздушно-капельным путем, при прямом контакте или через предметы обихода и гигиены (общие полотенца, носовые платки и т. п.). Доказаны также оральный, генитальный, орогенитальный, трансфузионный, трансплантационный и трансплацентарный пути передачи инфекции.

Герпес-вирусные инфекции широко распространены в мире и имеют тенденцию к неуклонному росту. Особенностью герпес-вирусной инфекции является возможность вовлечения в инфекционный процесс многих органов и систем, чем и обусловлено многообразие вызываемых герпес-вирусами заболеваний, варьирующих от простых кожно-слизистых до угрожающих жизни генерализованных инфекций. Важное свойство герпес-вирусов — это способность после первичного инфицирования в детском возрасте пожизненно персистировать в организме и реактивироваться под влиянием различных экзо- и эндогенных провоцирующих факторов.

Инфицирование человека указанными герпес-вирусами сопровождается клиническими симптомами соответствующего острого инфекционного заболевания в среднем не более чем у 50% людей, в основном у детей: внезапная эритема (вирус герпеса человека 6 типа), афтозный стоматит (вирусы простого герпеса 1 или 2 типов), ветряная оспа (вирус варицелла зостер), инфекционный мононуклеоз (вирус Эпштейна-Барр), мононуклеозоподобный синдром (цитомегаловирус). У остальных пациентов инфекция протекает бессимптомно, что особенно характерно для подростков и взрослых людей. Помимо биологических свойств штамма герпес-вируса, влияние на течение острых и рецидивирующих герпес-вирусных заболеваний оказывают индивидуальные (возрастные, половые, фило- и онкогенетические) особенности иммунного ответа инфицированного человека на многочисленные антигены вируса.

Часто, особенно при снижении иммунореактивности организма, герпес-вирусы выступают в качестве вирусов-оппортунистов, приводя к более тяжелому, с необычными клиническими проявлениями, течению основного заболевания. Вирусы простого герпеса 1 и 2 типов, а также ЦМВ входят в число возбудителей TORCH-инфекций. Они играют важную роль в нарушении репродуктивной функции человека, развитии серьезных заболеваний матери, плода, новорожденного и детей младшего возраста.

Вызываемые вирусами ВПГ, CMV, ВЭБ заболевания рассматриваются как СПИД-индикаторные в связи с их частым обнаружением при данной патологии. В 1988 г. они включены в расширенное определение случаев, подлежащих эпидемиологическому надзору по поводу СПИДа. Результаты исследований последних лет свидетельствуют о роли некоторых герпес-вирусов (ВГЧ-8, ЦМВ, ВЭБ и др.) в развитии ряда злокачественных новообразований: назофарингеальной карциномы, лимфомы Беркитта, В-клеточной лимфомы, рака груди, аденокарциномы кишечника и простаты, карциномы цервикального канала шейки матки, саркомы Капоши, нейробластомы и др.

Наибольшую угрозу для здоровья представляют герпетические нейроинфекции (летальность достигает 20%, а частота инвалидизации — 50%), офтальмогерпес (почти у половины больных приводит к развитию катаракты или глаукомы) и генитальный герпес.

Диагностика герпетической инфекции

Все методы индикации и идентификации вирусов основаны на следующих принципах:

  • выявление вируса per se (электронная микроскопия);
  • выявление и идентификация вирусов посредством взаимодействующих с ними клеток (накопление вирусов в чувствительных к ним клетках);
  • выявление и идентификация вирусов с помощью антител (МФА, ИФА, РАЛ, ИБ, РН, РСК);
  • выявление и идентификация нуклеиновых кислот (ПЦР, МГ).

Электронная микроскопия: быстрая диагностика позволяет обнаружить ГВ или их компоненты непосредственно в пробах, взятых от больного, и дать быстрый ответ через несколько часов. Возбудитель выявляют с помощью электронной микроскопии клинического материала при негативном контрастировании.

Серологические методы уступают по информативности и чувствительности другим способам лабораторной диагностики и не позволяют с достаточной степенью достоверности установить этиологию той или иной формы заболевания. Нарастание титров антител происходит

в поздние сроки (через несколько недель) после заражения или реактивации вируса, и в то же время оно может и не наблюдаться у иммунодефицитных лиц. Для установления 4-кратного нарастания титра антител к герпес-вирусной инфекции (показатель первичной инфекции) необходимо исследование парных сывороток. Серологические реакции (РСК, РН) обладают высокой специфичностью, но относительно низкой чувствительностью, а кроме того, сложны в постановке.

Широкое практическое применение получили иммунофлюоресцентный метод, ИФА, РАЛ, ИБ.

Наиболее точным методом диагностики герпес-вирусной инфекции является выделение вируса из различных клеточных культур.

Для обнаружения вируса герпеса используют молекулярно-биологические методы: полимеразную цепную реакцию и реакцию молекулярной гибридизации, которые позволяют выявить наличие вирусной нуклеиновой кислоты в исследуемом материале. ПЦР может считаться самой чувствительной и быстрой реакцией. Чувствительность метода дает возможность определить одну молекулу искомой ДНК в образцах, содержащих 10 клеток.

Лечение герпетической инфекции

Лечение герпетической инфекции до настоящего времени остается сложной задачей. Хроническое течение процесса приводит к иммунной перестройке организма: развитию вторичной иммунной недостаточности, угнетению реакции клеточного иммунитета, снижению неспецифической защиты организма. Несмотря на разнообразие лекарственных препаратов, использующихся для лечения герпетической инфекции, лекарственных средств, обеспечивающих полное излечение от герпеса, не существует. Герпес-вирусная инфекция относится к трудно контролируемым заболеваниям. Это связано, в первую очередь, с разнообразием клинических поражений, развитием резистентности вируса к лекарственным средствам, наличием у герпес-вирусов молекулярной мимикрии. Поэтому для успешного лечения герпетической инфекции необходимо правильно подобрать противовирусный препарат, его дозу и длительность лечения, использовать комбинацию различных лекарств. В схемы терапии для повышения эффективности лечения необходимо также включать иммунобиологические препараты, способствующие коррекции иммунного статуса, а также патогенетические средства, облегчающие состояние пациента.

В настоящее время все антигерпетические средства подразделяются на 3 основные группы антивирусных препаратов (табл. 3).

Механизм действия химиопрепаратов (аномальных нуклеозидов: валтрекса, вектавира, фамвира, цимевена) связан с угнетением синтеза вирусной ДНК и репликации вирусов путем конкурентного ингибирования вирусной ДНК-полимеразы.

В препаратах-иммуномодуляторах (алпизарин, имунофан, ликопид, полиоксидоний) активно действующие вещества обладают иммуностимулирующими свойствами в отношении клеточного и гуморального иммунитетов, окислительно-восстановительных процессов, синтеза цитокинов.

Препараты-индукторы ИФН (амиксин, неовир, циклоферон) сочетают этиотропный и иммуномодулирующий эффекты действия. Препараты индуцируют образование эндогенных ИФН (α, β, γ) Т- и В-лимфоцитами, энтероцитами, гепатоцитами.

Особое место среди средств антигерпес-вирусной терапии занимает герпетическая вакцина для активации клеточного иммунитета, его иммунокоррекции в фазе ремиссии. Вакцинация преследует 2 цели: предупреждение первичной инфекции и возникновения состояния латентности, а также предупреждение или облегчение течения заболевания.

Однако, несмотря на наличие обширного списка антигерпетических препаратов, герпес остается до сих пор плохо контролируемой инфекцией. Это обусловлено и генотипическими особенностями возбудителя, и длительной персистенцией вируса в организме, и формированием штаммов, устойчивых к антивирусным препаратам. Максимальный клинический эффект может быть получен только при рациональной комплексной терапии лекарственных средств с различным механизмом действия.

Санкт-Петербургской группой ученых вирусологов и инфекционистов во главе с В. А. Исаковым предложена программа лечения и профилактики герпетической инфекции (табл. 4).

Преимущества комплексной терапии ГИ.

  • Сочетанное применение противогерпетических химиопрепаратов и иммунобиологических средств обеспечивает синергидный эффект.
  • Благодаря снижению дозы противовирусного ХПП уменьшается вероятность развития побочных эффектов, сокращается токсическое воздействие на организм больного.
  • Снижается вероятность возникновения устойчивых штаммов герпес-вирусов к данному препарату.
  • Достигается иммунокорригирующий эффект.
  • Сокращается продолжительность острого периода болезни и сроков лечения.

Таким образом, терапия ГИ является сложной и многокомпонентной задачей.

По вопросам литературы обращайтесь в редакцию.

Т. К. Кускова, кандидат медицинских наук
Е. Г. Белова, кандидат медицинских наук
МГМСУ, Москва

Читайте также: