Особенности иммунитета при бактериальных и вирусных инфекциях

Обновлено: 27.03.2024

Реакция макроорганизма на антигены до­статочно однотипна, так как она ограниче­на набором факторов иммунной защиты и физиологическими возможностями самого макроорганизма. Однако в зависимости от природы антигена иммунная система не обя­зательно должна включать для его устранения весь имеющийся арсенал — в отношении кон­кретного антигена достаточно использовать лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антиге­нов иммунное реагирование макроорганизма имеет свои особенности.

12.2.1. Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогеннос-ти микроба и, в первую очередь, его способ­ностью к токсинообразованию. Различают антибактериальный (против структурно-фун­кциональных компонентов бактериальной клетки) и антитоксический (против белковых токсинов) иммунитет.

Основными факторами антибактериальной защиты в подавляющем большинстве случа­ев являются антитела и фагоциты. Антитела эффективно инактивируют биологически ак­тивные молекулы бактериальной клетки (ток­сины, ферменты агрессии и др.), маркируют их, запускают механизм антителозависимого бактериолиза и участвуют в иммунном фаго­цитозе. Фагоциты осуществляют фагоцитоз, в том числе иммунный, внеклеточный киллинг патогена при помощи ион-радикалов и анти-телозависимый бактериолиз.

Ряд бактерий, относящихся к факультатив­ным внутриклеточным паразитам, отличает­ся повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (неза­вершенный фагоцитоз). К их числу отно­сятся микобактерии, бруцеллы, сальмонел­лы и некоторые другие. В отношении этих микробов антитела и фагоциты недостаточно эффективны, а сам инфекционный процесс имеет склонность к хроническому течению. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено им­мунитета, что ведет к аллергизации организма по типу ГЗТ. Особое значение приобретают активированный макрофаг и естественный киллер, осуществляющие антителозависимую клеточно-опосредованную цитотоксичность, а также gadeТ-лимфоцит.

Кроме перечисленных, на внедрившиеся бактерии воздействует весь арсенал факторов неспецифической резистентности. Среди них важная роль в борьбе с грамположительными микробами принадлежит лизоциму и белкам острой фазы (С-реактивному и маннозосвя-зывающему протеинам).

Напряженность специфического антибак­териального иммунитета оценивают в сероло­гических тестах по титру или динамике титра специфических антител, а также состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

12.2.2. Особенности противовирусного иммунитета

Иммунная защита макроорганизма при ви­русных инфекциях имеет особенности, обус­ловленные двумя формами существования вируса: внеклеточной и внутриклеточной.

Основными факторами, обеспечивающими противовирусный иммунитет, являются спе­цифические антитела, Т-киллеры, естествен­ные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внекле­точным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфици­рованию и генерализации процесса, а также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточ­ную среду и секреты после разрушения за­раженных вирусами клеток. Образовавшиеся иммунные комплексы элиминируются пу­тем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на ЦПМ инфициро­ванных клеток, индуцирует цитотоксическую активность естественных киллеров (см. гл. 11, разд. 11.3.1).

Клетки, инфицированные вирусом и при­ступившие к его репликации, экспрессиру-ют вирусные белки на цитоплазматической мембране в составе молекул антигенов гис-тосовместимости — МНС I класса (см. гл. 10, разд. 10.1.4.2). Это является сигналом для активации Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их (см. гл. 11, разд. 11.3.2).

Мощным противовирусным действием об­ладает интерферон (см. гл. 9, разд. 9.2.3.5). Он не действует непосредственно на внутрикле­точный вирус, а связывается с рецептором на мембране клетки и индуцирует ферментные системы, подавляющие в ней все биосинтети­ческие процессы.

Сывороточные ингибиторы неспецифичес­ки связываются с вирусной частицей и ней­трализуют ее, препятствуя тем самым адсорб­ции вируса на клетках-мишенях.

Напряженность противовирусного имму­нитета оценивают-преимущественно в се­рологических тестах — по нарастанию титра специфических антител в парных сыворот­ках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови.

12.2.3. Особенности противогрибкового

Антигены грибов имеют относительно низ­кую иммуногенность: они практически не ин­дуцируют антителообразование (титры специ­фических антител остаются низкими), но сти­мулируют клеточное звено иммунитета. Между тем, основными действующими факторами противогрибкового иммунитета являются акти­вированные макрофаги, которые осуществляют антителозависимую клеточно-опосредованную цитотоксичность грибов.

При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и моче­половых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

12.2.4. Особенности иммунитета при протозойных инвазиях

Противопаразитарный иммунитет изучен слабо. Известно, что паразитарная инвазия сопровождается формированием в макроор­ганизме гуморального и клеточного имму­нитета. В крови определяются специфичес­кие антитела классов М и G, которые чаще всего не обладают протективным действием. Однако они активируют антителозависимую клеточно-опосредованную цитотоксичность с участием макрофагов, а в случае внутрик­леточного паразитирования — естественных киллеров и gadeТ-лимфоцитов. Паразитарные инвазии сопровождаются аллергизацией мак­роорганизма — отмечается усиление ГЗТ на протозойные антигены.

Характер противопаразитарного иммуните­та определяется структурно-функциональны­ми особенностями паразита и его жизненного цикла при инвазии макроорганизма. Многие паразиты обладают высокой антигенной изменчивостью, что позволяет им избегать действия факторов иммунитета. Например, каждой стадии развития малярийного плаз­модия соответствуют свои специфические ан­тигены.

Напряженность противопаразитарного иммунитета оценивается в серологических тестах по титру специфических антител и в кожно-аллергических пробах с протозойным антигеном.

12.2.5. Особенности противоглистного иммунитета

Антигены гельминта, связываясь также с рецепторными комплексами тучных клеток слизистой оболочки, вызывают их деграну-ляцию. Экскретированные биологически ак­тивные соединения вызывают интенсивную перистальтику, удаляющую паразита или его останки из просвета кишки.

Эозинофилы и тучные клетки синтезируют цитокины и липидные медиаторы, потен­цирующие воспалительную реакцию в месте внедрения гельминта. Глистная инвазия со­провождается аллергизацией, в основном, по типу ГЗТ.

12.2.6. Трансплантационный иммунитет Трансплантационным иммунитетом назы­ вают иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммуните­ та необходимо для решения одной из важней­ ших проблем современной медицины — пе­ ресадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологи­ ческой совместимости тканей донора и реци­ пиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их соста­ве содержатся генетически чужеродные для организма антигены. Эти антигены, полу-

чившие название трансплантационных или антигенов гистосовместимости (см. гл. 10, разд. 10.1.4.2), наиболее полно представлены на ЦПМ клеток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно­гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплан­тационными антигенами организм реагирует факторами клеточного и гуморального зве­ньев иммунитета. Основным фактором кле­точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен­сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредо-ванную цитотоксичность.

Специфические антитела, которые образу­ются на чужеродные антигены (гемагглюти-нины, гемолизины, лейкотоксины, цитоток-сины), имеют важное значение в формирова­нии трансплантационного иммунитета. Они запускают антитело-опосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредован-ная цитотоксичность).

Возможен адоптивный перенос трансплан­тационного иммунитета с помощью активи­рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения переса­женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетент-ных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про­исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале­ние, тромбоз кровеносных сосудов, наруша­ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.

В процессе реакции отторжения формиру­ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от­вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют ос­трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

Отсроченное отторжение имеет тот же ме­ханизм, что и острое. Возникает через не­сколько лет после операции у пациентов, получавших иммуносупрессивную терапию.

Сверхострое отторжение, или криз оттор­жения, развивается в течение первых суток после трансплантации у пациентов, сенсиби­лизированных к антигенам донора, по меха­низму вторичного иммунного ответа. Основу составляет антительная реакция: специфичес­кие антитела связываются с антигенами эн­дотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно иниции­руется иммунное воспаление и свертываю­щая система крови. Быстрый тромбоз сосудов трансплантата вызывает его острую ишемию и ускоряет некротизацию пересаженных тканей.

Следовательно, при пересадке органов и тканей во избежание иммунологического от­торжения трансплантата необходимо прово­дить тщательный подбор донора и реципиен­та по антигенам гистосовместимости.

12.2.7. Иммунитет против новообразований В сложноорганизованном организме, на­ряду с нормальными физиологическими про­цессами, направленными на поддержание гомеостаза, с определенной частотой проис­ходят и дезинтегрирующие события, обуслов­ленные ошибками и старением сложноорга-низованной биологической системы. В част-

ности, появляются мутантные и опухолевые клетки.

Мутантные клетки возникают в резуль­тате нелетального действия химических, физических и биологических канцероге­нов. К последним относятся разнообразные инфекционные агенты — облигатные внут­риклеточные паразиты, и, в первую очередь, вирусы. Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, в частности, имеют измененные антигены гистосовместимости. Поэтому они активируют гуморальное и кле­точное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную ре­акцию и антителозависимую клеточно-опос-редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую кле-точно-опосредованную цитотоксичность.

Механизм противоопухолевого иммунитета до сих пор слабо изучен. Считается, что ос­новную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная фун­кция гуморального иммунитета во многом спорная — специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.

Вместе с тем, в последнее время получила распространение иммунодиагностика рака,

которая основана на определении в сыворот­ке крови раковоэмбриональных и опухоль-ассоциированных антигенов. Таким путем в настоящее время удается диагностировать некоторые формы рака печени, желудка, ки­шечника и др.

Между состоянием иммунной защиты и развитием новообразований существует тес­ная связь. Об этом свидетельствует повы­шенная заболеваемость злокачественными новообразованиями индивидуумов с имму-нодефицитами и престарелых в связи с по­нижением активности иммунной системы. Иммуносупрессивная химиотерапия также нередко сопровождается пролиферативны-ми процессами. Поэтому в лечении опухо­лей нашли применение иммуномодуляторы (интерлейкины, интерфероны), а также адъ-юванты (мурамилдипептиды, вакцина БЦЖ и др.).

12.2.8. Иммунология беременности

Механизмы иммунологической толеран­тности во время беременности чрезвычай­но активны. Известно, например, что сам­ки животных в этот период не отторгают трансплантат отца ее эмбриона. Однако после родоразрешения (или абортирования плода) толерантность быстро угасает, а надзорная функция иммунной системы быстро восста­навливается, и трансплантат отторгается.

Макроорганизм имеет широкий спектр средств защиты своей целостности и поддержания гомеостаза. Однако для минимизации энергетических и пластических затрат макроорганизм для устранения конкретного антигена использует лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антигенов иммунное реагирование макроорганизма имеет свои особенности.

Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогенности микроба и в первую очередь его способностью к токсинообразованию. Различают иммунитетантибактериальный - против структурных компонентов бактериальной клетки и антитоксический - против белковых токсинов.

Основными факторами антибактериальной защиты являются антитела и фагоциты. Антитела эффективно инактивируют биологически активные молекулы бактериальной клетки (токсины, ферменты агрессии и др.), маркируют их, запускают антителозависимый бактериолиз и иммунный фагоцитоз. Фагоциты непосредственно осуществляют фагоцитоз, в том числе иммунный, антителозависимый бактериолиз и внеклеточный киллинг патогена при помощи ион-радикалов и ферментов. Важная роль в борьбе с грамположительными микробами принадлежит лизоциму, а с грамотрицательными - комплементу (альтернативный путь активации), кроме того, существенное значение имеют белки острой фазы (С-реактивный и маннозосвязывающий протеин).

Ряд бактерий, относящихся к факультативным внутриклеточным паразитам, отличается повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (незавершенный фагоцитоз). К их числу относятся микобактерии, йерсинии, бруцеллы, сальмонеллы и некоторые другие. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено иммунитета, что ведет к аллергизации организма по механизму ГЗТ. Особое значение приобретают активированные макрофаги и естественные киллеры, осуществляющие АЗКЦТ, а также γδТ-лимфоциты.

Напряженность специфического антибактериального иммунитета оценивают в серологических тестах по титру или динамике титра специфических антител, а также по состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

Особенности противовирусного иммунитета

Особенности иммунной защиты макроорганизма при вирусных инфекциях обусловлены двумя формами существования вируса: внеклеточной и внутриклеточной. Основными факторами, обеспечивающими противовирусный иммунитет, являются специфические антитела, Т-киллеры, естественные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внеклеточным вирусом, так как у них нет доступа внутрь живой клетки. Антитела нейтрализуют вирусные адгезины и нейраминидазы, препятствуя адсорбции вирусов на клетках-мишенях и их инфицированию. Они также связывают вирусные белки и нуклеиновые кислоты, образовавшиеся после разрушения зараженных вирусами клеток. Сформировавшиеся иммунные комплексы элиминируются путем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на цитоплазматической мембране инфицированных клеток, индуцирует естественные киллеры к АЗКЦТ.

Клетки, инфицированные вирусом и приступившие к его репликации, экспрессируют вирусные белки на цитоплазматической мембране в составе молекул антигенов гистосовместимости - MHC I класса. Измененная структура MHC I класса этих антигенов гистосовместимости является маркером для Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их.

Мощным противовирусным свойством обладает интерферон. Он не действует непосредственно на внутриклеточный вирус, а связывается с рецептором на мембране клетки и подавляет в ней все биосинтетические процессы.

Сывороточные ингибиторы неспецифически связываются с вирусной частицей и нейтрализуют ее, препятствуя тем самым адсорбции вируса на клетках-мишенях.

Напряженность противовирусного иммунитета оценивают преимущественно в серологических тестах по нарастанию титра специфических антител в парных сыворотках в процессе болезни. Определяют также концентрацию интерферона в сыворотке крови.

Реакция макроорганизма на антигены до­статочно однотипна, так как она ограниче­на набором факторов иммунной защиты и физиологическими возможностями самого макроорганизма. Однако в зависимости от природы антигена иммунная система не обя­зательно должна включать для его устранения весь имеющийся арсенал — в отношении кон­кретного антигена достаточно использовать лишь наиболее эффективные механизмы и факторы защиты. Поэтому при воздействии различных по природе и свойствам антиге­нов иммунное реагирование макроорганизма имеет свои особенности.

12.2.1. Особенности иммунитета при бактериальных инфекциях

Иммунная реакция макроорганизма в ответ на бактериальную инфекцию в значительной степени определяется факторами патогеннос-ти микроба и, в первую очередь, его способ­ностью к токсинообразованию. Различают антибактериальный (против структурно-фун­кциональных компонентов бактериальной клетки) и антитоксический (против белковых токсинов) иммунитет.

Основными факторами антибактериальной защиты в подавляющем большинстве случа­ев являются антитела и фагоциты. Антитела эффективно инактивируют биологически ак­тивные молекулы бактериальной клетки (ток­сины, ферменты агрессии и др.), маркируют их, запускают механизм антителозависимого бактериолиза и участвуют в иммунном фаго­цитозе. Фагоциты осуществляют фагоцитоз, в том числе иммунный, внеклеточный киллинг патогена при помощи ион-радикалов и анти-телозависимый бактериолиз.

Ряд бактерий, относящихся к факультатив­ным внутриклеточным паразитам, отличает­ся повышенной устойчивостью к действию комплемента, лизоцима и фагоцитов (неза­вершенный фагоцитоз). К их числу отно­сятся микобактерии, бруцеллы, сальмонел­лы и некоторые другие. В отношении этих микробов антитела и фагоциты недостаточно эффективны, а сам инфекционный процесс имеет склонность к хроническому течению. В такой ситуации макроорганизм вынужден переключать нагрузку на клеточное звено им­мунитета, что ведет к аллергизации организма по типу ГЗТ. Особое значение приобретают активированный макрофаг и естественный киллер, осуществляющие антителозависимую клеточно-опосредованную цитотоксичность, а также gadeТ-лимфоцит.

Кроме перечисленных, на внедрившиеся бактерии воздействует весь арсенал факторов неспецифической резистентности. Среди них важная роль в борьбе с грамположительными микробами принадлежит лизоциму и белкам острой фазы (С-реактивному и маннозосвя-зывающему протеинам).

Напряженность специфического антибак­териального иммунитета оценивают в сероло­гических тестах по титру или динамике титра специфических антител, а также состоянию клеточной иммунореактивности (например, по результатам кожно-аллергической пробы).

12.2.2. Особенности противовирусного иммунитета

Иммунная защита макроорганизма при ви­русных инфекциях имеет особенности, обус­ловленные двумя формами существования вируса: внеклеточной и внутриклеточной.

Основными факторами, обеспечивающими противовирусный иммунитет, являются спе­цифические антитела, Т-киллеры, естествен­ные киллеры, интерферон и сывороточные ингибиторы вирусных частиц.

Специфические противовирусные антитела способны взаимодействовать только с внекле­точным вирусом, внутриклеточные структуры прижизненно для них недоступны. Антитела нейтрализуют вирусную частицу, препятствуя ее адсорбции на клетке-мишени, инфици­рованию и генерализации процесса, а также связывают вирусные белки и нуклеиновые кислоты, которые попадают в межклеточ­ную среду и секреты после разрушения за­раженных вирусами клеток. Образовавшиеся иммунные комплексы элиминируются пу­тем иммунного фагоцитоза. Специфическое связывание антител с вирусными белками, экспрессированными на ЦПМ инфициро­ванных клеток, индуцирует цитотоксическую активность естественных киллеров (см. гл. 11, разд. 11.3.1).

Клетки, инфицированные вирусом и при­ступившие к его репликации, экспрессиру-ют вирусные белки на цитоплазматической мембране в составе молекул антигенов гис-тосовместимости — МНС I класса (см. гл. 10, разд. 10.1.4.2). Это является сигналом для активации Т-киллеров, которые распознают зараженные вирусом клетки и уничтожают их (см. гл. 11, разд. 11.3.2).

Мощным противовирусным действием об­ладает интерферон (см. гл. 9, разд. 9.2.3.5). Он не действует непосредственно на внутрикле­точный вирус, а связывается с рецептором на мембране клетки и индуцирует ферментные системы, подавляющие в ней все биосинтети­ческие процессы.

Сывороточные ингибиторы неспецифичес­ки связываются с вирусной частицей и ней­трализуют ее, препятствуя тем самым адсорб­ции вируса на клетках-мишенях.

Напряженность противовирусного имму­нитета оценивают-преимущественно в се­рологических тестах — по нарастанию титра специфических антител в парных сыворот­ках в процессе болезни. Иногда определяют концентрацию интерферона в сыворотке крови.

12.2.3. Особенности противогрибкового

Антигены грибов имеют относительно низ­кую иммуногенность: они практически не ин­дуцируют антителообразование (титры специ­фических антител остаются низкими), но сти­мулируют клеточное звено иммунитета. Между тем, основными действующими факторами противогрибкового иммунитета являются акти­вированные макрофаги, которые осуществляют антителозависимую клеточно-опосредованную цитотоксичность грибов.

При микозах наблюдается аллергизация макроорганизма. Кожные и глубокие микозы сопровождаются, как правило, ГЗТ. Грибковые поражения слизистых дыхательных и моче­половых путей вызывают аллергизацию по типу ГНТ (реакция I типа). Напряженность противогрибкового иммунитета оценивается по результатам кожно-аллергических проб с грибковыми аллергенами.

12.2.4. Особенности иммунитета при протозойных инвазиях

Противопаразитарный иммунитет изучен слабо. Известно, что паразитарная инвазия сопровождается формированием в макроор­ганизме гуморального и клеточного имму­нитета. В крови определяются специфичес­кие антитела классов М и G, которые чаще всего не обладают протективным действием. Однако они активируют антителозависимую клеточно-опосредованную цитотоксичность с участием макрофагов, а в случае внутрик­леточного паразитирования — естественных киллеров и gadeТ-лимфоцитов. Паразитарные инвазии сопровождаются аллергизацией мак­роорганизма — отмечается усиление ГЗТ на протозойные антигены.

Характер противопаразитарного иммуните­та определяется структурно-функциональны­ми особенностями паразита и его жизненного цикла при инвазии макроорганизма. Многие паразиты обладают высокой антигенной изменчивостью, что позволяет им избегать действия факторов иммунитета. Например, каждой стадии развития малярийного плаз­модия соответствуют свои специфические ан­тигены.

Напряженность противопаразитарного иммунитета оценивается в серологических тестах по титру специфических антител и в кожно-аллергических пробах с протозойным антигеном.

12.2.5. Особенности противоглистного иммунитета

Антигены гельминта, связываясь также с рецепторными комплексами тучных клеток слизистой оболочки, вызывают их деграну-ляцию. Экскретированные биологически ак­тивные соединения вызывают интенсивную перистальтику, удаляющую паразита или его останки из просвета кишки.

Эозинофилы и тучные клетки синтезируют цитокины и липидные медиаторы, потен­цирующие воспалительную реакцию в месте внедрения гельминта. Глистная инвазия со­провождается аллергизацией, в основном, по типу ГЗТ.

12.2.6. Трансплантационный иммунитет Трансплантационным иммунитетом назы­ вают иммунную реакцию макроорганизма, направленную против пересаженной в него чужеродной ткани (трансплантата). Знание механизмов трансплантационного иммуните­ та необходимо для решения одной из важней­ ших проблем современной медицины — пе­ ресадки органов и тканей. Многолетний опыт показал, что успех операции по пересадке чужеродных органов и тканей в подавляющем большинстве случаев зависит от иммунологи­ ческой совместимости тканей донора и реци­ пиента.

Иммунная реакция на чужеродные клетки и ткани обусловлена тем, что в их соста­ве содержатся генетически чужеродные для организма антигены. Эти антигены, полу-

чившие название трансплантационных или антигенов гистосовместимости (см. гл. 10, разд. 10.1.4.2), наиболее полно представлены на ЦПМ клеток.

Реакция отторжения не возникает в случае полной совместимости донора и реципиента по антигенам гистосовместимости — такое возможно лишь для однояйцовых близнецов. Выраженность реакции отторжения во мно­гом зависит от степени чужеродности, объема трансплантируемого материала и состояния иммунореактивности реципиента.

При контакте с чужеродными трансплан­тационными антигенами организм реагирует факторами клеточного и гуморального зве­ньев иммунитета. Основным фактором кле­точного трансплантационного иммунитета являются Т-киллеры. Эти клетки после сен­сибилизации антигенами донора мигрируют в ткани трансплантата и оказывают на них антителонезависимую клеточно-опосредо-ванную цитотоксичность.

Специфические антитела, которые образу­ются на чужеродные антигены (гемагглюти-нины, гемолизины, лейкотоксины, цитоток-сины), имеют важное значение в формирова­нии трансплантационного иммунитета. Они запускают антитело-опосредованный цитолиз трансплантата (комплемент-опосредованный и антителозависимая клеточно-опосредован-ная цитотоксичность).

Возможен адоптивный перенос трансплан­тационного иммунитета с помощью активи­рованных лимфоцитов или со специфической антисывороткой от сенсибилизированной особи интактному макроорганизму.

Механизм иммунного отторжения переса­женных клеток и тканей имеет две фазы. В первой фазе вокруг трансплантата и сосудов наблюдается скопление иммунокомпетент-ных клеток (лимфоидная инфильтрация), в том числе Т-киллеров. Во второй фазе про­исходит деструкция клеток трансплантата Т-киллерами, активируются макрофагальное звено, естественные киллеры, специфический антителогенез. Возникает иммунное воспале­ние, тромбоз кровеносных сосудов, наруша­ется питание трансплантата и происходит его гибель. Разрушенные ткани утилизируются фагоцитами.

В процессе реакции отторжения формиру­ется клон Т- и В-клеток иммунной памяти. Повторная попытка пересадки тех же органов и тканей вызывает вторичный иммунный от­вет, который протекает очень бурно и быстро заканчивается отторжением трансплантата.

С клинической точки зрения выделяют ос­трое, сверхострое и отсроченное отторжение трансплантата. Различаются они по времени реализации реакции и отдельным механизмам.

Отсроченное отторжение имеет тот же ме­ханизм, что и острое. Возникает через не­сколько лет после операции у пациентов, получавших иммуносупрессивную терапию.

Сверхострое отторжение, или криз оттор­жения, развивается в течение первых суток после трансплантации у пациентов, сенсиби­лизированных к антигенам донора, по меха­низму вторичного иммунного ответа. Основу составляет антительная реакция: специфичес­кие антитела связываются с антигенами эн­дотелия сосудов трансплантата и поражают клетки, активируя систему комплемента по классическому пути. Параллельно иниции­руется иммунное воспаление и свертываю­щая система крови. Быстрый тромбоз сосудов трансплантата вызывает его острую ишемию и ускоряет некротизацию пересаженных тканей.

Следовательно, при пересадке органов и тканей во избежание иммунологического от­торжения трансплантата необходимо прово­дить тщательный подбор донора и реципиен­та по антигенам гистосовместимости.

12.2.7. Иммунитет против новообразований В сложноорганизованном организме, на­ряду с нормальными физиологическими про­цессами, направленными на поддержание гомеостаза, с определенной частотой проис­ходят и дезинтегрирующие события, обуслов­ленные ошибками и старением сложноорга-низованной биологической системы. В част-

ности, появляются мутантные и опухолевые клетки.

Мутантные клетки возникают в резуль­тате нелетального действия химических, физических и биологических канцероге­нов. К последним относятся разнообразные инфекционные агенты — облигатные внут­риклеточные паразиты, и, в первую очередь, вирусы. Мутантные клетки отличаются от нормальных метаболическими процессами и антигенным составом, в частности, имеют измененные антигены гистосовместимости. Поэтому они активируют гуморальное и кле­точное звенья иммунитета, осуществляющие надзорную функцию. Важную роль в этом процессе играют специфические антитела (запускают комплемент-опосредованную ре­акцию и антителозависимую клеточно-опос-редованную цитотоксичность) и Т-киллеры, осуществляющие антителонезависимую кле-точно-опосредованную цитотоксичность.

Механизм противоопухолевого иммунитета до сих пор слабо изучен. Считается, что ос­новную роль в нем играют активированные макрофаги; определенное значение имеют также естественные киллеры. Защитная фун­кция гуморального иммунитета во многом спорная — специфические антитела могут экранировать антигены опухолевых клеток, не вызывая их цитолиза.

Вместе с тем, в последнее время получила распространение иммунодиагностика рака,

которая основана на определении в сыворот­ке крови раковоэмбриональных и опухоль-ассоциированных антигенов. Таким путем в настоящее время удается диагностировать некоторые формы рака печени, желудка, ки­шечника и др.

Между состоянием иммунной защиты и развитием новообразований существует тес­ная связь. Об этом свидетельствует повы­шенная заболеваемость злокачественными новообразованиями индивидуумов с имму-нодефицитами и престарелых в связи с по­нижением активности иммунной системы. Иммуносупрессивная химиотерапия также нередко сопровождается пролиферативны-ми процессами. Поэтому в лечении опухо­лей нашли применение иммуномодуляторы (интерлейкины, интерфероны), а также адъ-юванты (мурамилдипептиды, вакцина БЦЖ и др.).

12.2.8. Иммунология беременности

Механизмы иммунологической толеран­тности во время беременности чрезвычай­но активны. Известно, например, что сам­ки животных в этот период не отторгают трансплантат отца ее эмбриона. Однако после родоразрешения (или абортирования плода) толерантность быстро угасает, а надзорная функция иммунной системы быстро восста­навливается, и трансплантат отторгается.

Особенности иммунитета при вирусных инфекциях. Патогенез противовирусного иммунного ответа.

Эффективная иммунизация организма против вирусных инфекций тесно связана с их пато- и иммуногенезом. Поэтому рациональное проведение вакцинации, а также максимальная ее эффективность требуют изучения иммунологических и патогенетических основ инфекционного процесса.

Выздоровление от вирусной инфекции обеспечивают, по крайней мере, три феномена:
1) подавление репродукции вируса и нейтрализация инфекционности вирионов;
2) разрушение инфицированных клеток;
3) образование интерферона.

Иммунный цитолиз инфицированных вирусом клеток является существенным фактором в выздоровлении от вирусной инфекции, в основе которого лежат различные процессы, включающие Тц-клетки (антителозависимая, комплементзависимая цитотоксичность). Циркулирующие антитела играют важную роль в выздоровлении от многих генерализованных инфекций (пикорна-, тога-, флави-, парвовирусной и других инфекций). Менее важная роль Т-лимфоцитов связана с тем, что иммунодоминантные Тц-детерминанты часто находятся на консервативных белках, локализованных внутри вириона или на неструктурных вирусных белках, которые находятся только в инфицированных клетках.

иммунитет при вирусной инфекции

При генерализованных инфекциях вирус могут нейтрализовать только те антитела, которые связываются с рецепторами поверхности вириона, которыми они прикрепляются к клетке и блокируют адсорбцию и проникновение вируса в клетку. Некоторые моноклональные антитела, не обладающие нейтрализующей активностью, могут способствовать выздоровлению — предположительно, благодаря антитело-зависимой клеточной цитотоксичности, комплемент-зависимому лизису антителами. В присутствии антител макрофаги могут поглощать и переваривать инфицированные вирусом клетки.

NK-клетки активируются интерфероном или непосредственно вирусными гликопротеинами. Они не обладают иммунологической специфичностью, но преимущественно лизируют клетки, инфицированные вирусом.

Ниже приведены основные примеры стратегии вирусов, направленные на преодоление или снижение иммунологического прессинга со стороны хозяина.

1. Репликация без цитопатогенного действия
Аренавирусы и хантавирусы, например, вызывают хронические инфекции у грызунов без гибели клеток, в которых они размножаются. Инфекция, как правило, не сопровождается заметными изменениями в организме. Ретровирусы также не вызывают изменений в клетках-мишенях, тканях и органах естественных хозяев.

2. Распространение от клетки к клетке путем сплавления мембран
Лентивирусы, морбилливирусы и герпесвирусы (цитомегаловирусы) вызывают слияние клеток, обеспечивая передачу вирусного генома от клетки к клетке и избавляя его от влияния гуморальных иммунных механизмов хозяина.

3. Латентная непродуктивная инфекция непермиссивных клеток
Вирус может размножаться продуктивно в клетках одного типа и вызывать непродуктивную латентную инфекцию в клетках другого типа. Многие герпес-вирусы находятся в латентном состоянии в нервных ганглиях или В-лимфоцитах, но размножаются продуктивно и вызывают острые поражения эпителиальных клеткок слизистых. Пермиссивность клеток может зависеть от стадии дифференциации или активации. Например, папилломавирусы поражают базальные клетки эпителия в начале дифференцировки, но образуют инфекционные вирионы только в полностью дифференцированных клетках вблизи поверхности тела.

4. Частичная экспрессия вирусных генов
Латенция вирусов может поддерживаться ограниченной экспрессией генов, которая может убивать клетки. В течение латентной инфекции некоторые вирусы, такие как герпесвирусы, экспрессируют только ранние гены, которые необходимы для поддержания латенции. В течение реактивации, которую часто стимулирует иммуносупрессия и/или действие цитокинов или гормонов, полный вирусный геном транскрибируется снова. Эта стратегия в течение латентного состояния защищает вирус от всех иммунных механизмов организма.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Клеточные иммунные реакции при вирусных инфекциях. Иммунный ответ при бактериальных инфекциях.

Клеточные иммунные реакции — основная система уничтожения и удаления патогенных вирусов. Нарушения свойств иммунокомпетентных клеток значительна осложняют течение вирусных заболеваний: возбудители обычно лёгких и самоограничивающихся поражений могут вызывать тяжёлые, трудно излечиваемые инфекции. Важнейшую роль в разрушении инфицированных клеток играют цитотоксические Т-лимфоциты. После появления достаточных титров AT способность убивать заражённые вирусами клетки приобретают макрофаги и гранулоциты.

Клеточные иммунные реакции при вирусных инфекциях. Иммунный ответ при бактериальных инфекциях

Иммунный ответ при бактериальных инфекциях

Первую ступень защиты от патогенных бактерий образуют факторы неспецифической резистентности — кожные и слизистые барьеры, а после их преодоления — фагоцитирующие клетки. Действие факторов неспецифической резистентности направлено не на А г бактерий, а на бактериальную клетку в целом.

Вторую ступень защиты при бактериальных инфекциях образуют факторы специфической защиты, среди которых наиболее значимую роль играют антибактериальные AT. Характер специфических защитных реакций определяется особенностями патогенеза того или иного заболевания. Если возбудитель продуцирует экзотоксины, то доминируют механизмы их нейтрализации; при этом сам возбудитель может выживать и длительно сохраняться в организме реконвалесцентов и здоровых лиц (например, возбудитель дифтерии). Ig различных классов нейтрализуют (агглютинируют или пре-шшитируют) бактерии и их токсины; опосредуют разрушение бактерий (преимущественно через комплементзависимый цитолиз); опсонизируют их, стимулируя фагоцитоз бактерий, а также экранируют рецепторы чувствительных клеток.

Проникновение бактерий, способных к внутриклеточному паразитированию, увеличивает значимость клеточных реакций, уничтожающих заражённые клетки. Следует упомянуть о реакциях ГЗТ, практически постоянно встречающихся при многих бактериальных инфекциях с длительным инкубационным периодом (туберкулёз, бруцеллёз). В некоторых случаях иммунные механизмы не в состоянии обеспечить полное удаление возбудителя, что приводит к развитию носительства или хронизации инфекции.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: