Некоторые вирусы выходят из клетки не разрушая ее

Обновлено: 24.04.2024

Вирусы растут только внутриклеточно, т.е. являются облигатными внутриклеточными паразитами. В клетке они могут находиться в различных состояниях.

Нарушения, вызываемые вирусами, весьма разнообразны: от продуктивной инфекции с образованием вирусного потомства и гибелью клетки до продолжительного взаимодействия вируса с клеткой в виде латентной инфекции или злокачественной трансформации клетки.

Инфицирование клетки вирусом может иметь следующие последствия:

- разрушение клетки (некроз)в результате цитоцидной инфекции, т.е. репродукция вируса приводит к цитоцидному действию (в культуре клеток происходит цитопатический эффект - клетки округляются, отделяются от соседних клеток, образуются многоядерные гигантские клетки, вакуоли и включения);

- разрушение клетки (апоптоз)в результате инициации вирусом програмированной клеточной гибели, при этом вирусный репликативный цикл часто прерывается;

- разрушение клетки в итоге не самим вирусом, а иммунными реакциями организма;

- вирус находится внутри клетки, но не разрушает ее (латентная инфекция);

- вирус трансформирует клетку организма в раковую клетку.

Хорошо изучены три основных типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип взаимодействия завершается воспроизводством вирусного потомства - многочисленных вирионов и гибелью зараженных клеток (цитоцидное действие). Некоторые вирусы выходят из клеток, не разрушая их (нецитоцидное действие).

Абортивный тип взаимодействия не завершается образованием новых вирионов, поскольку инфекционный процесс, в клетке прерывается на одном из этапов.

Интегративный тип взаимодействия, или вирогения, характеризуется встраиванием (интеграцией), вирусной ДНК в виде провируса в хромосому клетки и их совместной репликацией.

Продуктивный тип взаимодействия вируса с клеткой

Продуктивный тип взаимодействия вируса с клеткой, т.е. репродукция вируса (от лат. re - повторение, productio - производство), проходит несколько стадий:

1) адсорбция вириона на клеточной мембране;

3) синтез вирусных компонентов;

4) сборка реплицированной нуклеиновой кислоты и новых капсидных белков;

5) выход вирусного потомства из клетки.

Адсорбция вириона, т.е. его прикрепление к клеточной мембране, - первая стадия репродукции вирусов. Она происходит в результате взаимодействия поверхностных молекул (белковых лигандов) вируса с мембранными рецепторами клеток вирусов. Белки поверхности вирусов, например гликопротеины липопротеиновой оболочки, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками.

Главная задача биологии — это развитие представлений у человека о живых организмах, о многообразии видов, обо всех закономерностях развития живых существ, а также об их взаимодействии с окружающей природой. Предмет основы безопасности жизнедеятельности (ОБЖ) позволяет получить знания и умения, которые помогут сохранить жизнь и здоровье в опасных ситуациях. Эти ситуации всегда возникают неожиданно, но, тем не менее, большинство из них предсказуемы и к ним можно подготовиться заранее. ОБЖ учит нас предвидеть возможные опасности и минимизировать потери от той или иной ситуации. Сегодня мы сталкиваемся с новым видом вирусной опасности COVID-19,о котором поговорим с точки зрения биологии и ОБЖ.

Что такое вирус?

Вирус — это неклеточный инфекционный агент. Сегодня нам известно около 6 тысяч различных вирусов, но их существует несколько миллионов. Вирусы не похожи друг на друга и могут иметь как форму сферы, спирали, так и форму сложного асимметричного сплетения. Размеры вирусов варьируются от 20 нм до 300 нм.

Как устроен вирус?

В центре агента находится генетический материал РНК или ДНК, вокруг которого располагается белковая структура — капсид.
Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой, т.е. жировой структурой, которая защищает их от изменений окружающей среды.

Вирусолог Дэвид Балтимор объединил все вирусы в 8 групп, из которых некоторые группы вирусов содержат 1-2 цепочки ДНК. Другие же содержат 1 цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов производит себя в различных органеллах зараженной клетки.

Вирусы имеют определенный диапазон хозяев, т.е. он может быть опасен для одних видов и абсолютно безвреден для других. Например, оспой болеет только человек, а чумкой только некоторые виды плотоядных. Вирус не способен выжить сам по себе, поэтому активируется только в хозяйской клетке, используя ее ресурсы и питательные вещества. Цель вируса — создание множества копий себя, чтобы инфицировать другие клетки!

Вирусы

Как вирус попадает в организм?

  • через физические повреждения (например, порезы на коже)
  • путём направленного впрыскивания (к примеру, укус комара)
  • направленного поражения отдельной поверхности (например, при вдыхании вируса через трахею)
  • к эпителию слизистых оболочек (это например вирус гриппа)
  • к нервной ткани (вирус простого герпеса)
  • к иммунным клеткам (вирус иммунодефицита человека)

Биология. Рабочая тетрадь. 9 класс

Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сбором белка вируса. Этот процесс называется репликацией. И его основная цель — это захват территории. Во время репликации генетический материал вируса смешивается с генами клетки хозяина — это приводит к активной мутации самого вируса, а также повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает уже новые клетки, в то время как инфицированная ранее клетка продолжает производство.

Выход вируса

Вирус создал множество собственных копий, клетка оказывается изнуренной из-за использования ее ресурсов. Больше вирусу клетка не нужна, поэтому клетка часто погибает и новорожденным вирусам приходится искать нового хозяина. Это и есть заключительная стадию жизненного цикла вируса.

Скорость распространения вирусной инфекции

Размножение вирусов протекает с исключительно высокой скоростью: при попадании в верхние дыхательные пути одной вирусной частицы уже через 8 часов количество инфекционного потомства достигает 10³, а концу первых суток − 10²³.

Вирусная латентность

Как вирус распространяется?

  • воздушно-капельный (кашель, чихание)
  • с кожи на кожу (при прикосновениях и рукопожатиях)
  • с кожи на продукты (при прикосновениях к пище грязными руками вирусы могут попасть в пищеварительную и дыхательную системы)
  • через жидкие среды организма (кровь, слюну и другие)

Почему с вирусами так тяжело бороться?

Сегодня людям уже удалось победить некоторые вирусы, а некоторые взять под жесткий контроль. Например, Оспа (она же черная оспа). Болезнь вызывается вирусом натуральной оспы, передается от человека к человеку воздушно-капельным путем. Больные покрываются сыпью, переходящей в язвы, как на коже, так и на слизистых внутренних органов. Смертность, в зависимости от штамма вируса, составляет от 10 до 40 (иногда даже 70%), На сегодняшний день вирус полностью истреблен человечеством.

Кроме того, взяты под контроль такие заболевания, как бешенство, корь и полиомиелит. Но помимо этих вирусов существует масса других, которые требуют разработок или открытия новых вакцин.

Коронавирус

Виновником эпидемии, распространяющейся сегодня по миру, стал коронавирус, вирусная частица в 0,1 микрона. Свое название он получил благодаря наростам на своей структуре, своеобразным шипам. Внутри вируса спрятан яд, с помощью которого он подчиняет себе зараженный организм. Этот вирус воздействует не только на человека, но и на птиц, свиней, собак и летучих мышей. В настоящий момент выделяют от 30 до 39 разновидностей коронавирусной инфекции. Но для человека патогенно всего 6. И как любой другой вирус COVID-19 мутирует.

симптомы и признаки.jpg

К наиболее распространенным симптомам COVID-19 относятся повышение температуры тела, сухой кашель и утомляемость. К более редким симптомам относятся боли в суставах и мышцах, заложенность носа, головная боль, конъюнктивит, боль в горле, диарея, потеря вкусовых ощущений или обоняния, сыпь и изменение цвета кожи на пальцах рук и ног. Как правило, эти симптомы развиваются постепенно и носят слабо выраженный характер. У некоторых инфицированных лиц болезнь сопровождается очень легкими симптомами.

Сколько же может жить этот вирус вне организма? Все зависит от типа вируса и от той поверхности, на которую вирусы попали. В качестве примера было рассмотрено 3 вируса, по которым велись исследования. Изучали время, на которое может задерживаться вирус на различных поверхностях. Данные приведены в таблице.

Таблица

Поскольку пока не изобретено вакцины от COVID-19, в целях защиты от инфекции самым важным для нас является соблюдение гигиены.

Гигиена — раздел медицины, изучающий влияние жизни и труда на здоровье человека и разрабатывающая меры (санитарные нормы и правила), направленные на предупреждение заболеваний, обеспечение оптимальных условий существования, укрепление здоровья и продление жизни.

Сегодня следует соблюдать определенные правила гигиены:

  • Соблюдение режима труда и отдыха, не допускающего развития утомления и переутомления.
  • Выполнение условий, обеспечивающих здоровый и полноценный сон (свежий воздух, отсутствие шума, удобная постель, оптимальная продолжительность).
  • Правильное здоровое питание в соответствии с потребностями организма.
  • Комфортный микроклимат в жилище (температура, влажность и подвижность воздуха, естественная и искусственная освещенность помещений).
  • Содержание в чистоте тела и тщательный уход за зубами.
  • Спокойное и корректное поведение в конфликтных ситуациях.

профилактика.jpg


Обзор

Хитроумные Listeria разрабатывают стратегию проникновения в соседнюю клетку.

Автор
Редакторы


Природа хитра на выдумки: даже организмы, состоящие всего из одной клетки, — бактерии — таят в себе массу удивительных способов выживания в окружающей среде, которая им не рада. Они подавляют фагоцитоз, направленный против них, разрушают мембраны клеток-хозяев, блокируют выброс нейромедиаторов, маскируются, экспрессируя (выставляя на поверхность) белки, аналогичные естественным белкам макроорганизма, продуцируют токсины. Но все это — внеклеточная суета, где существует строгий надсмотрщик в виде иммунной системы . А как насчет тех, кто живет внутри клетки? Как эти патогены обеспечивают себе распространение от клетки к клетке в обход наружной среды?

Сегодня речь пойдет об изобретательности Listeria monocytogenes из рода листерий — грамположительной подвижной палочки, внутриклеточного патогена, которая прекрасно сохраняется в контаминированных (то есть зараженных) молочных и мясных продуктах. При отсутствии должной термической обработки она способна вызвать такие тяжелые поражения желудочно-кишечного тракта, каких врагу не пожелаешь. Смертность от листериоза до сих пор составляет от 20% до 60% в разных странах. Например, при последней вспышке листериоза в Дании (в 2015 г.) летально закончились 25% случаев заражения [2]. Давайте разберемся, чем же так зловреден листериоз.

Как уже было упомянуто, заражение происходит пищевым путем. После попадания бактерий в кишечник они проникают в кровоток, разносясь по всему организму, оседая преимущественно в печени и сосудах мозга, но часть из них остается паразитировать в кишечнике.

Благодаря способности проникать в соседние клетки — одну за другой — они могут заражать ткани, до которых не добрались с кровотоком. Все, на что способна иммунная система в борьбе с внутриклеточными паразитами, — убийство зараженной клетки. Уничтожение зараженной ткани сопровождается некрозом, воспалением и, как следствие, потерей клеточного материала: если это происходит в кишечнике, возникают сильные боли, нарушения пищеварения и обезвоживание из-за рвоты и диареи. Воспаление в мозговых оболочках приводит к различным нарушениям в работе мозга. Для борьбы с бактериями, находящимися в кровотоке, выделяются цитокины и другие медиаторы иммунного ответа, что сопровождается сильным повышением температуры и сепсисом.

Беда не только в том, что листериоз сложно вылечить, но и в том, что путей заражения чрезвычайно много: L. monocytogenes обитает в почве, воде и даже растениях. Употребляя их, заражаются крупный и мелкий рогатый скот и птицы. После всех манипуляций с животными на комбинатах, получившиеся продукты животного происхождения хранятся в холоде. Мы все привыкли хранить подобные продукты в холодильнике, ведь так большинство бактерий размножается гораздо менее интенсивно. Но только не листерия! Она способна поддерживать репродуктивную функцию (и не просто поддерживать, а даже усиливать ее) в диапазоне температур +4–10 градусов, и даже замораживание не оказывает заметного влияния на ее жизнеспособность, а убить листерий возможно лишь в ходе трёхминутного нагревания до 100 °C — вот уж настоящие мастера выживания в экстремальных условиях!

Еще хуже ситуация становится в случае, если беременная женщина решит употребить зараженные продукты: Listeria может проникать через плаценту [3], [4] благодаря способности свободно путешествовать от клетки к клетке [5], провоцируя преждевременные роды, или заражать плод в процессе родов, после чего проникает сквозь его мозговые оболочки, вызывая менингит или сепсис у новорожденных (большая часть которых заканчивается фатально).

Заражение каждой новой клетки означает, что патоген успешен, а мера успешности микроба — реализация способности к размножению. После деления в эукариотической клетке становится тесно, и дочерние клетки вынуждены покинуть клетку-мишень в поисках нового места жительства.

Цель и средства

Но если микроорганизм способен существовать только внутри клетки-хозяина, то каким же образом ему удается покинуть дом и заразить соседние клетки, минуя внеклеточную среду? Почему такие инфекции плохо поддаются лечению, почему против них сложно создать эффективные вакцины и почему эти бактерии так ловко ускользают от иммунитета? Ответы на все эти вопросы кроются в более пристальном взгляде на способы распространения листерий в зараженном организме. Преимущество листерии заключается в том, что она находит путь из клетки в клетку, вовсе минуя межклеточное пространство.

Делает она это путем индукции процесса, называемого парацитофагией. Это такой способ обмена клеточным материалом, при котором одна клетка поглощает выступы, образованные мембраной ее соседки (рис. 1) [6]. Почему бы и нет, как говорится: дают — бери! В полученной везикуле (отпочковавшемся пузырьке), правда, может содержаться некий материал, который таким образом активно передается от клетки к клетке. Впервые этот процесс описали как раз в ходе исследований способов и механизмов межклеточного распространения листерий [7], а позже обнаружили и у других патогенных микроорганизмов, таких как Shigella flexneri, вызывающая дизентерию, и Rickettsia conorii [8]. В физиологически нормальных процессах парацитофагия не наблюдается, и наиболее близкое к ней событие — образование синцития, когда мембраны соседних клеток сливаются, а ядра функционирует отдельно. При этом образуется огромная многоядерная клетка, поэтому при индукции листерией слияния мембран с дальнейшим подобием эндоцитоза не вызывает никаких подозрений со стороны нормальных клеток. Таким образом, бактерии маскируют не себя или свои компоненты, а целый процесс.

Перемещение листерии

Рисунок 1. Этапы перемещения листерии от клетки к клетке. В центре — схематичное изображение процесса, по краям — микрофотографии, по которым восстановлен ход событий. Снимки получены с помощью электронного микроскопа.

Начало

Взаимодействия между бактерией и клеточными белками

Рисунок 2. Молекулярные взаимодействия между бактерией и клеточными белками. 1 — Основные участники процесса. 2 — Взаимодействие между интерналином и кадегрином, кластеризация. 3, 4 — Эндоцитоз и белки, определяющие его механизм. 5 — Уже проникшая в клетку Listeria, переставшая зависеть от компонентов цитоскелета. 6, 7 — Момент истины: ферментативное расщепление везикулы и выход бактерии непосредственно в цитозоль. Теперь она может питаться, размножаться и, впоследствии, распространяться.

Далее существуют два варианта развития событий:

Помимо этого на мембране всегда присутствуют мембранные белки кавеолин и клатрин. Их роль заключается в управлении путями протекания эндоцитоза (кавеолин обеспечивает течение рецептор-независимого эндоцитоза, клатрин — рецептор-опосредованного). В процессе образования везикулы с листерией внутри участие принимает, в основном, клатрин [15], который полимеризуется на поверхности образующейся везикулы, контролирует процесс ее отрыва от внешней мембраны и обеспечивает ее слияние с внутриклеточными эндосомами, опосредуя доставку материала из внеклеточной среды в цитозоль.

Таким образом, операция по адгезии и последующему проникновению бактерии внутрь клетки осуществлена. Теперь, будучи окруженной мембраной, ей остается только проникнуть в цитоплазму. Это обеспечивается секрецией бактериального токсина листериолизина О (ЛЛО) — порообразующего агента (этап 6) (а еще он является непосредственно сигнальной молекулой и способен активировать, например, ядерный фактор kB — тот самый NfkB, который недавно поздравляли с юбилеем [16]). ЛЛО вызывает лизис мембраны везикулы, и бактерия попадает непосредственно в цитоплазму (этап 7). Следующим шагом в ее жизненном цикле становится распространение от клетки к клетке, и вот тут мы и подходим к самому интересному — способу, которым листерия обеспечивает себе непрерывное внутриклеточное существование, при этом производя смену клеток-мишеней.

Цитоскелет: молекулярные аспекты

Вы еще не забыли про Listeria?

Парацитофагия

Что мы имеем?

Таким образом, иммунитет способен среагировать на листерию только до того, как она впервые адгезируется на клетку-мишень и проникнет в нее. Учитывая, что заражение происходит главным образом через ЖКТ, где иммунных клеток много, но все они не лежат на поверхности эпителиальной выстилки, а антигены доставляются к ним путем трансцитоза через другие специализированные клетки, можно сделать вывод, что шансов у иммунитета крайне мало. К тому же, листерия способна подавлять иммунный ответ, направленный в ее сторону, заставляя иммунные клетки совершать самоубийство (индуцируя в них апоптоз) [23].

Основным оружием иммунитета пока что остается система комплемента [24], когда разрушается вся зараженная клетка, ценой собственной жизни спасая соседние клетки от заражения. Соответственно, попытки создать вакцину не увенчиваются весомым успехом, а методы лечения ограничиваются терапией антибактериальными препаратами с наиболее выраженной способностью проникать через мембраны, что является фактором повышенной частоты побочных эффектов из-за системности их влияния на организм — ведь они проникают и в здоровые клетки. Остается только выбирать качественные продукты животного происхождения и проводить тщательнейшую термическую обработку.

Заключение

В чем же актуальность такой проблемы как листериоз, и почему по сей день продолжаются исследования и выясняются механизмы молекулярных взаимодействий? Как уже было упомянуто, заболевание это не из приятных (особенно, когда заканчивается летально). Человек, заболевший листериозом, на длительное время теряет работоспособность — острый период заболевания длится до двух недель. При этом не только страдает работоспособность, но и появляются физический, психологический и социальный дискомфорт. Грустно еще и то, что этому заболеванию подвержены наиболее уязвимые группы людей: беременные женщины, лица с иммунодефицитами, новорожденные и пожилые люди. В случае беременности заражение листериозом может привести к выкидышу, мертворождению или преждевременным родам, в результате которых с большой вероятностью родится уже зараженный ребенок. К несчастью, большинство случаев заражения не ограничивается кишечной формой — у младенцев наиболее часто встречаются менингит и энцефалит, что приводит к дальнейшим нарушениям в работе центральной нервной системы, и конъюнктивальная форма заболевания, когда происходит заражение слизистой оболочки глаза, что приводит к развитию кератоконъюнктивита (и очень повезет тем, у кого не разовьются дальнейшие осложнения). Переболевший человек становится более подверженым оппортунистическим инфекциям (которые вызываются представителями нормальной микрофлоры, не являющимися патогенными при здоровом состоянии иммунной системы).

Учитывая, что лечение неспецифичное и, зачастую, симптоматическое, в ход идут и реакции, обусловленные приемом лекарств: жаропонижающие и противовоспалительные препараты создают повышенную нагрузку на ферментные системы печени и почек, а антибиотики отрицательно действуют на микрофлору человеческого организма и способствуют развитию антибиотикорезистентности патогенных микроорганизмов. В общем, кроме истребления патогенных микроорганизмов в промежуток времени, соответствующий острой фазе болезни, ничего хорошего от антибиотиков ждать не приходится.

К тому же, если пациент пропивает неполный курс антибиотиков или неверно подбирает дозировку, листериоз может перейти в хроническую форму, что будет сопровождаться дисбалансом в иммунной системе, а сам пациент станет дополнительным резервуаром инфекции.

Все эти последствия инфицирования вкупе с легкостью заражения диктуют необходимость разработки новых, более действенных и, в идеале, более безопасных методов лечения и профилактики. Так, уже достигнуты некоторые успехи в разработке препаратов, ингибирующих бактериальные киназы — одни из важнейших ферментов листерий [25], а вакцина на основе ослабленных Listeria оказалась не только действенным методом в предотвращении листериоза, но и показала способность усиливать эффективность противоопухолевой терапии [26].

Понимание механизмов распространения внутриклеточных патогенов является, возможно, толчком к разработке новых лекарственных препаратов, чьей мишенью станут белки, взаимодействующие с цитоскелетом или молекулами адгезии, или, к примеру, лизины. Такие препараты дадут возможность действовать на разные звенья патогенеза, ограничивая проникновение, распространение и размножение паразитов. Кто знает, возможно, в будущем механизм парацитофагии или подобный ему поможет понять и описать нормальные физиологические или патологические процессы?


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: