Можно ли увидеть в оптический микроскоп вирус

Обновлено: 24.04.2024

Научная картина мира — это система представлений человека о свойствах и закономерностях реально существующего мира, построенная в результате обобщения научных знаний и принципов.

В процессе развития науки происходит постоянное обновление знаний, идей и концепций, более ранние представления становятся частными случаями новых теорий. Научная картина мира не догма и не абсолютная истина. Научные представления об окружающем мире основаны на всей совокупности доказанных фактов и установленных причинно — следственных связей, что позволяет с определённой степенью уверенности делать способствующие развитию человеческой цивилизации заключения и прогнозы о свойствах нашего мира. Несоответствие результатов проверки теории, гипотезе, концепции, выявление новых фактов — всё это заставляет пересматривать имеющиеся представления и создавать новые, более соответствующие реальности. Поэтому формирование научной картины мира зависит от конкретного учёного или коллектива научных сотрудников, занимающихся изучением какой — либо научной проблемы.

Вопрос 2. Какие организмы среди представителей различных групп (царств) живых существ являются одноклеточными?

Среди эукариот одноклеточное строение имеют простейшие (царство Животные). Насчитывается около 40 тысяч видов одноклеточных животных (например, амёба, эвглена зеленая, инфузория — туфелька).

Одноклеточные грибы систематизированы в 4 основных классах: дейтеромицеты; хитридиомицеты; зигомицеты; аскомицеты. Ярким примером аскомицетов служат дрожжи. А одноклеточный гриб фитофтора поражает живые листья и клубни картофеля, листья и плоды томатов.

Типичным представителем низших одноклеточных растений, часто встречающихся в природе, являются водоросли: хламидомонада, хлорелла, спирогира, хлорококк, вольвокс.

Вопрос 3. Какие клетки в организме человека имеют длинные отростки и для чего эти отростки нужны?

Клетки нервной ткани — нейроны — имеют длинные отростки (аксоны). По аксону импульсы идут от тела клетки нейрона и могут передаваться на большие расстояния.

Эти отростки нужны для передачи информации различным нейронам, мышцам и железам. Информация, в виде электрического тока, достигнув окончания аксона, который уже входит в структуру синапса, обуславливает выделение медиатора — непосредственного передатчика возбуждения к другому нейрону или исполнительному органу (мышцам, железам).

Вопрос 4. Можно ли в оптический микроскоп увидеть вирус? Почему?

Величина вирусов варьирует от 20 до 300 нм (1 нм = 10 — 9 м). Практически все вирусы по своим размерам мельче, чем бактерии.

Современные световые микроскопы способны увеличить изучаемый объект в 2000—2500 раз. Эти приборы применяются в цитологии очень широко, но не позволяют изучать объекты размером менее длины световой волны (400—800 нм) — ограничено явлением дифракции Фраунгофера на линзе. Дело в том, что световая волна не может быть отражена очень маленьким предметом, из — за того что она просто огибает его.

Поэтому вирусы можно увидеть только в электронный микроскоп увеличение от 5 тыс. раз до 100тыс.

Вопрос 5. Можно ли в электронный микроскоп увидеть бактерию?

Вопрос 6. От чего зависят размеры и особенности строения клетки? Чьи клетки крупнее: кашалота или дельфина?

Для растений размеры клеток зависят от тургора и от размеров вакуолей в клетке. Для животных связь размер клетки связан главным образом с функцией, выполняемой ею. Скажем, задача эритроцитов проста — переносить кислород, лейкоцитов сложнее — борьба с инородными клетками; лейкоциты больше в размерах.

Особенности строения клеток зависят от функций, которые они выполняют.

Я думаю, что размер клеток кашалота и дельфина одинаковы.

Вопрос 7. Какие методы изучения клетки вы знаете?

1. Метод световой микроскопии. Разновидности световой микроскопии: фазово — контрастный, флеристцентная и поляризационная микроскопия.

2.Метод электронной микроскопии. Методы изучения фиксированных клеток.

3.Гистологические методы. Методы фиксации, приготовления препаратов с последующей их окраской.

4.Цитохимические методы — это избирательное окрашивание различных химических элементов (компонентов) клетки (ДНК, белок…).

5.Морфологические методы — это количественный метод, изучающий параметры основных клеточных структур.

6.Метод меченых изотопов. Используют тяжелые атомы углерода или водорода. Эти меченые атомы включают в предшественники синтеза определенных молекул. Например: при синтезе ДНК используют меченый тимидин Н3 — предшественник тимина.

7.Для обнаружения метки в цитологии используют метод авторадиографии. Изготавливают гистологические препараты и покрывают их фотоэмульсией в темноте, определенное время выдерживают при определенной температуре, затем препараты проявляют с использованием фотореактивов, при этом метка выявляется в виде зерен серебра.

8.Метод фракционирования клеток позволяет изучать внутриклеточные компоненты. Разрушают клетки, помещают их в специальные центрифуги, и разные клеточные компоненты осаждаются при разной скорости цинтрифугирования.

9.Метод рентгеноструктурного анализа используют для изучения кристаллической решетки ядра атома.

Методы изучения живых клеток.

10.Метод клеточных структур позволяет изучать живую клетку.

11.Метод микрохирургии. Например: вживление микроэлектрода.

Вопрос 8. Докажите, что клетка является системой.

Клетка является системой потому, что она:

1. Состоит из взаимодействующих и взаимосвязанных между собой элементов — мембраны, ядра, цитоплазмы, различных органелл и других клеточных структур — ресничек, микротрубочек.

2. Клетка обладает свойствами, которыми не обладают ее отдельные части.

3. Способна к метаболизму с окружающей средой, ибо в клетке постоянно происходят процессы синтеза и распада.

4. Клетка способна к саморегуляции — т.е. поддержанию гомеостаза.

5. В клетке происходят контролируемые на генетическом уровне процессы роста, размножения и развития.

Вопрос 9. Используя доступные источники информации, подготовьте презентацию о развитии представлений о клеточном строении живых организмов.

. (используйте эту информацию, её можно в краткой форме разбить на слайды, добавить картинок по теме).

Взгляды ученых о клеточном строении клетки неоднократно менялись. Развитие представлений о клеточном строении живых организмов условно можно разделить на 5 этапов.

1. В 1665 году, рассматривая под микроскопом срез пробки, английский физик Р.Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал "клетками". Таким образом, его можно считать первооткрывателем клетки.

2. Лишь в XIX в. ученые обратили внимание на полужидкое студенистое содержимое, заполняющее клетку. К началу XIX в., после того как появились хорошие микроскопы, были разработаны методы фиксации и окраски клеток, представления о клеточном строении организмов получили общее признание.

Этот этап развития представлений о микроструктуре организмов связан с именами Линка и Рудольфи (1804), Тревирануса (1807—1821), Мейена (1830), в 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки и др. Этими исследователями, во — первых, было показано, что каждая ячейка — клетка покрыта своей особой оболочкой и потому клетка отделима от других ей подобных; во — вторых, было констатировано наличие клеточного содержимого, обладающего самостоятельной подвижностью. Наряду с клетками как элементарные структуры рассматривали также волоконца и сосуды растений; их клеточное строение, клеточный генез оставались неизвестны.

3. По мере совершенствования инструментальной базы и техники микроскопических исследований клеточного строения организмов, было признано, что наличие клеток представляет собой общую структурную черту биологической организации. Этот период клеточного учения является переломным. Клеточное строение организмов наблюдали многие исследователи. Наиболее обстоятельные описания клеточных структур в XIX в. дали Я. Пуркинье и М. Шлейден. Прежде всего, как обязательный элемент рассматриваются ядро и ядрышко, возникающие путем агломерации элементарных зернышек. В 1838 г. немецкий ботаник М. Шлейден доказал, что в любой растительной клетке есть ядро. Немецкий зоолог Т.Шванн в большом разнообразии клеток увидел их общность, их единый план строения. Он создал теорию, утверждающую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Основные положения клеточной теории были сформулированы М. Шлейденом и Т. Шванном в 1838 — 1839 году, а затем были дополнены Р. Вирховым в1859 году.

Современная клеточная теория включает в себя 4 основных положения:

1. Клетка — элементарная структурно — функциональная единица всех живых организмов.

2. Клетки растений и животных сходны по своему строению и функциям.

3. Клетки возникают путём деления материнской клетки.

4. Клетки участвуют в формировании многоклеточного организма.

В этом периоде впервые формулируется клеточная теория, основным моментом которой является принцип общности клеткообразования во всех частях живой материи. Способ клеткообразования из сливающихся зернышек признается всеобщим, а отсюда постулируется уже сравнимость всех клеток, как растений, так и животных. Основными элементами всех клеток признаются: оболочка, протоплазма и ядро с ядрышком. Итак, все живые существа, согласно этим воззрениям, состоят из клеток или их производных, но сами клетки возникают из зернышек первично — бесструктурной массы.

5. В этом периоде существовало направление, пытавшееся разложить клетку на еще более простые живые элементы, сопоставлявшиеся и даже гомологизировавшиеся с бактериями. Этот взгляд развивался рядом французских ученых (Бешан, 1860—1883 гг. и др.) и затем (казалось, в особенно убедительной форме) Альтманом (1890—1894). Достаточных доказательств эта точка зрения, однако, не получила. Тем не менее, сходные взгляды в той или иной форме всплывают и до самого последнего времени (Иван Валлин, 1926).

6. Шестым этапом в изучении клетки условно можно назвать схему, предложенную Вильсоном (1896—1925) в его известной сводке. Она по существу стремится лишь свести все наши сведения о морфологических структурах клетки, не внося никакой принципиально новой точки зрения.

7. Это схема, которая основана на современных исследованиях о природе протоплазмы, ядра и различных включений клетки, а также их взаимодействия. Основная сущность этой схемы заключается в том, что структуру клетки мы себе представляем исключительно сложной, несмотря на то, что при применении даже наилучших световых микроскопических объективов субстанция протоплазмы (цитоплазма и ядро) представляется нам гомогенной. Современная методика морфологического исследования клетки, в связи с освоением электронной микроскопии, находится на большой высоте; хуже разработаны гистохимические методы.

Итак, современная схема строения клетки в известной мере сходна с представлениями Дюжардена (1835), Гофмейстера (1867) и др., которые также писали о гомогенности протоплазмы. Говоря о схеме строения клетки, мы и теперь должны по существу ограничиваться лишь очень немногим; мы указываем, что клетка состоит из протоплазмы, одетой тонкой мембраной. В протоплазме мы постоянно обнаруживаем хондриосомы, а также постоянное присутствие ядра. Электронная микроскопия обнаружила в протоплазме еще так называемый ретикулум, рибосомы и некоторые другие мембранные структуры. О более тонком строении ядра мы еще ничего не узнали.

Другими словами, клетка лишь внешне представляется нам просто организованной системой, тогда как ее внутренняя, интимная структура лежит за пределами видимости и нашего понимания. К этому убеждению современная цитология пришла в результате исследований целой плеяды ученых на протяжении последних 100 лет. Исследования, проведенные при использовании электронного микроскопа, ныне это подтвердили и внесли много нового, но клетка осталась клеткой, и никаких более простых и мелких полноценных живых структур не найдено.

В заключение необходимо еще раз подчеркнуть, что меньше всего мы знаем о возникновении клеток. Эта проблема практически совпадает с вопросом о возникновении жизни из неживой материи. Впервые данный вопрос был поставлен Геккелем в 1866 г., но он пока остается целиком в области гипотез.

Вопрос 10. От чего зависит выбор методов в процессе проведения исследования?

От размеров клетки, от предмета исследования (ДНК, органоиды…). Т.е. в зависимости от того, что Вы хотите узнать о данной клетке, выбирается подходящий метод исследования или комплекс исследований.

Вопрос 11. Могут ли существовать в природе настолько маленькие клетки, что их невозможно различить в современные микроскопы?

Скорее всего, не существуют. А если и существуют, то мы об этом не знаем, поэтому и не рассматриваем их в микроскопы. Если бы мы знали о таких клеточках, то, в разработанный учеными из Корнеллского Университета микроскоп, мы их точно увидели бы. Этот новый вид электронного микроскопа позволяет увидеть атомы в живых клетках, не повреждая их .

Как известно, основную долю информации об окружающем мире человек получает с помощью зрения. Глаз человека — сложный и совершенный прибор. Этот созданный природой прибор работает со светом — электромагнитным излучением, диапазон длин волн которого находится между 400 и 760 нанометрами. Цвет, который при этом воспринимает человек, изменяется от фиолетового до красного.

Электромагнитные волны, соответствующие видимому свету, взаимодействуют с электронными оболочками атомов и молекул глаза. Результат этого взаимодействия зависит от того, в каком состоянии находятся электроны этих оболочек. Свет может поглощаться, отражаться или рассеиваться. Что именно произошло со светом, может многое рассказать об атомах и молекулах, с которыми он взаимодействовал. Диапазон размеров атомов и молекул от 0,1 до десятков нанометров. Это во много раз меньше, чем длина волны света. Тем не менее, объекты именно таких размеров — назовем их нанообъектами — очень важно увидеть. Что же надо для этого сделать? Обсудим сначала, что может рассмотреть человеческий глаз.

Обычно, когда говорят о разрешающей способности того или иного оптического прибора, оперируют двумя понятиями. Одно из них — угловое разрешение, а второе — линейное разрешение. Эти понятия взаимосвязаны. К примеру, для человеческого глаза угловое разрешение составляет приблизительно 1 угловую минуту. При этом глаз может различить два точечных объекта, удаленных от него на 25–30 см, только тогда, когда расстояние между этими объектами больше чем 0,075 мм. Это вполне сравнимо с разрешением обычного компьютерного сканера. В самом деле, разрешение 600 точек на дюйм означает, что сканер может различить точки, расположенные на расстоянии 0,042 мм друг от друга.

Для того чтобы можно было различать объекты, расположенные на еще меньших расстояниях друг от друга, был придуман оптический микроскоп — прибор, увеличивающий разрешающую способность глаза. Выглядят эти приборы по-разному (что видно из рисунка 1), но принцип действия у них один тот же. Оптический микроскоп позволил отодвинуть предел разрешения до долей микрона. Уже 100 лет назад оптическая микроскопия сделала возможным изучать объекты микронных размеров. Однако тогда же стало ясно, что простым увеличением количества линз и улучшением их качества добиться дальнейшего увеличения разрешающей способности невозможно. Разрешение оптического микроскопа оказалось ограничено свойствами самого света, а именно его волновой природой.


Еще в конце позапрошлого века было установлено, что разрешение оптического микроскопа составляет . В этой формуле λ — длина волны света, а nsin u — числовая апертура объектива микроскопа, которая характеризует как микроскоп, так и то вещество, которое находится между объектом изучения и самой близкой к нему линзой микроскопа. И действительно, в выражение для числовой апертуры входят показатель преломления n среды, находящейся между объектом и объективом, и угол u между оптической осью объектива и самыми крайними лучами, которые выходят из объекта и могут попасть в этот объектив. Показатель преломления вакуума равен единице. У воздуха этот показатель очень близок к единице, у воды он составляет 1,33303, а у специальных жидкостей, используемых в микроскопии для получения максимального разрешения, n доходит до 1,78. Каким бы ни был угол u, величина sin u не может быть больше единицы. Таким образом, разрешение оптического микроскопа не превышает долей длины волны света.

Обычно считается, что разрешение составляет половину длины волны.

Интенсивность, разрешение и увеличение объекта — разные вещи. Можно сделать так, что расстояние между центрами изображений объектов, которые расположены в 10 нм друг от друга, будет 1 мм. Это будет соответствовать увеличению в 100 000 раз. Тем не менее, различить, один это объект или два, не получится. Дело в том, что изображения объектов, размеры которых очень малы по сравнению с длиной волны света, будут иметь одинаковые форму и размеры, не зависящие от формы самих объектов. Такие объекты называют точечными — их размерами можно пренебречь. Если такой точечный объект светится, то оптический микроскоп изобразит его в виде светлого кружка, окруженного светлыми и темными кольцами. Будем далее, для простоты, рассматривать именно источники света. Типичное изображение точечного источника света, полученное с помощью оптического микроскопа, показано на рисунке 2. Интенсивность светлых колец намного меньше, чем у кружочка, и убывает по мере удаления от центра изображения. Чаще всего видно только первое светлое кольцо. Диаметр первого темного кольца равен . Функция, которая описывает такое распределение интенсивности, называется функцией рассеяния точки. Эта функция не зависит от того, каково увеличение. Изображение нескольких точечных объектов будет представлять собой именно круги и кольца, как это видно из рисунка 3. Полученное изображение можно увеличивать, однако если изображения двух соседних точечных объектов сливаются, то они будут сливаться и дальше. Такое увеличение часто называют бесполезным — большие изображения просто будут более размытыми. Пример бесполезного увеличения показан на рисунке 4. Формула часто называется дифракционным пределом, и она настолько знаменита, что именно ее высекли на памятнике автору этой формулы — немецкому физику-оптику Эрнсту Аббе.

Конечно, со временем оптические микроскопы стали снабжать разнообразными устройствами, позволяющими запоминать изображения. Человеческий глаз дополнили сначала пленочные фото- и кинокамеры, а потом — камеры, в основе которых лежат цифровые устройства, преобразующие попадающий на них свет в электрические сигналы. Самыми распространенными из таких устройств являются ПЗС-матрицы (ПЗС расшифровывается как прибор с зарядовой связью). Количество пикселей в цифровых камерах продолжает расти, однако само по себе это не может улучшить разрешение оптических микроскопов.

Еще двадцать пять лет назад казалось, что дифракционный предел непреодолим и что, для того чтобы изучать объекты, размеры которых во много раз меньше, чем длина волны света, необходимо отказаться от света как такового. Именно таким путем пошли создатели электронных и рентгеновских микроскопов. Несмотря на многочисленные преимущества таких микроскопов, задача использования именно света для рассматривания нанообъектов оставалась. Причин для этого было много: удобство и простота работы с объектами, небольшое время, которое требуется для получения изображения, известные способы окрашивания образцов и многое другое. Наконец, после долгих лет напряженной работы стало возможным рассматривать нанообъекты с помощью оптического микроскопа. Наибольший прогресс в этом направлении достигнут в области люминесцентной микроскопии. Конечно, дифракционный предел никто не отменял, но его удалось обойти. В настоящее время существуют различные оптические микроскопы, позволяющие рассматривать объекты, размеры которых намного меньше длины волны того самого света, который создает изображения этих объектов. Все эти приборы объединяет один общий принцип. Попробуем пояснить, какой именно.


Из того, что уже говорилось о дифракционном пределе разрешения, ясно, что увидеть точечный источник не так уж сложно. Если этот источник обладает достаточной интенсивностью, его изображение будет отчетливо видно. Форма и размер этого изображения, как уже говорилось, будут определяться свойствами оптической системы. При этом, зная свойства оптической системы и будучи уверенными в том, что объект точечный, можно определить, где именно находится объект. Точность определения координат такого объекта достаточно высока. Иллюстрацией этого может служить рисунок 5. Координаты точечного объекта можно определить тем точнее, чем интенсивнее он светится. Еще в 80-х годах прошлого века с помощью оптического микроскопа умели определять положение отдельных светящихся молекул с точностью в 10–20 нанометров. Необходимым условием столь точного определения координат точечного источника является его одиночество. Ближайший к нему другой точечный источник должен находиться настолько далеко, чтобы исследователь точно знал, что обрабатываемое изображение соответствует одному источнику. Понятно, что это расстояние l должно удовлетворять условию . В этом случае анализ изображения может дать очень точные данные о положении самого источника.


Большинство объектов, размеры которых намного меньше разрешающей способности оптического микроскопа, можно представить как набор точечных источников. Источники света в таком наборе находятся друг от друга на расстояниях, намного меньших величины . Если эти источники будут светить одновременно, то сказать что-либо о том, где именно они расположены, будет невозможно. Тем не менее, если суметь заставить эти источники светить по очереди, то положение каждого них можно определить с высокой точностью. Если эта точность превышает расстояние между источниками, то, обладая знанием о положении каждого из них, можно узнать о том, каково их взаимное расположение. А это означает, что получена информация о форме и размерах объекта, который представлен как набор точечных источников. Другими словами, в таком случае можно рассмотреть в оптический микроскоп объект, размеры которого меньше, чем дифракционный предел!

Таким образом, ключевым моментом является получение информации о различных частях нанообъекта независимо друг от друга. Существуют три основные группы методов, позволяющие сделать это.

Первая группа методов целенаправленно заставляет светить ту или иную часть исследуемого объекта. Самый известный из этих методов — сканирующая оптическая микроскопия ближнего поля. Рассмотрим ее подробнее.

Если внимательно изучить те условия, которые подразумеваются, когда речь идет о дифракционном пределе, обнаружится, что расстояния от объектов до линз значительно больше длины волны света. На расстояниях, сравнимых и меньших этой длины волны, картина получается другой. Вблизи любого объекта, попавшего в электромагнитное поле световой волны, существует переменное электромагнитное поле, частота изменения которого такая же, как частота изменения поля в световой волне. В отличие от световой волны, это поле быстро затухает по мере удаления от нанообъекта. Расстояние, на котором происходит уменьшение интенсивности, например, в e раз, сравнимо с размерами объекта. Таким образом, электромагнитное поле оптической частоты оказывается сконцентрированным в объеме пространства, размер которого намного меньше, чем длина волны света. Любой нанообъект, попавший в эту область, будет так или иначе взаимодействовать со сконцентрированным полем. Если тот объект, с помощью которого осуществляется это концентрирование поля, последовательно перемещать по какой-либо траектории вдоль изучаемого нанообъекта и регистрировать свет, излучаемый этой системой, то можно построить изображение по отдельным точкам, лежащим на этой траектории. Конечно, в каждой точке изображение будет выглядеть так, как показано на рисунке 2, но разрешение при этом будет определяться тем, насколько удалось сконцентрировать поле. А это, в свою очередь, определяется размерами того объекта, с помощью которого это поле концентрируется.

Самым распространенным способом такой концентрации поля является изготовление очень маленького отверстия в металлическом экране. Обычно это отверстие находится на конце заостренного и покрытого тонкой пленкой металла световода (световод часто называется оптическим волокном и широко используется для передачи данных на большие расстояния). Сейчас удается изготавливать отверстия с диаметрами от 30 до 100 нм. Таким же по величине получается и разрешение. Приборы, работающие по этому принципу, и называются сканирующими оптическими микроскопами ближнего поля. Они появились 25 лет тому назад.

Суть второй группы методов сводится к следующему. Вместо того чтобы заставлять соседние нанообъекты светить по очереди, можно использовать объекты, которые светятся разными цветами. В этом случае с помощью светофильтров, пропускающих свет того или иного цвета, можно определять положение каждого из объектов, а потом — составлять единую картину. Это очень похоже на то, что изображено на рисунке 5, только цвета для трех изображений будут различными.


Относящийся к данному классу атомно-силовой микроскоп оказался инструментом, подходящим для исследования биологических объектов и позволил не только визуализировать наноразмерные структуры, но и манипулировать ими. В частности, принципиально возможной оказалась манипуляция одиночными вирионами и прямое измерение сил, возникающих при их контакте с поверхностью клетки. Такие эксперименты позволяют получать подробные данные о самом первом и во многих случаях еще недостаточно исследованном этапе заражения клетки — адгезии вируса к ее поверхности. Данные исследования представляют и значительный практический интерес, т.к. могут дать ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

Об авторе

Вирусы являются чрезвычайно малыми объектами — их размеры лежат в диапазоне от нескольких десятков до нескольких сотен нанометров. Первым и на долгое время единственным методом прямой визуализации наноразмерных частиц стала электронная микроскопия (ЭМ), которая начала развиваться в 1930-е гг. Метод, оказавшийся очень информативным, позволил не только детально охарактеризовать структуру различных вирусов, но и исследовать процессы, происходящие в зараженной клетке.

Оказалось, что форма вирусных частиц отличается большим разнообразием: от правильных сфер до сложных структур, напоминающих кирпичи, обклеенные трубочками (вирус натуральной оспы), или щетинистых червей (вирус геморрагической лихорадки Эбола).

Вне клетки любой вирус является всего лишь молекулярным контейнером с генетическим материалом (ДНК или РНК) и вряд ли может считаться полноценным живым организмом, хотя по этому вопросу в научной среде до сих пор нет окончательной терминологической определенности.

Так, исследование репликации вируса методом просвечивающей электронной микроскопии на ультратонких срезах выглядит следующим образом: зараженные клетки обрабатывают фиксирующим раствором, обезвоживают спиртом и заливают специальной смолой. После отвердевания смолы с помощью специального прибора — ультратома — делают ультратонкие (≈ 50 нм) срезы, которые затем наносят на специальную сетку и обрабатывают растворами солей тяжелых металлов. Во время самого микроскопического исследования образец находится в вакуумной камере и подвергается действию пучка электронов с энергией в несколько десятков кэВ. Очевидно, что прижизненная визуализация в данном случае принципиально невозможна.

В течение почти полувека электронная микроскопия оставалась единственным методом визуализации наноразмерных объектов. Однако в начале 1980-х гг. эта монополия была нарушена появлением сканирующей зондовой микроскопии (СЗМ). Основным принципом СЗМ является сканирование — прецизионное (с высокой точностью) перемещение зонда вблизи исследуемой поверхности, сопряженное с отслеживанием определенного параметра, характеризующего взаимодействие между зондом и образцом. Результатом такого сканирования является топографическая карта рельефа поверхности образца.

Первым прибором СЗМ стал сканирующий туннельный микроскоп (СТМ), который мог лишь весьма ограниченно использоваться для визуализации биологических объектов, так как для его работы требовалась высокая электрическая проводимость исследуемой поверхности.

В 1986 г. швейцарский физик Г. Бинниг и его коллеги создали новый прибор семейства СЗМ — атомно-силовой микроскоп (АСМ). В основе его работы лежит силовое (Ван-дер-Ваальсово) взаимодействие атомов зонда и поверхности. АСМ не требуется электрическая проводимость поверхности образца, и он может осуществлять съемку в жидкой среде. Поэтому этот прибор оказался удобным инструментом для исследования биологических объектов.

Принципиальная схема работы атомно-силового микроскопа (АСМ). Чувствительным элементом АСМ является упругая консоль (кантилевер), на конце которой закреплен острый зонд. Силы, возникающие между атомами острия зонда и исследуемой поверхностью приводят к деформации кантилевера, которая в свою очередь фиксируется при помощи оптической системы, реализованной в большинстве современных АСМ на основе полупроводникового лазера и четырехсекционного фотоприемника. Размер кантилевера — 100÷300 × 20÷40 мкм при толщине около 2 мкм. Высота зонда — около 10 мкм

С момента появления атомно-силового микроскопа было опубликовано огромное число работ, посвященных АСМ-визуализации самых разнообразных биологических образцов. Следует все же признать, что в большинстве случаев в плане визуализации АСМ не дает ничего принципиально нового в сравнении с обычной электронной микроскопией, поэтому зачастую данный метод воспринимается биологами как техническая экзотика, а не как полноценный исследовательский инструмент.

Однако важнейшим, пусть и почти единственным преимуществом визуализации биологических объектов при помощи АСМ по сравнению с электронной микроскопией является возможность выполнения исследований нативных, природных образцов без какой-либо фиксации и специальной пробоподготовки, при физиологических параметрах среды.

Помимо визуализации рельефа поверхности с субнанометровым разрешением АСМ позволяет осуществлять прямое измерение сил, возникающих при взаимодействии одиночных наноразмерных объектов.

Проводятся такие измерения следующим образом: один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке, после чего зонд подводится к поверхности подложки до достижения механического контакта, а затем возвращается обратно. В ходе этого перемещения отслеживается деформация упругой консоли (кантилевера). Зависимость этого параметра от расстояния между зондом и подложкой называется силовой кривой. С ее помощью можно определить величину силы, действующей между исследуемыми объектами. Этот метод, названный атомно-силовой спектроскопией (АСС), может использоваться для исследования силовых характеристик взаимодействия самых разнообразных малых объектов: от неорганических наночастиц до вирусов и живых клеток.

Метод атомно-силовой спектроскопии позволяет определить величину силы, действующей между исследуемыми объектами. Для этого один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке. Зонд подводится к поверхности подложки и затем поднимается обратно. Зависимость деформации кантилевера от расстояния между зондом и подложкой называется силовой кривой

Начальным этапом заражения клетки вирусом является адгезия (прилипание) вирусной частицы (вириона) к клеточной поверхности с последующим проникновением генетического материала вируса внутрь клетки. Этот процесс, определяемый взаимодействием белковых рецепторов, расположенных на поверхности клетки, с поверхностными белками вириона, является критически важным для размножения вируса. И, надо отметить, в большинстве случаев изучен недостаточно.

Однако фиксация одиночной вирусной частицы на острие зонда атомно-силового микроскопа является весьма непростой задачей. Для успешного проведения эксперимента требуется большая подготовительная работа:

  • получить как можно более чистый и концентрированный препарат вируса;
  • подготовить на острие зонда площадку подходящего размера для посадки вириона;
  • химически активировать поверхность зонда для образования ковалентных связей при контакте с белками вируса;
  • убедиться в том, что на зонде закрепился действительно вирион, а не молекулы свободного белка или мелкие фрагменты клеток, всегда присутствующие в препаратах вирусов.

Оценка концентрации и степени чистоты препарата вируса обычно проводится методом просвечивающей электронной микроскопии. Площадку на острие АСМ-зонда, которое обычно изготавливают из кремния или его нитрида, формируют путем длительного сканирования кремниевой или сапфировой подложки при больших значениях развертки и силы прижатия зонда к поверхности. Наиболее наглядной иллюстрацией для этого процесса служит изменение формы острия карандаша в ходе интенсивного рисования.

Адекватным методом контроля геометрических параметров зонда атомно-силового микроскопа (а) при создании площадки для посадки вириона, является электронная микроскопия, как сканирующая, так и просвечивающая: б — площадка на острие зонда для посадки крупной вирусной частицы; в — вирусоподобная частица, закрепленная на острие зонда. Просвечивающая электронная микроскопия (JEM 1400, Jeol, Япония)

По меркам микроскопии, клетка высших организмов является относительно крупным (≈ 10 мкм) объектом, поэтому хорошо видна в световом микроскопе, при помощи которого на нее наводится кантилевер атомно-силового микроскопа. Но как быть с самим зондом, на острие которого предполагается наличие вириона? Строго говоря, вместо вириона там может оказаться все, что угодно: монослой белковых молекул, фрагмент клетки или вириона, агрегат из нескольких вирионов, случайное загрязнение и т. д. Кроме того, в процессе измерения вирион может разрушиться или оторваться от зонда. Визуализация же зонда с вирусной частицей методом электронной микроскопии до силовых измерений недопустима, так как под воздействием высушивания, вакуума и пучка электронов вирион приобретет необратимые изменения.

Наиболее эффективным методом решения данной проблемы оказалась визуализация острия зонда АСМ с помощью электронной микроскопии, осуществляемая непосредственно после силовых измерений. Если на острие будет обнаружена вирусная частица, уцелевшая в ходе эксперимента, то все сомнения развеются.

В течение последних пятидесяти лет в результате поистине титанической работы, проделанной электронными микроскопистами всего мира, накоплен огромный багаж знаний в области ультраструктурных аспектов репликации различных вирусов. Создание атомно-силового микроскопа и техники силовой спектроскопии позволило вплотную приблизиться к произвольной механической манипуляции одиночными вирусными частицами. Это выводит изучение взаимодействия вируса с клеткой на принципиально другой уровень — от структурных исследований к функциональным.

При этом атомно-силовая спектроскопия не является конкурентом для электронной микроскопии, а открывает новое самостоятельное направление исследований — наномеханику взаимодействия вирусной частицы с поверхностью клетки. Весьма вероятно, что в самом ближайшем будущем в данном направлении будут совершены фундаментальные открытия, соизмеримые по значимости с достижениями электронной микроскопии в середине прошлого века.

Изучение механизмов связывания вирусных частиц с поверхностью клетки вызывает значительный интерес не только с позиции фундаментальной науки, но и в контексте практических приложений. Более детальное понимание этих механизмов на молекулярном уровне может дать человечеству ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

В публикации использованы фото автора

* Просвечивающая электронная микроскопия с использованием специальной жидкостной ячейки и сканирующая электронная микроскопия при атмосферном давлении позволяют исследовать биологические объекты без фиксации, но из-за ряда технических трудностей и относительно низкого пространственного разрешения эти методы не получили широкого распространения.

Вот уже два года, как я наблюдаю за микромиром у себя дома, и год, как снимаю его на фотокамеру. За это время собственными глазами увидел, как выглядят клетки крови, чешуйки, опадающие с крыльев бабочек, как бьётся сердце улитки. Конечно, многое можно было бы узнать из учебников, видеолекций и тематических сайтов. Но при этом не было бы ощущения присутствия, близости к тому, что не видно невооружённым глазом. Что это не просто слова из книжки, а личный опыт. Опыт, который сегодня доступен каждому.

Что купить

Театр начинается с вешалки, а микросъёмка с покупки оборудования, и прежде всего — микроскопа. Одна из основных его характеристик — набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива.

Детёныш улитки. Увеличение 40×

Детёныш улитки. Увеличение 40×

Не всякий биологический образец хорош для просмотра при большом увеличении. Связано это с тем, что чем больше увеличение оптической системы, тем меньше глубина резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения с увеличением от 10–20 до 900–1000×. Иногда бывает оправданно добиться увеличения 1500× (окуляр 15 и объектив 100×). Большее увеличение бессмысленно, так как более мелкие детали не позволяет видеть волновая природа света.

Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент

Лист клевера. Увеличение 100×. Некоторые клетки содержат тёмно-красный пигмент

Лист земляники. Увеличение 40×

Лист земляники. Увеличение 40×

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры объективов. Световой пучок от осветителя, преобразованный в оптическом устройстве — конденсоре, освещает препарат. В зависимости от характера освещения существует несколько способов наблюдения, самые распространённые из которых — методы светлого и тёмного поля. В первом, самом простом, знакомом многим ещё со школы, препарат освещают равномерно снизу. При этом через оптически прозрачные детали препарата свет распространяется в объектив, а в непрозрачных он поглощается и рассеивается. На белом фоне получается тёмное изображение, отсюда и название метода. С тёмнопольным конденсором всё иначе. Световой пучок, выходящий из него, имеет форму конуса, лучи в объектив не попадают, а рассеиваются на непрозрачном препарате, в том числе и в направлении объектива. В итоге на тёмном фоне виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных малоконтрастных объектов. Поэтому, если вы планируете расширить набор методов наблюдения, стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсора тёмного поля, тёмнопольной диафрагмы, устройств фазового контраста, поляризаторов и т. п.

Иногда следует обратить внимание на устройство предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который ярче и греется меньше. Микроскопы тоже имеют индивидуальные особенности. Каждая дополнительная опция — это добавка в цене, поэтому выбор модели и комплектации остаётся за потребителем.

Сегодня нередко покупают недорогие микроскопы для детей, монокуляры с небольшим набором объективов и скромными параметрами. Они могут послужить хорошей отправной точкой не только для исследования микромира, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже стоит купить более серьёзное устройство.

Как смотреть

Можно купить далеко не дешёвые наборы готовых препаратов, но тогда не таким ярким будет ощущение личного участия в исследовании, да и наскучат они рано или поздно. Поэтому следует позаботиться и об объектах для наблюдения, и о доступных средствах для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект достаточно тонок. Даже кожура ягоды или фрукта слишком толста, поэтому в микроскопии исследуют срезы. В домашних условиях их делают обычными бритвенными лезвиями. Чтобы не смять кожуру, её помещают между кусочками пробки или заливают парафином. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, а в идеале следует работать с моноклеточным слоем ткани — несколько слоёв клеток создают нечёткое сумбурное изображение.

Крыло жучка бибиониды. Увеличение 400×

Крыло жучка бибиониды. Увеличение 400×

При выезде на природу следует запастись баночками для набора воды из ближайшего водоёма и маленькими пакетиками для листьев, высохших остатков насекомых и т. п.

Что смотреть

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного — например, кожуры репчатого лука. Тонкая сама по себе, подкрашенная йодом, она обнаруживает в своём строении чётко различимые клеточные ядра. Этот опыт, хорошо знакомый со школы, и стоит провести первым. Луковую кожуру нужно залить йодом на 10–15 минут, после чего промыть под струёй воды.

Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро.

Кожица лука. Увеличение 1000×. Окраска йодом. На фотографии видно клеточное ядро

Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко

Кожица лука. Увеличение 1000×. Окраска азур-эозином. На фотографии в ядре заметно ядрышко

Кроме того, йод можно использовать для окраски картофеля. Срез необходимо сделать как можно более тонким. Буквально 5–10 минут его пребывания в йоде проявят пласты крахмала, который окрасится в синий цвет.

Картофель. Синие пятна — зёрна крахмала. Увеличение 100×. Окраска йодом.

Картофель. Синие пятна — зёрна крахмала. Увеличение 100×. Окраска йодом

Плёнка на спине таракана. Увеличение 400×

Плёнка на спине таракана. Увеличение 400×

Чешуйки с крыльев моли. Увеличение 400×

Чешуйки с крыльев моли. Увеличение 400×

Кроме того, с помощью микроскопа можно изучить строение конечностей насекомых и пауков, рассмотреть, например, хитиновые плёнки на спине таракана. И при должном увеличении убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Крыло бабочки боярышницы. Увеличение 100×

Крыло бабочки боярышницы. Увеличение 100×

Не менее интересный объект для наблюдения — кожура ягод и фруктов. Однако либо её клеточное строение может быть неразличимым, либо её толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем получится хороший препарат: перебрать разные сорта винограда, чтобы найти тот, у которого красящие вещества кожуры имели бы интересную форму, или сделать несколько срезов кожицы сливы, добиваясь моноклеточного слоя. В любом случае вознаграждение за проделанную работу будет достойным.

Кожура сливы. Увеличение 1000×

Кожура сливы. Увеличение 1000×

Ещё более доступны для исследования трава, водоросли, листья. Но, несмотря на повсеместную распространённость, выбрать и приготовить из них хороший препарат бывает непросто. Самое интересное в зелени — это, пожалуй, хлоропласты. Поэтому срез должен быть исключительно тонким.

Хлоропласты в клетках травы. Увеличение 1000×

Хлоропласты в клетках травы. Увеличение 1000×

Приемлемой толщиной нередко обладают зелёные водоросли, встречающиеся в любых открытых водоёмах. Там же можно найти плавучие водоросли и микроскопических водных обитателей — мальков улитки, дафний, амёб, циклопов и туфелек. Маленький детёныш улитки, оптически прозрачный, позволяет разглядеть у себя биение сердца.

Хлоропласты в клетках водоросли. Увеличение 1000×

Хлоропласты в клетках водоросли. Увеличение 1000×

Сам себе исследователь

После изучения простых и доступных препаратов захочется усложнить технику наблюдения и расширить класс исследуемых объектов. Для этого понадобится и специальная литература, и специализированные средства, свои для каждого типа объектов, но всё-таки обладающие некоторой универсальностью. Например, метод окраски по Граму, когда разные виды бактерий начинают различаться по цвету, можно применить и для других, не бактериальных, клеток. Близок к нему и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из его компонентов — азура и эозина. Их можно купить в специализированных магазинах либо заказать в интернете. Если раздобыть краситель не удастся, можно попросить у лаборанта, делающего вам анализ крови в поликлинике, стёклышко с окрашенным её мазком.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: эозинофил на фоне эритроцитов

Продолжая тему исследования крови, следует упомянуть камеру Горяева — устройство для подсчёта количества клеток крови и оценки их размеров. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева — моноцит, справа — лимфоцит

Мазок крови. Окраска азур-эозином по Романовскому. Увеличение 1000×. На фотографии: слева — моноцит, справа — лимфоцит

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить деньги. Это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Находятся и те, кто отводит свой взор от экранов и направляет его далеко в космос, приобретая телескоп. Микроскопия может стать интересным хобби, а для кого-то даже и искусством, средством самовыражения. Глядя в окуляр микроскопа, проникают глубоко внутрь той природы, часть которой мы сами.

Словарик к статье

Относящийся к данному классу атомно-силовой микроскоп оказался инструментом, подходящим для исследования биологических объектов и позволил не только визуализировать наноразмерные структуры, но и манипулировать ими. В частности, принципиально возможной оказалась манипуляция одиночными вирионами и прямое измерение сил, возникающих при их контакте с поверхностью клетки. Такие эксперименты позволяют получать подробные данные о самом первом и во многих случаях еще недостаточно исследованном этапе заражения клетки – адгезии вируса к ее поверхности. Данные исследования представляют и значительный практический интерес, т.к. могут дать ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

Вирусы являются чрезвычайно малыми объектами – их размеры лежат в диапазоне от нескольких десятков до нескольких сотен нанометров. Первым и на долгое время единственным методом прямой визуализации наноразмерных частиц стала электронная микроскопия (ЭМ), которая начала развиваться в 1930-е гг. Метод, оказавшийся очень информативным, позволил не только детально охарактеризовать структуру различных вирусов, но и исследовать процессы, происходящие в зараженной клетке.

Оказалось, что форма вирусных частиц отличается большим разнообразием: от правильных сфер до сложных структур, напоминающих кирпичи, обклеенные трубочками (вирус натуральной оспы), или щетинистых червей (вирус геморрагической лихорадки Эбола).

Вне клетки любой вирус является всего лишь молекулярным контейнером с генетическим материалом (ДНК или РНК) и вряд ли может считаться полноценным живым организмом, хотя по этому вопросу в научной среде до сих пор нет окончательной терминологической определенности.

Так, исследование репликации вируса методом просвечивающей электронной микроскопии на ультратонких срезах выглядит следующим образом: зараженные клетки обрабатывают фиксирующим раствором, обезвоживают спиртом и заливают специальной смолой. После отвердевания смолы с помощью специального прибора – ультратома – делают ультратонкие (≈ 50 нм) срезы, которые затем наносят на специальную сетку и обрабатывают растворами солей тяжелых металлов. Во время самого микроскопического исследования образец находится в вакуумной камере и подвергается действию пучка электронов с энергией в несколько десятков кэВ. Очевидно, что прижизненная визуализация в данном случае принципиально невозможна.

В течение почти полувека электронная микроскопия оставалась единственным методом визуализации наноразмерных объектов. Однако в начале 1980-х гг. эта монополия была нарушена появлением сканирующей зондовой микроскопии (СЗМ). Основным принципом СЗМ является сканирование – прецизионное (с высокой точностью) перемещение зонда вблизи исследуемой поверхности, сопряженное с отслеживанием определенного параметра, характеризующего взаимодействие между зондом и образцом. Результатом такого сканирования является топографическая карта рельефа поверхности образца.

Первым прибором СЗМ стал сканирующий туннельный микроскоп (СТМ), который мог лишь весьма ограниченно использоваться для визуализации биологических объектов, так как для его работы требовалась высокая электрическая проводимость исследуемой поверхности.

В 1986 г. швейцарский физик Г. Бинниг и его коллеги создали новый прибор семейства СЗМ – атомно-силовой микроскоп (АСМ). В основе его работы лежит силовое (Ван-дер-Ваальсово) взаимодействие атомов зонда и поверхности. АСМ не требуется электрическая проводимость поверхности образца, и он может осуществлять съемку в жидкой среде. Поэтому этот прибор оказался удобным инструментом для исследования биологических объектов.

Принципиальная схема работы атомно-силового микроскопа (АСМ). Чувствительным элементом АСМ является упругая консоль (кантилевер), на конце которой закреплен острый зонд. Силы, возникающие между атомами острия зонда и исследуемой поверхностью приводят к деформации кантилевера, которая в свою очередь фиксируется при помощи оптической системы, реализованной в большинстве современных АСМ, на основе полупроводникового лазера и четырехсекционного фотоприемника. Размер кантилевера – 100÷300 × 20÷40 мкм при толщине около 2 мкм. Высота зонда – около 10 мкм

С момента появления атомно-силового микроскопа было опубликовано огромное число работ, посвященных АСМ-визуализации самых разнообразных биологических образцов. Следует все же признать, что в большинстве случаев в плане визуализации АСМ не дает ничего принципиально нового в сравнении с обычной электронной микроскопией, поэтому зачастую данный метод воспринимается биологами как техническая экзотика, а не как полноценный исследовательский инструмент.

Однако важнейшим, пусть и почти единственным преимуществом визуализации биологических объектов при помощи АСМ по сравнению с электронной микроскопией является возможность выполнения исследований нативных, природных образцов без какой-либо фиксации и специальной пробоподготовки, при физиологических параметрах среды.

Помимо визуализации рельефа поверхности с субнанометровым разрешением АСМ позволяет осуществлять прямое измерение сил, возникающих при взаимо¬действии одиночных наноразмерных объектов.

Проводятся такие измерения следующим образом: один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке, после чего зонд подводится к поверхности подложки до достижения механического контакта, а затем возвращается обратно. В ходе этого перемещения отслеживается деформация упругой консоли (кантилевера). Зависимость этого параметра от расстояния между зондом и подложкой называется силовой кривой. С ее помощью можно определить величину силы, действующей между исследуемыми объектами. Этот метод, названный атомно-силовой спектроскопией (АСС), может использоваться для исследования силовых характеристик взаимодействия самых разнообразных малых объектов: от неорганических наночастиц до вирусов и живых клеток.

Метод атомно-силовой спектроскопии позволяет определить величину силы, действующей между исследуемыми объектами. Для этого один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке. Зонд подводится к поверхности подложки и затем поднимается обратно. Зависимость деформации кантилевера от расстояния между зондом и подложкой называется силовой кривой

Начальным этапом заражения клетки вирусом является адгезия (прилипание) вирусной частицы (вириона) к клеточной поверхности с последующим проникновением генетического материала вируса внутрь клетки. Этот процесс, определяемый взаимодействием белковых рецепторов, расположенных на поверхности клетки, с поверхностными белками вириона, является критически важным для размножения вируса. И, надо отметить, в большинстве случаев изучен недостаточно.

Адекватным методом контроля геометрических параметров зонда атомно-силового микроскопа (а) при создании площадки для посадки вириона, является электронная микроскопия, как сканирующая, так и просвечивающая: б – площадка на острие зонда для посадки крупной вирусной частицы; в – вирусоподобная частица, закрепленная на острие зонда. Просвечивающая электронная микроскопия (JEM 1400, Jeol, Япония)

Однако фиксация одиночной вирусной частицы на острие зонда атомно-силового микроскопа является весьма непростой задачей. Для успешного проведения эксперимента требуется большая подготовительная работа:

  • получить как можно более чистый и концентрированный препарат вируса;
  • подготовить на острие зонда площадку подходящего размера для посадки вириона;
  • химически активировать поверхность зонда для образования ковалентных связей при контакте с белками вируса;
  • убедиться в том, что на зонде закрепился действительно вирион, а не молекулы свободного белка или мелкие фрагменты клеток, всегда присутствующие в препаратах вирусов.

Оценка концентрации и степени чистоты препарата вируса обычно проводится методом просвечивающей электронной микроскопии. Площадку на острие АСМ-зонда, которое обычно изготавливают из кремния или его нитрида, формируют путем длительного сканирования кремниевой или сапфировой подложки при больших значениях развертки и силы прижатия зонда к поверхности. Наиболее наглядной иллюстрацией для этого процесса служит изменение формы острия карандаша в ходе интенсивного рисования.

По меркам микроскопии, клетка высших организмов является относительно крупным (≈ 10 мкм) объектом, поэтому хорошо видна в световом микроскопе, при помощи которого на нее наводится кантилевер атомно-силового микроскопа. Но как быть с самим зондом, на острие которого предполагается наличие вириона? Строго говоря, вместо вириона там может оказаться все, что угодно: монослой белковых молекул, фрагмент клетки или вириона, агрегат из нескольких вирионов, случайное загрязнение и т. д. Кроме того, в процессе измерения вирион может разрушиться или оторваться от зонда. Визуализация же зонда с вирусной частицей методом электронной микроскопии до силовых измерений недопустима, так как под воздействием высушивания, вакуума и пучка электронов вирион приобретет необратимые изменения.

Наиболее эффективным методом решения данной проблемы оказалась визуализация острия зонда АСМ с помощью электронной микроскопии, осуществляемая непосредственно после силовых измерений. Если на острие будет обнаружена вирусная частица, уцелевшая в ходе эксперимента, то все сомнения развеются.

В течение последних пятидесяти лет в результате поистине титанической работы, проделанной электронными микроскопистами всего мира, накоплен огромный багаж знаний в области ультраструктурных аспектов репликации различных вирусов. Создание атомно-силового микроскопа и техники силовой спектроскопии позволило вплотную приблизиться к произвольной механической манипуляции одиночными вирусными частицами. Это выводит изучение взаимодействия вируса с клеткой на принципиально другой уровень – от структурных исследований к функциональным.

При этом атомно-силовая спектроскопия не является конкурентом для электронной микроскопии, а открывает новое самостоятельное направление исследований – наномеханику взаимодействия вирусной частицы с поверхностью клетки. Весьма вероятно, что в самом ближайшем будущем в данном направлении будут совершены фундаментальные открытия, соизмеримые по значимости с достижениями электронной микроскопии в середине прошлого века.

Изучение механизмов связывания вирусных частиц с поверхностью клетки вызывает значительный интерес не только с позиции фундаментальной науки, но и в контексте практических приложений. Более детальное понимание этих механизмов на молекулярном уровне может дать человечеству ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

*Просвечивающая электронная микроскопия с использованием специальной жидкостной ячейки и сканирующая электронная микроскопия при атмосферном давлении позволяют исследовать биологические объекты без фиксации, но из-за ряда технических трудностей и относительно низкого пространственного разрешения эти методы не получили широкого распространения

Корнеев Д. В., Бессуднова Е. В., Зайцев Б. Н. Изучение взаимодействия наночастиц TiO2 и поверхности эритроцитов человека методом атомно-силовой спектроскопии // УНЖ. 2012. № 4. С. 73—77.

Alsteens D., Pesavent E., Cheuvart G. et al. Controlled manipulation of bacteriophages using single-virus force spectroscopy // ACSNANO. 2009. V. 3(10). P. 3063—3068.

Alsteens D., Trabelsi H., Soumillion P., Dufrene Y. F., Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria // Nature Communications. V. 4. Article number: 2926.

Binnig G., Quate C. F., Gerber Ch. Atomic force microscope // Phys. Rev. Lett. 1986. V. 56(9). P. 930—933.

Cappella B., Dietler G. Force-distance curves by atomic force microscopy // Surf. Sci. Rep. 1999. V. 34. P. 1—104.

Malkin A.J., Plomp M., McPherson A. Unraveling the architecture of viruses by high-resolution atomic force microscopy // Methods Mol. Biol. 2005. V. 292. P. 85—108.

Читайте также: